OpenCloudOS-Kernel/arch/ia64/kernel/entry.S

1605 lines
43 KiB
ArmAsm
Raw Normal View History

/*
* ia64/kernel/entry.S
*
* Kernel entry points.
*
* Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
* Copyright (C) 1999, 2002-2003
* Asit Mallick <Asit.K.Mallick@intel.com>
* Don Dugger <Don.Dugger@intel.com>
* Suresh Siddha <suresh.b.siddha@intel.com>
* Fenghua Yu <fenghua.yu@intel.com>
* Copyright (C) 1999 VA Linux Systems
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
*/
/*
* ia64_switch_to now places correct virtual mapping in in TR2 for
* kernel stack. This allows us to handle interrupts without changing
* to physical mode.
*
* Jonathan Nicklin <nicklin@missioncriticallinux.com>
* Patrick O'Rourke <orourke@missioncriticallinux.com>
* 11/07/2000
*/
/*
* Global (preserved) predicate usage on syscall entry/exit path:
*
* pKStk: See entry.h.
* pUStk: See entry.h.
* pSys: See entry.h.
* pNonSys: !pSys
*/
#include <linux/config.h>
#include <asm/asmmacro.h>
#include <asm/cache.h>
#include <asm/errno.h>
#include <asm/kregs.h>
#include <asm/asm-offsets.h>
#include <asm/pgtable.h>
#include <asm/percpu.h>
#include <asm/processor.h>
#include <asm/thread_info.h>
#include <asm/unistd.h>
#include "minstate.h"
/*
* execve() is special because in case of success, we need to
* setup a null register window frame.
*/
ENTRY(ia64_execve)
/*
* Allocate 8 input registers since ptrace() may clobber them
*/
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
alloc loc1=ar.pfs,8,2,4,0
mov loc0=rp
.body
mov out0=in0 // filename
;; // stop bit between alloc and call
mov out1=in1 // argv
mov out2=in2 // envp
add out3=16,sp // regs
br.call.sptk.many rp=sys_execve
.ret0:
#ifdef CONFIG_IA32_SUPPORT
/*
* Check if we're returning to ia32 mode. If so, we need to restore ia32 registers
* from pt_regs.
*/
adds r16=PT(CR_IPSR)+16,sp
;;
ld8 r16=[r16]
#endif
cmp4.ge p6,p7=r8,r0
mov ar.pfs=loc1 // restore ar.pfs
sxt4 r8=r8 // return 64-bit result
;;
stf.spill [sp]=f0
(p6) cmp.ne pKStk,pUStk=r0,r0 // a successful execve() lands us in user-mode...
mov rp=loc0
(p6) mov ar.pfs=r0 // clear ar.pfs on success
(p7) br.ret.sptk.many rp
/*
* In theory, we'd have to zap this state only to prevent leaking of
* security sensitive state (e.g., if current->mm->dumpable is zero). However,
* this executes in less than 20 cycles even on Itanium, so it's not worth
* optimizing for...).
*/
mov ar.unat=0; mov ar.lc=0
mov r4=0; mov f2=f0; mov b1=r0
mov r5=0; mov f3=f0; mov b2=r0
mov r6=0; mov f4=f0; mov b3=r0
mov r7=0; mov f5=f0; mov b4=r0
ldf.fill f12=[sp]; mov f13=f0; mov b5=r0
ldf.fill f14=[sp]; ldf.fill f15=[sp]; mov f16=f0
ldf.fill f17=[sp]; ldf.fill f18=[sp]; mov f19=f0
ldf.fill f20=[sp]; ldf.fill f21=[sp]; mov f22=f0
ldf.fill f23=[sp]; ldf.fill f24=[sp]; mov f25=f0
ldf.fill f26=[sp]; ldf.fill f27=[sp]; mov f28=f0
ldf.fill f29=[sp]; ldf.fill f30=[sp]; mov f31=f0
#ifdef CONFIG_IA32_SUPPORT
tbit.nz p6,p0=r16, IA64_PSR_IS_BIT
movl loc0=ia64_ret_from_ia32_execve
;;
(p6) mov rp=loc0
#endif
br.ret.sptk.many rp
END(ia64_execve)
/*
* sys_clone2(u64 flags, u64 ustack_base, u64 ustack_size, u64 parent_tidptr, u64 child_tidptr,
* u64 tls)
*/
GLOBAL_ENTRY(sys_clone2)
/*
* Allocate 8 input registers since ptrace() may clobber them
*/
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
alloc r16=ar.pfs,8,2,6,0
DO_SAVE_SWITCH_STACK
adds r2=PT(R16)+IA64_SWITCH_STACK_SIZE+16,sp
mov loc0=rp
mov loc1=r16 // save ar.pfs across do_fork
.body
mov out1=in1
mov out3=in2
tbit.nz p6,p0=in0,CLONE_SETTLS_BIT
mov out4=in3 // parent_tidptr: valid only w/CLONE_PARENT_SETTID
;;
(p6) st8 [r2]=in5 // store TLS in r16 for copy_thread()
mov out5=in4 // child_tidptr: valid only w/CLONE_CHILD_SETTID or CLONE_CHILD_CLEARTID
adds out2=IA64_SWITCH_STACK_SIZE+16,sp // out2 = &regs
mov out0=in0 // out0 = clone_flags
br.call.sptk.many rp=do_fork
.ret1: .restore sp
adds sp=IA64_SWITCH_STACK_SIZE,sp // pop the switch stack
mov ar.pfs=loc1
mov rp=loc0
br.ret.sptk.many rp
END(sys_clone2)
/*
* sys_clone(u64 flags, u64 ustack_base, u64 parent_tidptr, u64 child_tidptr, u64 tls)
* Deprecated. Use sys_clone2() instead.
*/
GLOBAL_ENTRY(sys_clone)
/*
* Allocate 8 input registers since ptrace() may clobber them
*/
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
alloc r16=ar.pfs,8,2,6,0
DO_SAVE_SWITCH_STACK
adds r2=PT(R16)+IA64_SWITCH_STACK_SIZE+16,sp
mov loc0=rp
mov loc1=r16 // save ar.pfs across do_fork
.body
mov out1=in1
mov out3=16 // stacksize (compensates for 16-byte scratch area)
tbit.nz p6,p0=in0,CLONE_SETTLS_BIT
mov out4=in2 // parent_tidptr: valid only w/CLONE_PARENT_SETTID
;;
(p6) st8 [r2]=in4 // store TLS in r13 (tp)
mov out5=in3 // child_tidptr: valid only w/CLONE_CHILD_SETTID or CLONE_CHILD_CLEARTID
adds out2=IA64_SWITCH_STACK_SIZE+16,sp // out2 = &regs
mov out0=in0 // out0 = clone_flags
br.call.sptk.many rp=do_fork
.ret2: .restore sp
adds sp=IA64_SWITCH_STACK_SIZE,sp // pop the switch stack
mov ar.pfs=loc1
mov rp=loc0
br.ret.sptk.many rp
END(sys_clone)
/*
* prev_task <- ia64_switch_to(struct task_struct *next)
* With Ingo's new scheduler, interrupts are disabled when this routine gets
* called. The code starting at .map relies on this. The rest of the code
* doesn't care about the interrupt masking status.
