OpenCloudOS-Kernel/drivers/thermal/samsung/exynos_tmu.c

1277 lines
37 KiB
C
Raw Normal View History

/*
* exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit)
*
* Copyright (C) 2014 Samsung Electronics
* Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
* Lukasz Majewski <l.majewski@samsung.com>
*
* Copyright (C) 2011 Samsung Electronics
* Donggeun Kim <dg77.kim@samsung.com>
* Amit Daniel Kachhap <amit.kachhap@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include "exynos_tmu.h"
#include "../thermal_core.h"
/* Exynos generic registers */
#define EXYNOS_TMU_REG_TRIMINFO 0x0
#define EXYNOS_TMU_REG_CONTROL 0x20
#define EXYNOS_TMU_REG_STATUS 0x28
#define EXYNOS_TMU_REG_CURRENT_TEMP 0x40
#define EXYNOS_TMU_REG_INTEN 0x70
#define EXYNOS_TMU_REG_INTSTAT 0x74
#define EXYNOS_TMU_REG_INTCLEAR 0x78
#define EXYNOS_TMU_TEMP_MASK 0xff
#define EXYNOS_TMU_REF_VOLTAGE_SHIFT 24
#define EXYNOS_TMU_REF_VOLTAGE_MASK 0x1f
#define EXYNOS_TMU_BUF_SLOPE_SEL_MASK 0xf
#define EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT 8
#define EXYNOS_TMU_CORE_EN_SHIFT 0
/* Exynos3250 specific registers */
#define EXYNOS_TMU_TRIMINFO_CON1 0x10
/* Exynos4210 specific registers */
#define EXYNOS4210_TMU_REG_THRESHOLD_TEMP 0x44
#define EXYNOS4210_TMU_REG_TRIG_LEVEL0 0x50
/* Exynos5250, Exynos4412, Exynos3250 specific registers */
#define EXYNOS_TMU_TRIMINFO_CON2 0x14
#define EXYNOS_THD_TEMP_RISE 0x50
#define EXYNOS_THD_TEMP_FALL 0x54
#define EXYNOS_EMUL_CON 0x80
#define EXYNOS_TRIMINFO_RELOAD_ENABLE 1
#define EXYNOS_TRIMINFO_25_SHIFT 0
#define EXYNOS_TRIMINFO_85_SHIFT 8
#define EXYNOS_TMU_TRIP_MODE_SHIFT 13
#define EXYNOS_TMU_TRIP_MODE_MASK 0x7
#define EXYNOS_TMU_THERM_TRIP_EN_SHIFT 12
#define EXYNOS_TMU_INTEN_RISE0_SHIFT 0
#define EXYNOS_TMU_INTEN_RISE1_SHIFT 4
#define EXYNOS_TMU_INTEN_RISE2_SHIFT 8
#define EXYNOS_TMU_INTEN_RISE3_SHIFT 12
#define EXYNOS_TMU_INTEN_FALL0_SHIFT 16
#define EXYNOS_EMUL_TIME 0x57F0
#define EXYNOS_EMUL_TIME_MASK 0xffff
#define EXYNOS_EMUL_TIME_SHIFT 16
#define EXYNOS_EMUL_DATA_SHIFT 8
#define EXYNOS_EMUL_DATA_MASK 0xFF
#define EXYNOS_EMUL_ENABLE 0x1
/* Exynos5260 specific */
#define EXYNOS5260_TMU_REG_INTEN 0xC0
#define EXYNOS5260_TMU_REG_INTSTAT 0xC4
#define EXYNOS5260_TMU_REG_INTCLEAR 0xC8
#define EXYNOS5260_EMUL_CON 0x100
/* Exynos4412 specific */
#define EXYNOS4412_MUX_ADDR_VALUE 6
#define EXYNOS4412_MUX_ADDR_SHIFT 20
/*exynos5440 specific registers*/
#define EXYNOS5440_TMU_S0_7_TRIM 0x000
#define EXYNOS5440_TMU_S0_7_CTRL 0x020
#define EXYNOS5440_TMU_S0_7_DEBUG 0x040
#define EXYNOS5440_TMU_S0_7_TEMP 0x0f0
#define EXYNOS5440_TMU_S0_7_TH0 0x110
#define EXYNOS5440_TMU_S0_7_TH1 0x130
#define EXYNOS5440_TMU_S0_7_TH2 0x150
#define EXYNOS5440_TMU_S0_7_IRQEN 0x210
#define EXYNOS5440_TMU_S0_7_IRQ 0x230
/* exynos5440 common registers */
#define EXYNOS5440_TMU_IRQ_STATUS 0x000
#define EXYNOS5440_TMU_PMIN 0x004
#define EXYNOS5440_TMU_INTEN_RISE0_SHIFT 0
#define EXYNOS5440_TMU_INTEN_RISE1_SHIFT 1
#define EXYNOS5440_TMU_INTEN_RISE2_SHIFT 2
#define EXYNOS5440_TMU_INTEN_RISE3_SHIFT 3
#define EXYNOS5440_TMU_INTEN_FALL0_SHIFT 4
#define EXYNOS5440_TMU_TH_RISE4_SHIFT 24
#define EXYNOS5440_EFUSE_SWAP_OFFSET 8
/* Exynos7 specific registers */
#define EXYNOS7_THD_TEMP_RISE7_6 0x50
#define EXYNOS7_THD_TEMP_FALL7_6 0x60
#define EXYNOS7_TMU_REG_INTEN 0x110
#define EXYNOS7_TMU_REG_INTPEND 0x118
#define EXYNOS7_TMU_REG_EMUL_CON 0x160
#define EXYNOS7_TMU_TEMP_MASK 0x1ff
#define EXYNOS7_PD_DET_EN_SHIFT 23
#define EXYNOS7_TMU_INTEN_RISE0_SHIFT 0
#define EXYNOS7_TMU_INTEN_RISE1_SHIFT 1
#define EXYNOS7_TMU_INTEN_RISE2_SHIFT 2
#define EXYNOS7_TMU_INTEN_RISE3_SHIFT 3
#define EXYNOS7_TMU_INTEN_RISE4_SHIFT 4
#define EXYNOS7_TMU_INTEN_RISE5_SHIFT 5
#define EXYNOS7_TMU_INTEN_RISE6_SHIFT 6
#define EXYNOS7_TMU_INTEN_RISE7_SHIFT 7
#define EXYNOS7_EMUL_DATA_SHIFT 7
#define EXYNOS7_EMUL_DATA_MASK 0x1ff
#define MCELSIUS 1000
/**
* struct exynos_tmu_data : A structure to hold the private data of the TMU
driver
* @id: identifier of the one instance of the TMU controller.
* @pdata: pointer to the tmu platform/configuration data
* @base: base address of the single instance of the TMU controller.
* @base_second: base address of the common registers of the TMU controller.
* @irq: irq number of the TMU controller.
* @soc: id of the SOC type.
* @irq_work: pointer to the irq work structure.
* @lock: lock to implement synchronization.
* @clk: pointer to the clock structure.
* @clk_sec: pointer to the clock structure for accessing the base_second.
* @sclk: pointer to the clock structure for accessing the tmu special clk.
* @temp_error1: fused value of the first point trim.
* @temp_error2: fused value of the second point trim.
* @regulator: pointer to the TMU regulator structure.
* @reg_conf: pointer to structure to register with core thermal.
* @tmu_initialize: SoC specific TMU initialization method
* @tmu_control: SoC specific TMU control method
* @tmu_read: SoC specific TMU temperature read method
* @tmu_set_emulation: SoC specific TMU emulation setting method
* @tmu_clear_irqs: SoC specific TMU interrupts clearing method
*/
struct exynos_tmu_data {
int id;
struct exynos_tmu_platform_data *pdata;
void __iomem *base;
void __iomem *base_second;
int irq;
enum soc_type soc;
struct work_struct irq_work;
struct mutex lock;
struct clk *clk, *clk_sec, *sclk;
u16 temp_error1, temp_error2;
struct regulator *regulator;
struct thermal_zone_device *tzd;
int (*tmu_initialize)(struct platform_device *pdev);
void (*tmu_control)(struct platform_device *pdev, bool on);
int (*tmu_read)(struct exynos_tmu_data *data);
void (*tmu_set_emulation)(struct exynos_tmu_data *data,
unsigned long temp);
void (*tmu_clear_irqs)(struct exynos_tmu_data *data);
};
static void exynos_report_trigger(struct exynos_tmu_data *p)
{
char data[10], *envp[] = { data, NULL };
struct thermal_zone_device *tz = p->tzd;
unsigned long temp;
unsigned int i;
if (!tz) {
pr_err("No thermal zone device defined\n");
return;
}
thermal_zone_device_update(tz);
mutex_lock(&tz->lock);
/* Find the level for which trip happened */
for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
tz->ops->get_trip_temp(tz, i, &temp);
if (tz->last_temperature < temp)
break;
}
snprintf(data, sizeof(data), "%u", i);
kobject_uevent_env(&tz->device.kobj, KOBJ_CHANGE, envp);
mutex_unlock(&tz->lock);
}
/*
* TMU treats temperature as a mapped temperature code.
* The temperature is converted differently depending on the calibration type.
*/
static int temp_to_code(struct exynos_tmu_data *data, u8 temp)
{
struct exynos_tmu_platform_data *pdata = data->pdata;
int temp_code;
switch (pdata->cal_type) {
case TYPE_TWO_POINT_TRIMMING:
temp_code = (temp - pdata->first_point_trim) *
(data->temp_error2 - data->temp_error1) /
(pdata->second_point_trim - pdata->first_point_trim) +
data->temp_error1;
break;
case TYPE_ONE_POINT_TRIMMING:
temp_code = temp + data->temp_error1 - pdata->first_point_trim;
break;
default:
temp_code = temp + pdata->default_temp_offset;
break;
}
return temp_code;
}
/*
* Calculate a temperature value from a temperature code.
* The unit of the temperature is degree Celsius.
*/
static int code_to_temp(struct exynos_tmu_data *data, u16 temp_code)
{
struct exynos_tmu_platform_data *pdata = data->pdata;
int temp;
switch (pdata->cal_type) {
case TYPE_TWO_POINT_TRIMMING:
temp = (temp_code - data->temp_error1) *
(pdata->second_point_trim - pdata->first_point_trim) /
(data->temp_error2 - data->temp_error1) +
pdata->first_point_trim;
break;
case TYPE_ONE_POINT_TRIMMING:
temp = temp_code - data->temp_error1 + pdata->first_point_trim;
break;
default:
temp = temp_code - pdata->default_temp_offset;
break;
}
return temp;
}
static void sanitize_temp_error(struct exynos_tmu_data *data, u32 trim_info)
{
struct exynos_tmu_platform_data *pdata = data->pdata;
data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK;
data->temp_error2 = ((trim_info >> EXYNOS_TRIMINFO_85_SHIFT) &
EXYNOS_TMU_TEMP_MASK);
if (!data->temp_error1 ||
(pdata->min_efuse_value > data->temp_error1) ||
(data->temp_error1 > pdata->max_efuse_value))
data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK;
if (!data->temp_error2)
data->temp_error2 =
(pdata->efuse_value >> EXYNOS_TRIMINFO_85_SHIFT) &
EXYNOS_TMU_TEMP_MASK;
}
static u32 get_th_reg(struct exynos_tmu_data *data, u32 threshold, bool falling)
{
struct thermal_zone_device *tz = data->tzd;
const struct thermal_trip * const trips =
of_thermal_get_trip_points(tz);
unsigned long temp;
int i;
if (!trips) {
pr_err("%s: Cannot get trip points from of-thermal.c!\n",
__func__);
return 0;
}
for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
if (trips[i].type == THERMAL_TRIP_CRITICAL)
continue;
temp = trips[i].temperature / MCELSIUS;
if (falling)
temp -= (trips[i].hysteresis / MCELSIUS);
else
threshold &= ~(0xff << 8 * i);
threshold |= temp_to_code(data, temp) << 8 * i;
}
return threshold;
}
static int exynos_tmu_initialize(struct platform_device *pdev)
{
struct exynos_tmu_data *data = platform_get_drvdata(pdev);
int ret;
mutex_lock(&data->lock);