*/
GLOBAL_ENTRY(ia64_switch_to)
.prologue
alloc r16=ar.pfs,1,0,0,0
DO_SAVE_SWITCH_STACK
.body
adds r22=IA64_TASK_THREAD_KSP_OFFSET,r13
movl r25=init_task
mov r27=IA64_KR(CURRENT_STACK)
adds r21=IA64_TASK_THREAD_KSP_OFFSET,in0
dep r20=0,in0,61,3 // physical address of "next"
;;
st8 [r22]=sp // save kernel stack pointer of old task
shr.u r26=r20,IA64_GRANULE_SHIFT
cmp.eq p7,p6=r25,in0
;;
/*
* If we've already mapped this task's page, we can skip doing it again.
*/
(p6) cmp.eq p7,p6=r26,r27
(p6) br.cond.dpnt .map
;;
.done:
ld8 sp=[r21] // load kernel stack pointer of new task
mov IA64_KR(CURRENT)=in0 // update "current" application register
mov r8=r13 // return pointer to previously running task
mov r13=in0 // set "current" pointer
;;
DO_LOAD_SWITCH_STACK
#ifdef CONFIG_SMP
sync.i // ensure "fc"s done by this CPU are visible on other CPUs
#endif
br.ret.sptk.many rp // boogie on out in new context
.map:
rsm psr.ic // interrupts (psr.i) are already disabled here
movl r25=PAGE_KERNEL
;;
srlz.d
or r23=r25,r20 // construct PA | page properties
mov r25=IA64_GRANULE_SHIFT<<2
;;
mov cr.itir=r25
mov cr.ifa=in0 // VA of next task...
;;
mov r25=IA64_TR_CURRENT_STACK
mov IA64_KR(CURRENT_STACK)=r26 // remember last page we mapped...
;;
itr.d dtr[r25]=r23 // wire in new mapping...
ssm psr.ic // reenable the psr.ic bit
;;
srlz.d
br.cond.sptk .done
END(ia64_switch_to)
/*
* Note that interrupts are enabled during save_switch_stack and load_switch_stack. This
* means that we may get an interrupt with "sp" pointing to the new kernel stack while
* ar.bspstore is still pointing to the old kernel backing store area. Since ar.rsc,
* ar.rnat, ar.bsp, and ar.bspstore are all preserved by interrupts, this is not a
* problem. Also, we don't need to specify unwind information for preserved registers
* that are not modified in save_switch_stack as the right unwind information is already
* specified at the call-site of save_switch_stack.
*/
/*
* save_switch_stack:
* - r16 holds ar.pfs
* - b7 holds address to return to
* - rp (b0) holds return address to save
*/
GLOBAL_ENTRY(save_switch_stack)
.prologue
.altrp b7
flushrs // flush dirty regs to backing store (must be first in insn group)
.save @priunat,r17
mov r17=ar.unat // preserve caller's
.body
#ifdef CONFIG_ITANIUM
adds r2=16+128,sp
adds r3=16+64,sp
adds r14=SW(R4)+16,sp
;;
st8.spill [r14]=r4,16 // spill r4
lfetch.fault.excl.nt1 [r3],128
;;
lfetch.fault.excl.nt1 [r2],128
lfetch.fault.excl.nt1 [r3],128
;;
lfetch.fault.excl [r2]
lfetch.fault.excl [r3]
adds r15=SW(R5)+16,sp
#else
add r2=16+3*128,sp
add r3=16,sp
add r14=SW(R4)+16,sp
;;
st8.spill [r14]=r4,SW(R6)-SW(R4) // spill r4 and prefetch offset 0x1c0
lfetch.fault.excl.nt1 [r3],128 // prefetch offset 0x010
;;
lfetch.fault.excl.nt1 [r3],128 // prefetch offset 0x090
lfetch.fault.excl.nt1 [r2],128 // prefetch offset 0x190
;;
lfetch.fault.excl.nt1 [r3] // prefetch offset 0x110
lfetch.fault.excl.nt1 [r2] // prefetch offset 0x210
adds r15=SW(R5)+16,sp
#endif
;;
st8.spill [r15]=r5,SW(R7)-SW(R5) // spill r5
mov.m ar.rsc=0 // put RSE in mode: enforced lazy, little endian, pl 0
add r2=SW(F2)+16,sp // r2 = &sw->f2
;;
st8.spill [r14]=r6,SW(B0)-SW(R6) // spill r6
mov.m r18=ar.fpsr // preserve fpsr
add r3=SW(F3)+16,sp // r3 = &sw->f3
;;
stf.spill [r2]=f2,32
mov.m r19=ar.rnat
mov r21=b0
stf.spill [r3]=f3,32
st8.spill [r15]=r7,SW(B2)-SW(R7) // spill r7
mov r22=b1
;;
// since we're done with the spills, read and save ar.unat:
mov.m r29=ar.unat
mov.m r20=ar.bspstore
mov r23=b2
stf.spill [r2]=f4,32
stf.spill [r3]=f5,32
mov r24=b3
;;
st8 [r14]=r21,SW(B1)-SW(B0) // save b0
st8 [r15]=r23,SW(B3)-SW(B2) // save b2
mov r25=b4
mov r26=b5
;;
st8 [r14]=r22,SW(B4)-SW(B1) // save b1
st8 [r15]=r24,SW(AR_PFS)-SW(B3) // save b3
mov r21=ar.lc // I-unit
stf.spill [r2]=f12,32
stf.spill [r3]=f13,32
;;
st8 [r14]=r25,SW(B5)-SW(B4) // save b4
st8 [r15]=r16,SW(AR_LC)-SW(AR_PFS) // save ar.pfs
stf.spill [r2]=f14,32
stf.spill [r3]=f15,32
;;
st8 [r14]=r26 // save b5
st8 [r15]=r21 // save ar.lc
stf.spill [r2]=f16,32
stf.spill [r3]=f17,32
;;
stf.spill [r2]=f18,32
stf.spill [r3]=f19,32
;;
stf.spill [r2]=f20,32
stf.spill [r3]=f21,32
;;
stf.spill [r2]=f22,32
stf.spill [r3]=f23,32
;;
stf.spill [r2]=f24,32
stf.spill [r3]=f25,32
;;
stf.spill [r2]=f26,32
stf.spill [r3]=f27,32
;;
stf.spill [r2]=f28,32
stf.spill [r3]=f29,32
;;
stf.spill [r2]=f30,SW(AR_UNAT)-SW(F30)
stf.spill [r3]=f31,SW(PR)-SW(F31)
add r14=SW(CALLER_UNAT)+16,sp
;;
st8 [r2]=r29,SW(AR_RNAT)-SW(AR_UNAT) // save ar.unat
st8 [r14]=r17,SW(AR_FPSR)-SW(CALLER_UNAT) // save caller_unat
mov r21=pr
;;
st8 [r2]=r19,SW(AR_BSPSTORE)-SW(AR_RNAT) // save ar.rnat
st8 [r3]=r21 // save predicate registers
;;
st8 [r2]=r20 // save ar.bspstore
st8 [r14]=r18 // save fpsr
mov ar.rsc=3 // put RSE back into eager mode, pl 0
br.cond.sptk.many b7
END(save_switch_stack)
/*
* load_switch_stack:
* - "invala" MUST be done at call site (normally in DO_LOAD_SWITCH_STACK)
* - b7 holds address to return to
* - must not touch r8-r11
*/
ENTRY(load_switch_stack)
.prologue
.altrp b7
.body
lfetch.fault.nt1 [sp]
adds r2=SW(AR_BSPSTORE)+16,sp
adds r3=SW(AR_UNAT)+16,sp
mov ar.rsc=0 // put RSE into enforced lazy mode
adds r14=SW(CALLER_UNAT)+16,sp
adds r15=SW(AR_FPSR)+16,sp
;;
ld8 r27=[r2],(SW(B0)-SW(AR_BSPSTORE)) // bspstore
ld8 r29=[r3],(SW(B1)-SW(AR_UNAT)) // unat
;;
ld8 r21=[r2],16 // restore b0
ld8 r22=[r3],16 // restore b1
;;
ld8 r23=[r2],16 // restore b2
ld8 r24=[r3],16 // restore b3
;;
ld8 r25=[r2],16 // restore b4
ld8 r26=[r3],16 // restore b5
;;
ld8 r16=[r2],(SW(PR)-SW(AR_PFS)) // ar.pfs
ld8 r17=[r3],(SW(AR_RNAT)-SW(AR_LC)) // ar.lc
;;
ld8 r28=[r2] // restore pr
ld8 r30=[r3] // restore rnat
;;
ld8 r18=[r14],16 // restore caller's unat
ld8 r19=[r15],24 // restore fpsr
;;
ldf.fill f2=[r14],32
ldf.fill f3=[r15],32
;;
ldf.fill f4=[r14],32
ldf.fill f5=[r15],32
;;
ldf.fill f12=[r14],32
ldf.fill f13=[r15],32
;;
ldf.fill f14=[r14],32
ldf.fill f15=[r15],32
;;
ldf.fill f16=[r14],32
ldf.fill f17=[r15],32
;;
ldf.fill f18=[r14],32
ldf.fill f19=[r15],32
mov b0=r21
;;
ldf.fill f20=[r14],32
ldf.fill f21=[r15],32
mov b1=r22
;;
ldf.fill f22=[r14],32
ldf.fill f23=[r15],32
mov b2=r23
;;
mov ar.bspstore=r27
mov ar.unat=r29 // establish unat holding the NaT bits for r4-r7
mov b3=r24
;;
ldf.fill f24=[r14],32
ldf.fill f25=[r15],32
mov b4=r25
;;
ldf.fill f26=[r14],32
ldf.fill f27=[r15],32
mov b5=r26
;;
ldf.fill f28=[r14],32
ldf.fill f29=[r15],32
mov ar.pfs=r16
;;
ldf.fill f30=[r14],32
ldf.fill f31=[r15],24
mov ar.lc=r17
;;
ld8.fill r4=[r14],16
ld8.fill r5=[r15],16
mov pr=r28,-1
;;
ld8.fill r6=[r14],16
ld8.fill r7=[r15],16
mov ar.unat=r18 // restore caller's unat
mov ar.rnat=r30 // must restore after bspstore but before rsc!
mov ar.fpsr=r19 // restore fpsr
mov ar.rsc=3 // put RSE back into eager mode, pl 0
br.cond.sptk.many b7
END(load_switch_stack)
GLOBAL_ENTRY(prefetch_stack)
add r14 = -IA64_SWITCH_STACK_SIZE, sp
add r15 = IA64_TASK_THREAD_KSP_OFFSET, in0
;;
ld8 r16 = [r15] // load next's stack pointer
lfetch.fault.excl [r14], 128
;;
lfetch.fault.excl [r14], 128
lfetch.fault [r16], 128
;;
lfetch.fault.excl [r14], 128
lfetch.fault [r16], 128
;;
lfetch.fault.excl [r14], 128
lfetch.fault [r16], 128
;;
lfetch.fault.excl [r14], 128
lfetch.fault [r16], 128
;;
lfetch.fault [r16], 128
br.ret.sptk.many rp
END(prefetch_stack)
GLOBAL_ENTRY(execve)
mov r15=__NR_execve // put syscall number in place
break __BREAK_SYSCALL
br.ret.sptk.many rp
END(execve)
GLOBAL_ENTRY(clone)
mov r15=__NR_clone // put syscall number in place
break __BREAK_SYSCALL
br.ret.sptk.many rp
END(clone)
/*
* Invoke a system call, but do some tracing before and after the call.
* We MUST preserve the current register frame throughout this routine
* because some system calls (such as ia64_execve) directly
* manipulate ar.pfs.
*/
GLOBAL_ENTRY(ia64_trace_syscall)
PT_REGS_UNWIND_INFO(0)
/*
* We need to preserve the scratch registers f6-f11 in case the system
* call is sigreturn.
*/
adds r16=PT(F6)+16,sp
adds r17=PT(F7)+16,sp
;;
stf.spill [r16]=f6,32
stf.spill [r17]=f7,32
;;
stf.spill [r16]=f8,32
stf.spill [r17]=f9,32
;;
stf.spill [r16]=f10
stf.spill [r17]=f11
br.call.sptk.many rp=syscall_trace_enter // give parent a chance to catch syscall args
adds r16=PT(F6)+16,sp
adds r17=PT(F7)+16,sp
;;
ldf.fill f6=[r16],32
ldf.fill f7=[r17],32
;;
ldf.fill f8=[r16],32
ldf.fill f9=[r17],32
;;
ldf.fill f10=[r16]
ldf.fill f11=[r17]
// the syscall number may have changed, so re-load it and re-calculate the
// syscall entry-point:
adds r15=PT(R15)+16,sp // r15 = &pt_regs.r15 (syscall #)
;;
ld8 r15=[r15]
mov r3=NR_syscalls - 1
;;
adds r15=-1024,r15
movl r16=sys_call_table
;;
shladd r20=r15,3,r16 // r20 = sys_call_table + 8*(syscall-1024)
cmp.leu p6,p7=r15,r3
;;
(p6) ld8 r20=[r20] // load address of syscall entry point
(p7) movl r20=sys_ni_syscall
;;
mov b6=r20
br.call.sptk.many rp=b6 // do the syscall
.strace_check_retval:
cmp.lt p6,p0=r8,r0 // syscall failed?
adds r2=PT(R8)+16,sp // r2 = &pt_regs.r8
adds r3=PT(R10)+16,sp // r3 = &pt_regs.r10
mov r10=0
(p6) br.cond.sptk strace_error // syscall failed ->
;; // avoid RAW on r10
.strace_save_retval:
.mem.offset 0,0; st8.spill [r2]=r8 // store return value in slot for r8
.mem.offset 8,0; st8.spill [r3]=r10 // clear error indication in slot for r10
br.call.sptk.many rp=syscall_trace_leave // give parent a chance to catch return value
.ret3: br.cond.sptk .work_pending_syscall_end
strace_error:
ld8 r3=[r2] // load pt_regs.r8
sub r9=0,r8 // negate return value to get errno value
;;
cmp.ne p6,p0=r3,r0 // is pt_regs.r8!=0?
adds r3=16,r2 // r3=&pt_regs.r10
;;
(p6) mov r10=-1
(p6) mov r8=r9
br.cond.sptk .strace_save_retval
END(ia64_trace_syscall)
/*
* When traced and returning from sigreturn, we invoke syscall_trace but then
* go straight to ia64_leave_kernel rather than ia64_leave_syscall.