clk_enable(data->clk);
if (!IS_ERR(data->clk_sec))
clk_enable(data->clk_sec);
ret = data->tmu_initialize(pdev);
clk_disable(data->clk);
mutex_unlock(&data->lock);
if (!IS_ERR(data->clk_sec))
clk_disable(data->clk_sec);
return ret;
}
static u32 get_con_reg(struct exynos_tmu_data *data, u32 con)
{
struct exynos_tmu_platform_data *pdata = data->pdata;
if (data->soc == SOC_ARCH_EXYNOS4412 ||
data->soc == SOC_ARCH_EXYNOS3250)
con |= (EXYNOS4412_MUX_ADDR_VALUE << EXYNOS4412_MUX_ADDR_SHIFT);
con &= ~(EXYNOS_TMU_REF_VOLTAGE_MASK << EXYNOS_TMU_REF_VOLTAGE_SHIFT);
con |= pdata->reference_voltage << EXYNOS_TMU_REF_VOLTAGE_SHIFT;
con &= ~(EXYNOS_TMU_BUF_SLOPE_SEL_MASK << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT);
con |= (pdata->gain << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT);
if (pdata->noise_cancel_mode) {
con &= ~(EXYNOS_TMU_TRIP_MODE_MASK << EXYNOS_TMU_TRIP_MODE_SHIFT);
con |= (pdata->noise_cancel_mode << EXYNOS_TMU_TRIP_MODE_SHIFT);
}
return con;
}
static void exynos_tmu_control(struct platform_device *pdev, bool on)
{
struct exynos_tmu_data *data = platform_get_drvdata(pdev);
mutex_lock(&data->lock);
clk_enable(data->clk);
data->tmu_control(pdev, on);
clk_disable(data->clk);
mutex_unlock(&data->lock);
}
static int exynos4210_tmu_initialize(struct platform_device *pdev)
{
struct exynos_tmu_data *data = platform_get_drvdata(pdev);
struct thermal_zone_device *tz = data->tzd;
const struct thermal_trip * const trips =
of_thermal_get_trip_points(tz);
int ret = 0, threshold_code, i;
unsigned long reference, temp;
unsigned int status;
if (!trips) {
pr_err("%s: Cannot get trip points from of-thermal.c!\n",
__func__);
ret = -ENODEV;
goto out;
}
status = readb(data->base + EXYNOS_TMU_REG_STATUS);
if (!status) {
ret = -EBUSY;
goto out;
}
sanitize_temp_error(data, readl(data->base + EXYNOS_TMU_REG_TRIMINFO));
/* Write temperature code for threshold */
reference = trips[0].temperature / MCELSIUS;
threshold_code = temp_to_code(data, reference);
if (threshold_code < 0) {
ret = threshold_code;
goto out;
}
writeb(threshold_code, data->base + EXYNOS4210_TMU_REG_THRESHOLD_TEMP);
for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
temp = trips[i].temperature / MCELSIUS;
writeb(temp - reference, data->base +
EXYNOS4210_TMU_REG_TRIG_LEVEL0 + i * 4);
}
data->tmu_clear_irqs(data);
out:
return ret;
}
static int exynos4412_tmu_initialize(struct platform_device *pdev)
{
struct exynos_tmu_data *data = platform_get_drvdata(pdev);
const struct thermal_trip * const trips =
of_thermal_get_trip_points(data->tzd);
unsigned int status, trim_info, con, ctrl, rising_threshold;
int ret = 0, threshold_code, i;
unsigned long crit_temp = 0;
status = readb(data->base + EXYNOS_TMU_REG_STATUS);
if (!status) {
ret = -EBUSY;
goto out;
}
if (data->soc == SOC_ARCH_EXYNOS3250 ||
data->soc == SOC_ARCH_EXYNOS4412 ||
data->soc == SOC_ARCH_EXYNOS5250) {
if (data->soc == SOC_ARCH_EXYNOS3250) {
ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON1);
ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE;
writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON1);
}
ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON2);
ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE;
writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON2);
}
/* On exynos5420 the triminfo register is in the shared space */
if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO)
trim_info = readl(data->base_second + EXYNOS_TMU_REG_TRIMINFO);
else
trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
sanitize_temp_error(data, trim_info);
/* Write temperature code for rising and falling threshold */
rising_threshold = readl(data->base + EXYNOS_THD_TEMP_RISE);
rising_threshold = get_th_reg(data, rising_threshold, false);
writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE);
writel(get_th_reg(data, 0, true), data->base + EXYNOS_THD_TEMP_FALL);
data->tmu_clear_irqs(data);
/* if last threshold limit is also present */
for (i = 0; i < of_thermal_get_ntrips(data->tzd); i++) {
if (trips[i].type == THERMAL_TRIP_CRITICAL) {
crit_temp = trips[i].temperature;
break;
}
}
if (i == of_thermal_get_ntrips(data->tzd)) {
pr_err("%s: No CRITICAL trip point defined at of-thermal.c!\n",
__func__);
ret = -EINVAL;
goto out;
}
threshold_code = temp_to_code(data, crit_temp / MCELSIUS);
/* 1-4 level to be assigned in th0 reg */
rising_threshold &= ~(0xff << 8 * i);
rising_threshold |= threshold_code << 8 * i;
writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE);
con = readl(data->base + EXYNOS_TMU_REG_CONTROL);
con |= (1 << EXYNOS_TMU_THERM_TRIP_EN_SHIFT);
writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
out:
return ret;
}
static int exynos5440_tmu_initialize(struct platform_device *pdev)
{
struct exynos_tmu_data *data = platform_get_drvdata(pdev);
unsigned int trim_info = 0, con, rising_threshold;
int ret = 0, threshold_code;
unsigned long crit_temp = 0;
/*
* For exynos5440 soc triminfo value is swapped between TMU0 and
* TMU2, so the below logic is needed.