*/
GLOBAL_ENTRY(ia64_strace_leave_kernel)
PT_REGS_UNWIND_INFO(0)
{ /*
* Some versions of gas generate bad unwind info if the first instruction of a
* procedure doesn't go into the first slot of a bundle. This is a workaround.
*/
nop.m 0
nop.i 0
br.call.sptk.many rp=syscall_trace_leave // give parent a chance to catch return value
}
.ret4: br.cond.sptk ia64_leave_kernel
END(ia64_strace_leave_kernel)
GLOBAL_ENTRY(ia64_ret_from_clone)
PT_REGS_UNWIND_INFO(0)
{ /*
* Some versions of gas generate bad unwind info if the first instruction of a
* procedure doesn't go into the first slot of a bundle. This is a workaround.
*/
nop.m 0
nop.i 0
/*
* We need to call schedule_tail() to complete the scheduling process.
* Called by ia64_switch_to() after do_fork()->copy_thread(). r8 contains the
* address of the previously executing task.
*/
br.call.sptk.many rp=ia64_invoke_schedule_tail
}
.ret8:
adds r2=TI_FLAGS+IA64_TASK_SIZE,r13
;;
ld4 r2=[r2]
;;
mov r8=0
and r2=_TIF_SYSCALL_TRACEAUDIT,r2
;;
cmp.ne p6,p0=r2,r0
(p6) br.cond.spnt .strace_check_retval
;; // added stop bits to prevent r8 dependency
END(ia64_ret_from_clone)
// fall through
GLOBAL_ENTRY(ia64_ret_from_syscall)
PT_REGS_UNWIND_INFO(0)
cmp.ge p6,p7=r8,r0 // syscall executed successfully?
adds r2=PT(R8)+16,sp // r2 = &pt_regs.r8
mov r10=r0 // clear error indication in r10
(p7) br.cond.spnt handle_syscall_error // handle potential syscall failure
END(ia64_ret_from_syscall)
// fall through
/*
* ia64_leave_syscall(): Same as ia64_leave_kernel, except that it doesn't
* need to switch to bank 0 and doesn't restore the scratch registers.
* To avoid leaking kernel bits, the scratch registers are set to
* the following known-to-be-safe values:
*
* r1: restored (global pointer)
* r2: cleared
* r3: 1 (when returning to user-level)
* r8-r11: restored (syscall return value(s))
* r12: restored (user-level stack pointer)
* r13: restored (user-level thread pointer)
* r14: set to __kernel_syscall_via_epc
* r15: restored (syscall #)
* r16-r17: cleared
* r18: user-level b6
* r19: cleared
* r20: user-level ar.fpsr
* r21: user-level b0
* r22: cleared
* r23: user-level ar.bspstore
* r24: user-level ar.rnat
* r25: user-level ar.unat
* r26: user-level ar.pfs
* r27: user-level ar.rsc
* r28: user-level ip
* r29: user-level psr
* r30: user-level cfm
* r31: user-level pr
* f6-f11: cleared
* pr: restored (user-level pr)
* b0: restored (user-level rp)
* b6: restored
* b7: set to __kernel_syscall_via_epc
* ar.unat: restored (user-level ar.unat)
* ar.pfs: restored (user-level ar.pfs)
* ar.rsc: restored (user-level ar.rsc)
* ar.rnat: restored (user-level ar.rnat)
* ar.bspstore: restored (user-level ar.bspstore)
* ar.fpsr: restored (user-level ar.fpsr)
* ar.ccv: cleared
* ar.csd: cleared
* ar.ssd: cleared
*/
ENTRY(ia64_leave_syscall)
PT_REGS_UNWIND_INFO(0)
/*
* work.need_resched etc. mustn't get changed by this CPU before it returns to
* user- or fsys-mode, hence we disable interrupts early on.
*
* p6 controls whether current_thread_info()->flags needs to be check for
* extra work. We always check for extra work when returning to user-level.
* With CONFIG_PREEMPT, we also check for extra work when the preempt_count
* is 0. After extra work processing has been completed, execution
* resumes at .work_processed_syscall with p6 set to 1 if the extra-work-check
* needs to be redone.
*/
#ifdef CONFIG_PREEMPT
rsm psr.i // disable interrupts
cmp.eq pLvSys,p0=r0,r0 // pLvSys=1: leave from syscall
(pKStk) adds r20=TI_PRE_COUNT+IA64_TASK_SIZE,r13
;;
.pred.rel.mutex pUStk,pKStk
(pKStk) ld4 r21=[r20] // r21 <- preempt_count
(pUStk) mov r21=0 // r21 <- 0
;;
cmp.eq p6,p0=r21,r0 // p6 <- pUStk || (preempt_count == 0)
#else /* !CONFIG_PREEMPT */
(pUStk) rsm psr.i
cmp.eq pLvSys,p0=r0,r0 // pLvSys=1: leave from syscall
(pUStk) cmp.eq.unc p6,p0=r0,r0 // p6 <- pUStk
#endif
.work_processed_syscall:
adds r2=PT(LOADRS)+16,r12
adds r3=PT(AR_BSPSTORE)+16,r12
adds r18=TI_FLAGS+IA64_TASK_SIZE,r13
;;
(p6) ld4 r31=[r18] // load current_thread_info()->flags
ld8 r19=[r2],PT(B6)-PT(LOADRS) // load ar.rsc value for "loadrs"
nop.i 0
;;
mov r16=ar.bsp // M2 get existing backing store pointer
ld8 r18=[r2],PT(R9)-PT(B6) // load b6
(p6) and r15=TIF_WORK_MASK,r31 // any work other than TIF_SYSCALL_TRACE?
;;
ld8 r23=[r3],PT(R11)-PT(AR_BSPSTORE) // load ar.bspstore (may be garbage)
(p6) cmp4.ne.unc p6,p0=r15, r0 // any special work pending?
(p6) br.cond.spnt .work_pending_syscall
;;
// start restoring the state saved on the kernel stack (struct pt_regs):
ld8 r9=[r2],PT(CR_IPSR)-PT(R9)
ld8 r11=[r3],PT(CR_IIP)-PT(R11)
(pNonSys) break 0 // bug check: we shouldn't be here if pNonSys is TRUE!