*/
switch (data->id) {
case 0:
trim_info = readl(data->base + EXYNOS5440_EFUSE_SWAP_OFFSET +
EXYNOS5440_TMU_S0_7_TRIM);
break;
case 1:
trim_info = readl(data->base + EXYNOS5440_TMU_S0_7_TRIM);
break;
case 2:
trim_info = readl(data->base - EXYNOS5440_EFUSE_SWAP_OFFSET +
EXYNOS5440_TMU_S0_7_TRIM);
}
sanitize_temp_error(data, trim_info);
/* Write temperature code for rising and falling threshold */
rising_threshold = readl(data->base + EXYNOS5440_TMU_S0_7_TH0);
rising_threshold = get_th_reg(data, rising_threshold, false);
writel(rising_threshold, data->base + EXYNOS5440_TMU_S0_7_TH0);
writel(0, data->base + EXYNOS5440_TMU_S0_7_TH1);
data->tmu_clear_irqs(data);
/* if last threshold limit is also present */
if (!data->tzd->ops->get_crit_temp(data->tzd, &crit_temp)) {
threshold_code = temp_to_code(data, crit_temp / MCELSIUS);
/* 5th level to be assigned in th2 reg */
rising_threshold =
threshold_code << EXYNOS5440_TMU_TH_RISE4_SHIFT;
writel(rising_threshold, data->base + EXYNOS5440_TMU_S0_7_TH2);
con = readl(data->base + EXYNOS5440_TMU_S0_7_CTRL);
con |= (1 << EXYNOS_TMU_THERM_TRIP_EN_SHIFT);
writel(con, data->base + EXYNOS5440_TMU_S0_7_CTRL);
}
/* Clear the PMIN in the common TMU register */
if (!data->id)
writel(0, data->base_second + EXYNOS5440_TMU_PMIN);
return ret;
}
static int exynos7_tmu_initialize(struct platform_device *pdev)
{
struct exynos_tmu_data *data = platform_get_drvdata(pdev);
struct thermal_zone_device *tz = data->tzd;
struct exynos_tmu_platform_data *pdata = data->pdata;
unsigned int status, trim_info;
unsigned int rising_threshold = 0, falling_threshold = 0;
int ret = 0, threshold_code, i;
unsigned long temp, temp_hist;
unsigned int reg_off, bit_off;
status = readb(data->base + EXYNOS_TMU_REG_STATUS);
if (!status) {
ret = -EBUSY;
goto out;
}
trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
data->temp_error1 = trim_info & EXYNOS7_TMU_TEMP_MASK;
if (!data->temp_error1 ||
(pdata->min_efuse_value > data->temp_error1) ||
(data->temp_error1 > pdata->max_efuse_value))
data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK;
/* Write temperature code for rising and falling threshold */
for (i = (of_thermal_get_ntrips(tz) - 1); i >= 0; i--) {
/*
* On exynos7 there are 4 rising and 4 falling threshold
* registers (0x50-0x5c and 0x60-0x6c respectively). Each
* register holds the value of two threshold levels (at bit
* offsets 0 and 16). Based on the fact that there are atmost
* eight possible trigger levels, calculate the register and
* bit offsets where the threshold levels are to be written.
*
* e.g. EXYNOS7_THD_TEMP_RISE7_6 (0x50)
* [24:16] - Threshold level 7
* [8:0] - Threshold level 6
* e.g. EXYNOS7_THD_TEMP_RISE5_4 (0x54)
* [24:16] - Threshold level 5
* [8:0] - Threshold level 4
*
* and similarly for falling thresholds.
*
* Based on the above, calculate the register and bit offsets
* for rising/falling threshold levels and populate them.
*/
reg_off = ((7 - i) / 2) * 4;
bit_off = ((8 - i) % 2);
tz->ops->get_trip_temp(tz, i, &temp);
temp /= MCELSIUS;
tz->ops->get_trip_hyst(tz, i, &temp_hist);
temp_hist = temp - (temp_hist / MCELSIUS);
/* Set 9-bit temperature code for rising threshold levels */
threshold_code = temp_to_code(data, temp);
rising_threshold = readl(data->base +
EXYNOS7_THD_TEMP_RISE7_6 + reg_off);
rising_threshold &= ~(EXYNOS7_TMU_TEMP_MASK << (16 * bit_off));
rising_threshold |= threshold_code << (16 * bit_off);
writel(rising_threshold,
data->base + EXYNOS7_THD_TEMP_RISE7_6 + reg_off);
/* Set 9-bit temperature code for falling threshold levels */
threshold_code = temp_to_code(data, temp_hist);
falling_threshold &= ~(EXYNOS7_TMU_TEMP_MASK << (16 * bit_off));
falling_threshold |= threshold_code << (16 * bit_off);
writel(falling_threshold,
data->base + EXYNOS7_THD_TEMP_FALL7_6 + reg_off);
}
data->tmu_clear_irqs(data);
out:
return ret;
}
static void exynos4210_tmu_control(struct platform_device *pdev, bool on)
{
struct exynos_tmu_data *data = platform_get_drvdata(pdev);
struct thermal_zone_device *tz = data->tzd;
unsigned int con, interrupt_en;
con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL));
if (on) {
con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
interrupt_en =
(of_thermal_is_trip_valid(tz, 3)
<< EXYNOS_TMU_INTEN_RISE3_SHIFT) |
(of_thermal_is_trip_valid(tz, 2)
<< EXYNOS_TMU_INTEN_RISE2_SHIFT) |
(of_thermal_is_trip_valid(tz, 1)
<< EXYNOS_TMU_INTEN_RISE1_SHIFT) |
(of_thermal_is_trip_valid(tz, 0)
<< EXYNOS_TMU_INTEN_RISE0_SHIFT);
if (data->soc != SOC_ARCH_EXYNOS4210)
interrupt_en |=
interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT;
} else {
con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
interrupt_en = 0; /* Disable all interrupts */
}
writel(interrupt_en, data->base + EXYNOS_TMU_REG_INTEN);
writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
}
static void exynos5440_tmu_control(struct platform_device *pdev, bool on)
{
struct exynos_tmu_data *data = platform_get_drvdata(pdev);
struct thermal_zone_device *tz = data->tzd;
unsigned int con, interrupt_en;
con = get_con_reg(data, readl(data->base + EXYNOS5440_TMU_S0_7_CTRL));
if (on) {
con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
interrupt_en =
(of_thermal_is_trip_valid(tz, 3)
<< EXYNOS5440_TMU_INTEN_RISE3_SHIFT) |
(of_thermal_is_trip_valid(tz, 2)
<< EXYNOS5440_TMU_INTEN_RISE2_SHIFT) |
(of_thermal_is_trip_valid(tz, 1)
<< EXYNOS5440_TMU_INTEN_RISE1_SHIFT) |
(of_thermal_is_trip_valid(tz, 0)
<< EXYNOS5440_TMU_INTEN_RISE0_SHIFT);
interrupt_en |=
interrupt_en << EXYNOS5440_TMU_INTEN_FALL0_SHIFT;
} else {
con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
interrupt_en = 0; /* Disable all interrupts */
}
writel(interrupt_en, data->base + EXYNOS5440_TMU_S0_7_IRQEN);
writel(con, data->base + EXYNOS5440_TMU_S0_7_CTRL);
}
static void exynos7_tmu_control(struct platform_device *pdev, bool on)
{
struct exynos_tmu_data *data = platform_get_drvdata(pdev);
struct thermal_zone_device *tz = data->tzd;
unsigned int con, interrupt_en;
con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL));
if (on) {
con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
con |= (1 << EXYNOS7_PD_DET_EN_SHIFT);
interrupt_en =
(of_thermal_is_trip_valid(tz, 7)
<< EXYNOS7_TMU_INTEN_RISE7_SHIFT) |
(of_thermal_is_trip_valid(tz, 6)
<< EXYNOS7_TMU_INTEN_RISE6_SHIFT) |
(of_thermal_is_trip_valid(tz, 5)
<< EXYNOS7_TMU_INTEN_RISE5_SHIFT) |
(of_thermal_is_trip_valid(tz, 4)
<< EXYNOS7_TMU_INTEN_RISE4_SHIFT) |
(of_thermal_is_trip_valid(tz, 3)
<< EXYNOS7_TMU_INTEN_RISE3_SHIFT) |
(of_thermal_is_trip_valid(tz, 2)
<< EXYNOS7_TMU_INTEN_RISE2_SHIFT) |
(of_thermal_is_trip_valid(tz, 1)
<< EXYNOS7_TMU_INTEN_RISE1_SHIFT) |
(of_thermal_is_trip_valid(tz, 0)
<< EXYNOS7_TMU_INTEN_RISE0_SHIFT);
interrupt_en |=
interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT;
} else {
con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
con &= ~(1 << EXYNOS7_PD_DET_EN_SHIFT);
interrupt_en = 0; /* Disable all interrupts */
}
writel(interrupt_en, data->base + EXYNOS7_TMU_REG_INTEN);
writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
}
static int exynos_get_temp(void *p, long *temp)
{
struct exynos_tmu_data *data = p;
if (!data || !data->tmu_read)
return -EINVAL;
mutex_lock(&data->lock);
clk_enable(data->clk);
*temp = code_to_temp(data, data->tmu_read(data)) * MCELSIUS;
clk_disable(data->clk);
mutex_unlock(&data->lock);
return 0;
}
#ifdef CONFIG_THERMAL_EMULATION
static u32 get_emul_con_reg(struct exynos_tmu_data *data, unsigned int val,
unsigned long temp)
{
if (temp) {
temp /= MCELSIUS;
if (data->soc != SOC_ARCH_EXYNOS5440) {
val &= ~(EXYNOS_EMUL_TIME_MASK << EXYNOS_EMUL_TIME_SHIFT);
val |= (EXYNOS_EMUL_TIME << EXYNOS_EMUL_TIME_SHIFT);
}
if (data->soc == SOC_ARCH_EXYNOS7) {
val &= ~(EXYNOS7_EMUL_DATA_MASK <<
EXYNOS7_EMUL_DATA_SHIFT);
val |= (temp_to_code(data, temp) <<
EXYNOS7_EMUL_DATA_SHIFT) |
EXYNOS_EMUL_ENABLE;
} else {
val &= ~(EXYNOS_EMUL_DATA_MASK <<
EXYNOS_EMUL_DATA_SHIFT);
val |= (temp_to_code(data, temp) <<
EXYNOS_EMUL_DATA_SHIFT) |
EXYNOS_EMUL_ENABLE;
}
} else {
val &= ~EXYNOS_EMUL_ENABLE;
}
return val;
}
static void exynos4412_tmu_set_emulation(struct exynos_tmu_data *data,
unsigned long temp)
{
unsigned int val;
u32 emul_con;
if (data->soc == SOC_ARCH_EXYNOS5260)
emul_con = EXYNOS5260_EMUL_CON;
else if (data->soc == SOC_ARCH_EXYNOS7)
emul_con = EXYNOS7_TMU_REG_EMUL_CON;
else
emul_con = EXYNOS_EMUL_CON;
val = readl(data->base + emul_con);
val = get_emul_con_reg(data, val, temp);
writel(val, data->base + emul_con);
}
static void exynos5440_tmu_set_emulation(struct exynos_tmu_data *data,
unsigned long temp)
{
unsigned int val;
val = readl(data->base + EXYNOS5440_TMU_S0_7_DEBUG);
val = get_emul_con_reg(data, val, temp);