;;
invala // M0|1 invalidate ALAT
rsm psr.i | psr.ic // M2 turn off interrupts and interruption collection
cmp.eq p9,p0=r0,r0 // A set p9 to indicate that we should restore cr.ifs
ld8 r29=[r2],16 // M0|1 load cr.ipsr
ld8 r28=[r3],16 // M0|1 load cr.iip
mov r22=r0 // A clear r22
;;
ld8 r30=[r2],16 // M0|1 load cr.ifs
ld8 r25=[r3],16 // M0|1 load ar.unat
(pUStk) add r14=IA64_TASK_THREAD_ON_USTACK_OFFSET,r13
;;
ld8 r26=[r2],PT(B0)-PT(AR_PFS) // M0|1 load ar.pfs
(pKStk) mov r22=psr // M2 read PSR now that interrupts are disabled
nop 0
;;
ld8 r21=[r2],PT(AR_RNAT)-PT(B0) // M0|1 load b0
ld8 r27=[r3],PT(PR)-PT(AR_RSC) // M0|1 load ar.rsc
mov f6=f0 // F clear f6
;;
ld8 r24=[r2],PT(AR_FPSR)-PT(AR_RNAT) // M0|1 load ar.rnat (may be garbage)
ld8 r31=[r3],PT(R1)-PT(PR) // M0|1 load predicates
mov f7=f0 // F clear f7
;;
ld8 r20=[r2],PT(R12)-PT(AR_FPSR) // M0|1 load ar.fpsr
ld8.fill r1=[r3],16 // M0|1 load r1
(pUStk) mov r17=1 // A
;;
(pUStk) st1 [r14]=r17 // M2|3
ld8.fill r13=[r3],16 // M0|1
mov f8=f0 // F clear f8
;;
ld8.fill r12=[r2] // M0|1 restore r12 (sp)
ld8.fill r15=[r3] // M0|1 restore r15
mov b6=r18 // I0 restore b6
addl r17=THIS_CPU(ia64_phys_stacked_size_p8),r0 // A
mov f9=f0 // F clear f9
(pKStk) br.cond.dpnt.many skip_rbs_switch // B
srlz.d // M0 ensure interruption collection is off (for cover)
shr.u r18=r19,16 // I0|1 get byte size of existing "dirty" partition
cover // B add current frame into dirty partition & set cr.ifs
;;
(pUStk) ld4 r17=[r17] // M0|1 r17 = cpu_data->phys_stacked_size_p8
mov r19=ar.bsp // M2 get new backing store pointer
mov f10=f0 // F clear f10
nop.m 0
movl r14=__kernel_syscall_via_epc // X
;;
mov.m ar.csd=r0 // M2 clear ar.csd
mov.m ar.ccv=r0 // M2 clear ar.ccv
mov b7=r14 // I0 clear b7 (hint with __kernel_syscall_via_epc)
mov.m ar.ssd=r0 // M2 clear ar.ssd
mov f11=f0 // F clear f11
br.cond.sptk.many rbs_switch // B
END(ia64_leave_syscall)
#ifdef CONFIG_IA32_SUPPORT
GLOBAL_ENTRY(ia64_ret_from_ia32_execve)
PT_REGS_UNWIND_INFO(0)
adds r2=PT(R8)+16,sp // r2 = &pt_regs.r8
adds r3=PT(R10)+16,sp // r3 = &pt_regs.r10
;;
.mem.offset 0,0
st8.spill [r2]=r8 // store return value in slot for r8 and set unat bit
.mem.offset 8,0
st8.spill [r3]=r0 // clear error indication in slot for r10 and set unat bit
END(ia64_ret_from_ia32_execve)
// fall through
#endif /* CONFIG_IA32_SUPPORT */
GLOBAL_ENTRY(ia64_leave_kernel)
PT_REGS_UNWIND_INFO(0)
/*
* work.need_resched etc. mustn't get changed by this CPU before it returns to
* user- or fsys-mode, hence we disable interrupts early on.
*
* p6 controls whether current_thread_info()->flags needs to be check for
* extra work. We always check for extra work when returning to user-level.
* With CONFIG_PREEMPT, we also check for extra work when the preempt_count
* is 0. After extra work processing has been completed, execution
* resumes at .work_processed_syscall with p6 set to 1 if the extra-work-check
* needs to be redone.
*/
#ifdef CONFIG_PREEMPT
rsm psr.i // disable interrupts
cmp.eq p0,pLvSys=r0,r0 // pLvSys=0: leave from kernel
(pKStk) adds r20=TI_PRE_COUNT+IA64_TASK_SIZE,r13
;;
.pred.rel.mutex pUStk,pKStk
(pKStk) ld4 r21=[r20] // r21 <- preempt_count
(pUStk) mov r21=0 // r21 <- 0
;;
cmp.eq p6,p0=r21,r0 // p6 <- pUStk || (preempt_count == 0)
#else
(pUStk) rsm psr.i
cmp.eq p0,pLvSys=r0,r0 // pLvSys=0: leave from kernel
(pUStk) cmp.eq.unc p6,p0=r0,r0 // p6 <- pUStk
#endif
.work_processed_kernel:
adds r17=TI_FLAGS+IA64_TASK_SIZE,r13
;;
(p6) ld4 r31=[r17] // load current_thread_info()->flags
adds r21=PT(PR)+16,r12
;;
lfetch [r21],PT(CR_IPSR)-PT(PR)
adds r2=PT(B6)+16,r12
adds r3=PT(R16)+16,r12
;;
lfetch [r21]
ld8 r28=[r2],8 // load b6
adds r29=PT(R24)+16,r12
ld8.fill r16=[r3],PT(AR_CSD)-PT(R16)
adds r30=PT(AR_CCV)+16,r12
(p6) and r19=TIF_WORK_MASK,r31 // any work other than TIF_SYSCALL_TRACE?
;;
ld8.fill r24=[r29]
ld8 r15=[r30] // load ar.ccv
(p6) cmp4.ne.unc p6,p0=r19, r0 // any special work pending?
;;
ld8 r29=[r2],16 // load b7
ld8 r30=[r3],16 // load ar.csd
(p6) br.cond.spnt .work_pending
;;
ld8 r31=[r2],16 // load ar.ssd
ld8.fill r8=[r3],16
;;
ld8.fill r9=[r2],16
ld8.fill r10=[r3],PT(R17)-PT(R10)
;;
ld8.fill r11=[r2],PT(R18)-PT(R11)
ld8.fill r17=[r3],16
;;
ld8.fill r18=[r2],16
ld8.fill r19=[r3],16
;;
ld8.fill r20=[r2],16
ld8.fill r21=[r3],16
mov ar.csd=r30
mov ar.ssd=r31
;;
rsm psr.i | psr.ic // initiate turning off of interrupt and interruption collection
invala // invalidate ALAT
;;
ld8.fill r22=[r2],24
ld8.fill r23=[r3],24
mov b6=r28
;;
ld8.fill r25=[r2],16
ld8.fill r26=[r3],16
mov b7=r29
;;
ld8.fill r27=[r2],16
ld8.fill r28=[r3],16
;;
ld8.fill r29=[r2],16
ld8.fill r30=[r3],24
;;
ld8.fill r31=[r2],PT(F9)-PT(R31)
adds r3=PT(F10)-PT(F6),r3
;;
ldf.fill f9=[r2],PT(F6)-PT(F9)
ldf.fill f10=[r3],PT(F8)-PT(F10)
;;
ldf.fill f6=[r2],PT(F7)-PT(F6)
;;
ldf.fill f7=[r2],PT(F11)-PT(F7)
ldf.fill f8=[r3],32
;;
srlz.d // ensure that inter. collection is off (VHPT is don't care, since text is pinned)
mov ar.ccv=r15
;;
ldf.fill f11=[r2]
bsw.0 // switch back to bank 0 (no stop bit required beforehand...)
;;
(pUStk) mov r18=IA64_KR(CURRENT)// M2 (12 cycle read latency)
adds r16=PT(CR_IPSR)+16,r12
adds r17=PT(CR_IIP)+16,r12
(pKStk) mov r22=psr // M2 read PSR now that interrupts are disabled
nop.i 0
nop.i 0
;;
ld8 r29=[r16],16 // load cr.ipsr
ld8 r28=[r17],16 // load cr.iip
;;
ld8 r30=[r16],16 // load cr.ifs
ld8 r25=[r17],16 // load ar.unat
;;
ld8 r26=[r16],16 // load ar.pfs
ld8 r27=[r17],16 // load ar.rsc
cmp.eq p9,p0=r0,r0 // set p9 to indicate that we should restore cr.ifs
;;
ld8 r24=[r16],16 // load ar.rnat (may be garbage)
ld8 r23=[r17],16 // load ar.bspstore (may be garbage)
;;
ld8 r31=[r16],16 // load predicates
ld8 r21=[r17],16 // load b0
;;
ld8 r19=[r16],16 // load ar.rsc value for "loadrs"
ld8.fill r1=[r17],16 // load r1
;;
ld8.fill r12=[r16],16
ld8.fill r13=[r17],16
(pUStk) adds r18=IA64_TASK_THREAD_ON_USTACK_OFFSET,r18
;;
ld8 r20=[r16],16 // ar.fpsr
ld8.fill r15=[r17],16
;;
ld8.fill r14=[r16],16
ld8.fill r2=[r17]
(pUStk) mov r17=1
;;
ld8.fill r3=[r16]
(pUStk) st1 [r18]=r17 // restore current->thread.on_ustack
shr.u r18=r19,16 // get byte size of existing "dirty" partition
;;
mov r16=ar.bsp // get existing backing store pointer
addl r17=THIS_CPU(ia64_phys_stacked_size_p8),r0
;;
ld4 r17=[r17] // r17 = cpu_data->phys_stacked_size_p8
(pKStk) br.cond.dpnt skip_rbs_switch
/*
* Restore user backing store.
*
* NOTE: alloc, loadrs, and cover can't be predicated.
*/
(pNonSys) br.cond.dpnt dont_preserve_current_frame
cover // add current frame into dirty partition and set cr.ifs
;;
mov r19=ar.bsp // get new backing store pointer
rbs_switch:
sub r16=r16,r18 // krbs = old bsp - size of dirty partition
cmp.ne p9,p0=r0,r0 // clear p9 to skip restore of cr.ifs
;;
sub r19=r19,r16 // calculate total byte size of dirty partition
add r18=64,r18 // don't force in0-in7 into memory...
;;
shl r19=r19,16 // shift size of dirty partition into loadrs position
;;
dont_preserve_current_frame:
/*
* To prevent leaking bits between the kernel and user-space,
* we must clear the stacked registers in the "invalid" partition here.
* Not pretty, but at least it's fast (3.34 registers/cycle on Itanium,
* 5 registers/cycle on McKinley).
*/
# define pRecurse p6
# define pReturn p7
#ifdef CONFIG_ITANIUM
# define Nregs 10
#else
# define Nregs 14
#endif
alloc loc0=ar.pfs,2,Nregs-2,2,0
shr.u loc1=r18,9 // RNaTslots <= floor(dirtySize / (64*8))
sub r17=r17,r18 // r17 = (physStackedSize + 8) - dirtySize
;;
mov ar.rsc=r19 // load ar.rsc to be used for "loadrs"
shladd in0=loc1,3,r17
mov in1=0
;;
TEXT_ALIGN(32)
rse_clear_invalid:
#ifdef CONFIG_ITANIUM
// cycle 0
{ .mii
alloc loc0=ar.pfs,2,Nregs-2,2,0
cmp.lt pRecurse,p0=Nregs*8,in0 // if more than Nregs regs left to clear, (re)curse
add out0=-Nregs*8,in0
}{ .mfb
add out1=1,in1 // increment recursion count
nop.f 0
nop.b 0 // can't do br.call here because of alloc (WAW on CFM)
;;
}{ .mfi // cycle 1
mov loc1=0
nop.f 0
mov loc2=0
}{ .mib
mov loc3=0
mov loc4=0
(pRecurse) br.call.sptk.many b0=rse_clear_invalid
}{ .mfi // cycle 2
mov loc5=0
nop.f 0
cmp.ne pReturn,p0=r0,in1 // if recursion count != 0, we need to do a br.ret
}{ .mib
mov loc6=0
mov loc7=0
(pReturn) br.ret.sptk.many b0
}
#else /* !CONFIG_ITANIUM */
alloc loc0=ar.pfs,2,Nregs-2,2,0
cmp.lt pRecurse,p0=Nregs*8,in0 // if more than Nregs regs left to clear, (re)curse
add out0=-Nregs*8,in0
add out1=1,in1 // increment recursion count
mov loc1=0
mov loc2=0
;;
mov loc3=0
mov loc4=0
mov loc5=0
mov loc6=0
mov loc7=0
(pRecurse) br.call.dptk.few b0=rse_clear_invalid
;;
mov loc8=0
mov loc9=0
cmp.ne pReturn,p0=r0,in1 // if recursion count != 0, we need to do a br.ret
mov loc10=0
mov loc11=0
(pReturn) br.ret.dptk.many b0
#endif /* !CONFIG_ITANIUM */
# undef pRecurse
# undef pReturn
;;
alloc r17=ar.pfs,0,0,0,0 // drop current register frame
;;
loadrs
;;
skip_rbs_switch:
mov ar.unat=r25 // M2
(pKStk) extr.u r22=r22,21,1 // I0 extract current value of psr.pp from r22
(pLvSys)mov r19=r0 // A clear r19 for leave_syscall, no-op otherwise
;;
(pUStk) mov ar.bspstore=r23 // M2
(pKStk) dep r29=r22,r29,21,1 // I0 update ipsr.pp with psr.pp
(pLvSys)mov r16=r0 // A clear r16 for leave_syscall, no-op otherwise
;;
mov cr.ipsr=r29 // M2
mov ar.pfs=r26 // I0
(pLvSys)mov r17=r0 // A clear r17 for leave_syscall, no-op otherwise
(p9) mov cr.ifs=r30 // M2
mov b0=r21 // I0
(pLvSys)mov r18=r0 // A clear r18 for leave_syscall, no-op otherwise
mov ar.fpsr=r20 // M2
mov cr.iip=r28 // M2
nop 0
;;
(pUStk) mov ar.rnat=r24 // M2 must happen with RSE in lazy mode
nop 0
(pLvSys)mov r2=r0
mov ar.rsc=r27 // M2
mov pr=r31,-1 // I0
rfi // B
/*
* On entry:
* r20 = &current->thread_info->pre_count (if CONFIG_PREEMPT)
* r31 = current->thread_info->flags
* On exit:
* p6 = TRUE if work-pending-check needs to be redone
*/
.work_pending_syscall:
add r2=-8,r2
add r3=-8,r3
;;
st8 [r2]=r8
st8 [r3]=r10
.work_pending:
tbit.nz p6,p0=r31,TIF_SIGDELAYED // signal delayed from MCA/INIT/NMI/PMI context?