writel(val, data->base + EXYNOS5440_TMU_S0_7_DEBUG);
}
static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp)
{
struct exynos_tmu_data *data = drv_data;
int ret = -EINVAL;
if (data->soc == SOC_ARCH_EXYNOS4210)
goto out;
if (temp && temp < MCELSIUS)
goto out;
mutex_lock(&data->lock);
clk_enable(data->clk);
data->tmu_set_emulation(data, temp);
clk_disable(data->clk);
mutex_unlock(&data->lock);
return 0;
out:
return ret;
}
#else
#define exynos4412_tmu_set_emulation NULL
#define exynos5440_tmu_set_emulation NULL
static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp)
{ return -EINVAL; }
#endif /* CONFIG_THERMAL_EMULATION */
static int exynos4210_tmu_read(struct exynos_tmu_data *data)
{
int ret = readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP);
/* "temp_code" should range between 75 and 175 */
return (ret < 75 || ret > 175) ? -ENODATA : ret;
}
static int exynos4412_tmu_read(struct exynos_tmu_data *data)
{
return readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP);
}
static int exynos5440_tmu_read(struct exynos_tmu_data *data)
{
return readb(data->base + EXYNOS5440_TMU_S0_7_TEMP);
}
static int exynos7_tmu_read(struct exynos_tmu_data *data)
{
return readw(data->base + EXYNOS_TMU_REG_CURRENT_TEMP) &
EXYNOS7_TMU_TEMP_MASK;
}
static void exynos_tmu_work(struct work_struct *work)
{
struct exynos_tmu_data *data = container_of(work,
struct exynos_tmu_data, irq_work);
thermal: exynos: fix IRQ clearing on TMU initialization * Factor out code for clearing raised IRQs from exynos_tmu_work() to exynos_tmu_clear_irqs(). * Add a comment about documentation bugs to exynos_tmu_clear_irqs(). [ The documentation for Exynos3250, Exynos4412, Exynos5250 and Exynos5260 incorrectly states that INTCLEAR register has a different placing of bits responsible for FALL IRQs than INTSTAT register. Exynos5420 and Exynos5440 documentation is correct (Exynos4210 doesn't support FALL IRQs at all). ] * Use exynos_tmu_clear_irqs() in exynos_tmu_initialize() instead of open-coded code trying to clear IRQs according to predefined masks. After this change exynos_tmu_initialize() just clears IRQs that are raised like it is already done in exynos_tmu_work(). As a nice side-effect the code now uses the correct offset (16 instead of 12) for bits responsible for clearing FALL IRQs in INTCLEAR register on Exynos3250, Exynos4412 and Exynos5250. * Remove no longer needed intclr_rise_[mask,shift] and intclr_fall_[mask,shift] fields from struct exynos_tmu_registers. * Remove no longer needed defines. This patch has been tested on Exynos4412 and Exynos5420 SoCs. Cc: Amit Daniel Kachhap <amit.daniel@samsung.com> Cc: Lukasz Majewski <l.majewski@samsung.com> Cc: Eduardo Valentin <edubezval@gmail.com> Cc: Zhang Rui <rui.zhang@intel.com> Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Acked-by: Kyungmin Park <kyungmin.park@samsung.com> Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
2014-10-04 00:17:17 +08:00
unsigned int val_type;
if (!IS_ERR(data->clk_sec))
clk_enable(data->clk_sec);
/* Find which sensor generated this interrupt */
if (data->soc == SOC_ARCH_EXYNOS5440) {
val_type = readl(data->base_second + EXYNOS5440_TMU_IRQ_STATUS);
if (!((val_type >> data->id) & 0x1))
goto out;
}
if (!IS_ERR(data->clk_sec))
clk_disable(data->clk_sec);
exynos_report_trigger(data);
mutex_lock(&data->lock);
clk_enable(data->clk);
/* TODO: take action based on particular interrupt */
data->tmu_clear_irqs(data);
clk_disable(data->clk);
mutex_unlock(&data->lock);
out:
enable_irq(data->irq);
}
static void exynos4210_tmu_clear_irqs(struct exynos_tmu_data *data)
{
unsigned int val_irq;
u32 tmu_intstat, tmu_intclear;
if (data->soc == SOC_ARCH_EXYNOS5260) {
tmu_intstat = EXYNOS5260_TMU_REG_INTSTAT;
tmu_intclear = EXYNOS5260_TMU_REG_INTCLEAR;
} else if (data->soc == SOC_ARCH_EXYNOS7) {
tmu_intstat = EXYNOS7_TMU_REG_INTPEND;
tmu_intclear = EXYNOS7_TMU_REG_INTPEND;
} else {
tmu_intstat = EXYNOS_TMU_REG_INTSTAT;
tmu_intclear = EXYNOS_TMU_REG_INTCLEAR;
}
val_irq = readl(data->base + tmu_intstat);
/*
* Clear the interrupts. Please note that the documentation for
* Exynos3250, Exynos4412, Exynos5250 and Exynos5260 incorrectly
* states that INTCLEAR register has a different placing of bits
* responsible for FALL IRQs than INTSTAT register. Exynos5420
* and Exynos5440 documentation is correct (Exynos4210 doesn't
* support FALL IRQs at all).
*/
writel(val_irq, data->base + tmu_intclear);
}
static void exynos5440_tmu_clear_irqs(struct exynos_tmu_data *data)
{
unsigned int val_irq;
val_irq = readl(data->base + EXYNOS5440_TMU_S0_7_IRQ);
/* clear the interrupts */
writel(val_irq, data->base + EXYNOS5440_TMU_S0_7_IRQ);
}
static irqreturn_t exynos_tmu_irq(int irq, void *id)
{
struct exynos_tmu_data *data = id;
disable_irq_nosync(irq);
schedule_work(&data->irq_work);
return IRQ_HANDLED;
}
static const struct of_device_id exynos_tmu_match[] = {
{ .compatible = "samsung,exynos3250-tmu", },
{ .compatible = "samsung,exynos4210-tmu", },
{ .compatible = "samsung,exynos4412-tmu", },
{ .compatible = "samsung,exynos5250-tmu", },
{ .compatible = "samsung,exynos5260-tmu", },
{ .compatible = "samsung,exynos5420-tmu", },
{ .compatible = "samsung,exynos5420-tmu-ext-triminfo", },
{ .compatible = "samsung,exynos5440-tmu", },
{ .compatible = "samsung,exynos7-tmu", },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, exynos_tmu_match);
static int exynos_of_get_soc_type(struct device_node *np)
{
if (of_device_is_compatible(np, "samsung,exynos3250-tmu"))
return SOC_ARCH_EXYNOS3250;
else if (of_device_is_compatible(np, "samsung,exynos4210-tmu"))
return SOC_ARCH_EXYNOS4210;
else if (of_device_is_compatible(np, "samsung,exynos4412-tmu"))
return SOC_ARCH_EXYNOS4412;
else if (of_device_is_compatible(np, "samsung,exynos5250-tmu"))
return SOC_ARCH_EXYNOS5250;
else if (of_device_is_compatible(np, "samsung,exynos5260-tmu"))
return SOC_ARCH_EXYNOS5260;
else if (of_device_is_compatible(np, "samsung,exynos5420-tmu"))
return SOC_ARCH_EXYNOS5420;
else if (of_device_is_compatible(np,
"samsung,exynos5420-tmu-ext-triminfo"))
return SOC_ARCH_EXYNOS5420_TRIMINFO;
else if (of_device_is_compatible(np, "samsung,exynos5440-tmu"))
return SOC_ARCH_EXYNOS5440;
else if (of_device_is_compatible(np, "samsung,exynos7-tmu"))
return SOC_ARCH_EXYNOS7;
return -EINVAL;
}
static int exynos_of_sensor_conf(struct device_node *np,
struct exynos_tmu_platform_data *pdata)
{
u32 value;
int ret;
of_node_get(np);
ret = of_property_read_u32(np, "samsung,tmu_gain", &value);
pdata->gain = (u8)value;
of_property_read_u32(np, "samsung,tmu_reference_voltage", &value);
pdata->reference_voltage = (u8)value;
of_property_read_u32(np, "samsung,tmu_noise_cancel_mode", &value);
pdata->noise_cancel_mode = (u8)value;
of_property_read_u32(np, "samsung,tmu_efuse_value",
&pdata->efuse_value);
of_property_read_u32(np, "samsung,tmu_min_efuse_value",
&pdata->min_efuse_value);
of_property_read_u32(np, "samsung,tmu_max_efuse_value",
&pdata->max_efuse_value);
of_property_read_u32(np, "samsung,tmu_first_point_trim", &value);
pdata->first_point_trim = (u8)value;
of_property_read_u32(np, "samsung,tmu_second_point_trim", &value);
pdata->second_point_trim = (u8)value;
of_property_read_u32(np, "samsung,tmu_default_temp_offset", &value);
pdata->default_temp_offset = (u8)value;
of_property_read_u32(np, "samsung,tmu_cal_type", &pdata->cal_type);
of_property_read_u32(np, "samsung,tmu_cal_mode", &pdata->cal_mode);
of_node_put(np);
return 0;
}
static int exynos_map_dt_data(struct platform_device *pdev)
{
struct exynos_tmu_data *data = platform_get_drvdata(pdev);
struct exynos_tmu_platform_data *pdata;
struct resource res;
int ret;
if (!data || !pdev->dev.of_node)
return -ENODEV;
/*
* Try enabling the regulator if found
* TODO: Add regulator as an SOC feature, so that regulator enable
* is a compulsory call.
*/
data->regulator = devm_regulator_get(&pdev->dev, "vtmu");
if (!IS_ERR(data->regulator)) {
ret = regulator_enable(data->regulator);
if (ret) {
dev_err(&pdev->dev, "failed to enable vtmu\n");
return ret;
}
} else {
dev_info(&pdev->dev, "Regulator node (vtmu) not found\n");
}
data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl");
if (data->id < 0)
data->id = 0;
data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
if (data->irq <= 0) {
dev_err(&pdev->dev, "failed to get IRQ\n");
return -ENODEV;
}
if (of_address_to_resource(pdev->dev.of_node, 0, &res)) {
dev_err(&pdev->dev, "failed to get Resource 0\n");
return -ENODEV;
}
data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
if (!data->base) {
dev_err(&pdev->dev, "Failed to ioremap memory\n");
return -EADDRNOTAVAIL;
}
pdata = devm_kzalloc(&pdev->dev,
sizeof(struct exynos_tmu_platform_data),
GFP_KERNEL);
if (!pdata)
return -ENOMEM;
exynos_of_sensor_conf(pdev->dev.of_node, pdata);
data->pdata = pdata;
data->soc = exynos_of_get_soc_type(pdev->dev.of_node);
switch (data->soc) {
case SOC_ARCH_EXYNOS4210:
data->tmu_initialize = exynos4210_tmu_initialize;
data->tmu_control = exynos4210_tmu_control;
data->tmu_read = exynos4210_tmu_read;
data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
break;
case SOC_ARCH_EXYNOS3250:
case SOC_ARCH_EXYNOS4412:
case SOC_ARCH_EXYNOS5250:
case SOC_ARCH_EXYNOS5260:
case SOC_ARCH_EXYNOS5420:
case SOC_ARCH_EXYNOS5420_TRIMINFO:
data->tmu_initialize = exynos4412_tmu_initialize;
data->tmu_control = exynos4210_tmu_control;
data->tmu_read = exynos4412_tmu_read;
data->tmu_set_emulation = exynos4412_tmu_set_emulation;
data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
break;
case SOC_ARCH_EXYNOS5440:
data->tmu_initialize = exynos5440_tmu_initialize;
data->tmu_control = exynos5440_tmu_control;
data->tmu_read = exynos5440_tmu_read;
data->tmu_set_emulation = exynos5440_tmu_set_emulation;
data->tmu_clear_irqs = exynos5440_tmu_clear_irqs;
break;
case SOC_ARCH_EXYNOS7:
data->tmu_initialize = exynos7_tmu_initialize;
data->tmu_control = exynos7_tmu_control;
data->tmu_read = exynos7_tmu_read;
data->tmu_set_emulation = exynos4412_tmu_set_emulation;
data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
break;
default:
dev_err(&pdev->dev, "Platform not supported\n");
return -EINVAL;
}
/*
* Check if the TMU shares some registers and then try to map the
* memory of common registers.