(p6) br.cond.sptk.few .sigdelayed
;;
tbit.z p6,p0=r31,TIF_NEED_RESCHED // current_thread_info()->need_resched==0?
(p6) br.cond.sptk.few .notify
#ifdef CONFIG_PREEMPT
(pKStk) dep r21=-1,r0,PREEMPT_ACTIVE_BIT,1
;;
(pKStk) st4 [r20]=r21
ssm psr.i // enable interrupts
#endif
br.call.spnt.many rp=schedule
.ret9: cmp.eq p6,p0=r0,r0 // p6 <- 1
rsm psr.i // disable interrupts
;;
#ifdef CONFIG_PREEMPT
(pKStk) adds r20=TI_PRE_COUNT+IA64_TASK_SIZE,r13
;;
(pKStk) st4 [r20]=r0 // preempt_count() <- 0
#endif
(pLvSys)br.cond.sptk.few .work_pending_syscall_end
br.cond.sptk.many .work_processed_kernel // re-check
.notify:
(pUStk) br.call.spnt.many rp=notify_resume_user
.ret10: cmp.ne p6,p0=r0,r0 // p6 <- 0
(pLvSys)br.cond.sptk.few .work_pending_syscall_end
br.cond.sptk.many .work_processed_kernel // don't re-check
// There is a delayed signal that was detected in MCA/INIT/NMI/PMI context where
// it could not be delivered. Deliver it now. The signal might be for us and
// may set TIF_SIGPENDING, so redrive ia64_leave_* after processing the delayed
// signal.
.sigdelayed:
br.call.sptk.many rp=do_sigdelayed
cmp.eq p6,p0=r0,r0 // p6 <- 1, always re-check
(pLvSys)br.cond.sptk.few .work_pending_syscall_end
br.cond.sptk.many .work_processed_kernel // re-check
.work_pending_syscall_end:
adds r2=PT(R8)+16,r12
adds r3=PT(R10)+16,r12
;;
ld8 r8=[r2]
ld8 r10=[r3]
br.cond.sptk.many .work_processed_syscall // re-check
END(ia64_leave_kernel)
ENTRY(handle_syscall_error)
/*
* Some system calls (e.g., ptrace, mmap) can return arbitrary values which could
* lead us to mistake a negative return value as a failed syscall. Those syscall
* must deposit a non-zero value in pt_regs.r8 to indicate an error. If
* pt_regs.r8 is zero, we assume that the call completed successfully.
*/
PT_REGS_UNWIND_INFO(0)
ld8 r3=[r2] // load pt_regs.r8
;;
cmp.eq p6,p7=r3,r0 // is pt_regs.r8==0?
;;
(p7) mov r10=-1
(p7) sub r8=0,r8 // negate return value to get errno
br.cond.sptk ia64_leave_syscall
END(handle_syscall_error)
/*
* Invoke schedule_tail(task) while preserving in0-in7, which may be needed
* in case a system call gets restarted.
*/
GLOBAL_ENTRY(ia64_invoke_schedule_tail)
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
alloc loc1=ar.pfs,8,2,1,0
mov loc0=rp
mov out0=r8 // Address of previous task
;;
br.call.sptk.many rp=schedule_tail
.ret11: mov ar.pfs=loc1
mov rp=loc0
br.ret.sptk.many rp
END(ia64_invoke_schedule_tail)
/*
* Setup stack and call do_notify_resume_user(). Note that pSys and pNonSys need to
* be set up by the caller. We declare 8 input registers so the system call
* args get preserved, in case we need to restart a system call.
*/
ENTRY(notify_resume_user)
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
alloc loc1=ar.pfs,8,2,3,0 // preserve all eight input regs in case of syscall restart!
mov r9=ar.unat
mov loc0=rp // save return address
mov out0=0 // there is no "oldset"
adds out1=8,sp // out1=&sigscratch->ar_pfs
(pSys) mov out2=1 // out2==1 => we're in a syscall
;;
(pNonSys) mov out2=0 // out2==0 => not a syscall
.fframe 16
.spillsp ar.unat, 16
st8 [sp]=r9,-16 // allocate space for ar.unat and save it
st8 [out1]=loc1,-8 // save ar.pfs, out1=&sigscratch
.body
br.call.sptk.many rp=do_notify_resume_user
.ret15: .restore sp
adds sp=16,sp // pop scratch stack space
;;
ld8 r9=[sp] // load new unat from sigscratch->scratch_unat
mov rp=loc0
;;
mov ar.unat=r9
mov ar.pfs=loc1
br.ret.sptk.many rp
END(notify_resume_user)
GLOBAL_ENTRY(sys_rt_sigsuspend)
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8)
alloc loc1=ar.pfs,8,2,3,0 // preserve all eight input regs in case of syscall restart!
mov r9=ar.unat
mov loc0=rp // save return address
mov out0=in0 // mask
mov out1=in1 // sigsetsize
adds out2=8,sp // out2=&sigscratch->ar_pfs
;;
.fframe 16
.spillsp ar.unat, 16
st8 [sp]=r9,-16 // allocate space for ar.unat and save it
st8 [out2]=loc1,-8 // save ar.pfs, out2=&sigscratch
.body
br.call.sptk.many rp=ia64_rt_sigsuspend
.ret17: .restore sp
adds sp=16,sp // pop scratch stack space
;;
ld8 r9=[sp] // load new unat from sw->caller_unat
mov rp=loc0
;;
mov ar.unat=r9
mov ar.pfs=loc1
br.ret.sptk.many rp
END(sys_rt_sigsuspend)
ENTRY(sys_rt_sigreturn)
PT_REGS_UNWIND_INFO(0)
/*
* Allocate 8 input registers since ptrace() may clobber them
*/
alloc r2=ar.pfs,8,0,1,0
.prologue
PT_REGS_SAVES(16)
adds sp=-16,sp
.body
cmp.eq pNonSys,pSys=r0,r0 // sigreturn isn't a normal syscall...
;;
/*
* leave_kernel() restores f6-f11 from pt_regs, but since the streamlined
* syscall-entry path does not save them we save them here instead. Note: we
* don't need to save any other registers that are not saved by the stream-lined
* syscall path, because restore_sigcontext() restores them.