*/
if (data->soc != SOC_ARCH_EXYNOS5420_TRIMINFO &&
data->soc != SOC_ARCH_EXYNOS5440)
return 0;
if (of_address_to_resource(pdev->dev.of_node, 1, &res)) {
dev_err(&pdev->dev, "failed to get Resource 1\n");
return -ENODEV;
}
data->base_second = devm_ioremap(&pdev->dev, res.start,
resource_size(&res));
if (!data->base_second) {
dev_err(&pdev->dev, "Failed to ioremap memory\n");
return -ENOMEM;
}
return 0;
}
static struct thermal_zone_of_device_ops exynos_sensor_ops = {
.get_temp = exynos_get_temp,
.set_emul_temp = exynos_tmu_set_emulation,
};
static int exynos_tmu_probe(struct platform_device *pdev)
{
struct exynos_tmu_platform_data *pdata;
struct exynos_tmu_data *data;
int ret;
data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data),
GFP_KERNEL);
if (!data)
return -ENOMEM;
platform_set_drvdata(pdev, data);
mutex_init(&data->lock);
data->tzd = thermal_zone_of_sensor_register(&pdev->dev, 0, data,
&exynos_sensor_ops);
if (IS_ERR(data->tzd)) {
pr_err("thermal: tz: %p ERROR\n", data->tzd);
return PTR_ERR(data->tzd);
}
ret = exynos_map_dt_data(pdev);
if (ret)
goto err_sensor;
pdata = data->pdata;
INIT_WORK(&data->irq_work, exynos_tmu_work);
data->clk = devm_clk_get(&pdev->dev, "tmu_apbif");
if (IS_ERR(data->clk)) {
dev_err(&pdev->dev, "Failed to get clock\n");
ret = PTR_ERR(data->clk);
goto err_sensor;
}
data->clk_sec = devm_clk_get(&pdev->dev, "tmu_triminfo_apbif");
if (IS_ERR(data->clk_sec)) {
if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) {
dev_err(&pdev->dev, "Failed to get triminfo clock\n");
ret = PTR_ERR(data->clk_sec);
goto err_sensor;
}
} else {
ret = clk_prepare(data->clk_sec);
if (ret) {
dev_err(&pdev->dev, "Failed to get clock\n");
goto err_sensor;
}
}
ret = clk_prepare(data->clk);
if (ret) {
dev_err(&pdev->dev, "Failed to get clock\n");
goto err_clk_sec;
}
if (data->soc == SOC_ARCH_EXYNOS7) {
data->sclk = devm_clk_get(&pdev->dev, "tmu_sclk");
if (IS_ERR(data->sclk)) {
dev_err(&pdev->dev, "Failed to get sclk\n");
goto err_clk;
} else {
ret = clk_prepare_enable(data->sclk);
if (ret) {
dev_err(&pdev->dev, "Failed to enable sclk\n");
goto err_clk;
}
}
}
ret = exynos_tmu_initialize(pdev);
if (ret) {
dev_err(&pdev->dev, "Failed to initialize TMU\n");
goto err_sclk;
}
ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq,
IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data);
if (ret) {
dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq);
goto err_sclk;
}
exynos_tmu_control(pdev, true);
return 0;
err_sclk:
clk_disable_unprepare(data->sclk);
err_clk:
clk_unprepare(data->clk);
err_clk_sec:
if (!IS_ERR(data->clk_sec))
clk_unprepare(data->clk_sec);
err_sensor:
thermal_zone_of_sensor_unregister(&pdev->dev, data->tzd);
return ret;
}
static int exynos_tmu_remove(struct platform_device *pdev)
{
struct exynos_tmu_data *data = platform_get_drvdata(pdev);
struct thermal_zone_device *tzd = data->tzd;
thermal_zone_of_sensor_unregister(&pdev->dev, tzd);
exynos_tmu_control(pdev, false);
clk_disable_unprepare(data->sclk);
clk_unprepare(data->clk);
if (!IS_ERR(data->clk_sec))
clk_unprepare(data->clk_sec);
if (!IS_ERR(data->regulator))
regulator_disable(data->regulator);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int exynos_tmu_suspend(struct device *dev)
{
exynos_tmu_control(to_platform_device(dev), false);
return 0;
}
static int exynos_tmu_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
exynos_tmu_initialize(pdev);
exynos_tmu_control(pdev, true);
return 0;
}
static SIMPLE_DEV_PM_OPS(exynos_tmu_pm,
exynos_tmu_suspend, exynos_tmu_resume);
#define EXYNOS_TMU_PM (&exynos_tmu_pm)
#else
#define EXYNOS_TMU_PM NULL
#endif
static struct platform_driver exynos_tmu_driver = {
.driver = {
.name = "exynos-tmu",
.pm = EXYNOS_TMU_PM,
.of_match_table = exynos_tmu_match,
},
.probe = exynos_tmu_probe,
.remove = exynos_tmu_remove,
};
module_platform_driver(exynos_tmu_driver);
MODULE_DESCRIPTION("EXYNOS TMU Driver");
MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:exynos-tmu");