*/
adds r16=PT(F6)+32,sp
adds r17=PT(F7)+32,sp
;;
stf.spill [r16]=f6,32
stf.spill [r17]=f7,32
;;
stf.spill [r16]=f8,32
stf.spill [r17]=f9,32
;;
stf.spill [r16]=f10
stf.spill [r17]=f11
adds out0=16,sp // out0 = &sigscratch
br.call.sptk.many rp=ia64_rt_sigreturn
.ret19: .restore sp,0
adds sp=16,sp
;;
ld8 r9=[sp] // load new ar.unat
mov.sptk b7=r8,ia64_leave_kernel
;;
mov ar.unat=r9
br.many b7
END(sys_rt_sigreturn)
GLOBAL_ENTRY(ia64_prepare_handle_unaligned)
.prologue
/*
* r16 = fake ar.pfs, we simply need to make sure privilege is still 0
*/
mov r16=r0
DO_SAVE_SWITCH_STACK
br.call.sptk.many rp=ia64_handle_unaligned // stack frame setup in ivt
.ret21: .body
DO_LOAD_SWITCH_STACK
br.cond.sptk.many rp // goes to ia64_leave_kernel
END(ia64_prepare_handle_unaligned)
//
// unw_init_running(void (*callback)(info, arg), void *arg)
//
# define EXTRA_FRAME_SIZE ((UNW_FRAME_INFO_SIZE+15)&~15)
GLOBAL_ENTRY(unw_init_running)
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(2)
alloc loc1=ar.pfs,2,3,3,0
;;
ld8 loc2=[in0],8
mov loc0=rp
mov r16=loc1
DO_SAVE_SWITCH_STACK
.body
.prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(2)
.fframe IA64_SWITCH_STACK_SIZE+EXTRA_FRAME_SIZE
SWITCH_STACK_SAVES(EXTRA_FRAME_SIZE)
adds sp=-EXTRA_FRAME_SIZE,sp
.body
;;
adds out0=16,sp // &info
mov out1=r13 // current
adds out2=16+EXTRA_FRAME_SIZE,sp // &switch_stack
br.call.sptk.many rp=unw_init_frame_info
1: adds out0=16,sp // &info
mov b6=loc2
mov loc2=gp // save gp across indirect function call
;;
ld8 gp=[in0]
mov out1=in1 // arg
br.call.sptk.many rp=b6 // invoke the callback function
1: mov gp=loc2 // restore gp
// For now, we don't allow changing registers from within
// unw_init_running; if we ever want to allow that, we'd
// have to do a load_switch_stack here:
.restore sp
adds sp=IA64_SWITCH_STACK_SIZE+EXTRA_FRAME_SIZE,sp
mov ar.pfs=loc1
mov rp=loc0
br.ret.sptk.many rp
END(unw_init_running)
.rodata
.align 8
.globl sys_call_table
sys_call_table:
data8 sys_ni_syscall // This must be sys_ni_syscall! See ivt.S.
data8 sys_exit // 1025
data8 sys_read
data8 sys_write
data8 sys_open
data8 sys_close
data8 sys_creat // 1030
data8 sys_link
data8 sys_unlink
data8 ia64_execve
data8 sys_chdir
data8 sys_fchdir // 1035
data8 sys_utimes
data8 sys_mknod
data8 sys_chmod
data8 sys_chown
data8 sys_lseek // 1040
data8 sys_getpid
data8 sys_getppid
data8 sys_mount
data8 sys_umount
data8 sys_setuid // 1045
data8 sys_getuid
data8 sys_geteuid
data8 sys_ptrace
data8 sys_access
data8 sys_sync // 1050
data8 sys_fsync
data8 sys_fdatasync
data8 sys_kill
data8 sys_rename
data8 sys_mkdir // 1055
data8 sys_rmdir
data8 sys_dup
data8 sys_pipe
data8 sys_times
data8 ia64_brk // 1060
data8 sys_setgid
data8 sys_getgid
data8 sys_getegid
data8 sys_acct
data8 sys_ioctl // 1065
data8 sys_fcntl
data8 sys_umask
data8 sys_chroot
data8 sys_ustat
data8 sys_dup2 // 1070
data8 sys_setreuid
data8 sys_setregid
data8 sys_getresuid
data8 sys_setresuid
data8 sys_getresgid // 1075
data8 sys_setresgid
data8 sys_getgroups
data8 sys_setgroups
data8 sys_getpgid
data8 sys_setpgid // 1080
data8 sys_setsid
data8 sys_getsid
data8 sys_sethostname
data8 sys_setrlimit
data8 sys_getrlimit // 1085
data8 sys_getrusage
data8 sys_gettimeofday
data8 sys_settimeofday
data8 sys_select
data8 sys_poll // 1090
data8 sys_symlink
data8 sys_readlink
data8 sys_uselib
data8 sys_swapon
data8 sys_swapoff // 1095
data8 sys_reboot
data8 sys_truncate
data8 sys_ftruncate
data8 sys_fchmod
data8 sys_fchown // 1100
data8 ia64_getpriority
data8 sys_setpriority
data8 sys_statfs
data8 sys_fstatfs
data8 sys_gettid // 1105
data8 sys_semget
data8 sys_semop
data8 sys_semctl
data8 sys_msgget
data8 sys_msgsnd // 1110
data8 sys_msgrcv
data8 sys_msgctl
data8 sys_shmget
data8 sys_shmat
data8 sys_shmdt // 1115
data8 sys_shmctl
data8 sys_syslog
data8 sys_setitimer
data8 sys_getitimer
data8 sys_ni_syscall // 1120 /* was: ia64_oldstat */
data8 sys_ni_syscall /* was: ia64_oldlstat */
data8 sys_ni_syscall /* was: ia64_oldfstat */
data8 sys_vhangup
data8 sys_lchown
data8 sys_remap_file_pages // 1125
data8 sys_wait4
data8 sys_sysinfo
data8 sys_clone
data8 sys_setdomainname
data8 sys_newuname // 1130
data8 sys_adjtimex
data8 sys_ni_syscall /* was: ia64_create_module */
data8 sys_init_module
data8 sys_delete_module
data8 sys_ni_syscall // 1135 /* was: sys_get_kernel_syms */
data8 sys_ni_syscall /* was: sys_query_module */
data8 sys_quotactl
data8 sys_bdflush
data8 sys_sysfs
data8 sys_personality // 1140
data8 sys_ni_syscall // sys_afs_syscall
data8 sys_setfsuid
data8 sys_setfsgid
data8 sys_getdents
data8 sys_flock // 1145
data8 sys_readv
data8 sys_writev
data8 sys_pread64
data8 sys_pwrite64
data8 sys_sysctl // 1150
data8 sys_mmap
data8 sys_munmap
data8 sys_mlock
data8 sys_mlockall
data8 sys_mprotect // 1155
data8 ia64_mremap
data8 sys_msync
data8 sys_munlock
data8 sys_munlockall
data8 sys_sched_getparam // 1160
data8 sys_sched_setparam
data8 sys_sched_getscheduler
data8 sys_sched_setscheduler
data8 sys_sched_yield
data8 sys_sched_get_priority_max // 1165
data8 sys_sched_get_priority_min
data8 sys_sched_rr_get_interval
data8 sys_nanosleep
data8 sys_nfsservctl
data8 sys_prctl // 1170
data8 sys_getpagesize
data8 sys_mmap2
data8 sys_pciconfig_read
data8 sys_pciconfig_write
data8 sys_perfmonctl // 1175
data8 sys_sigaltstack
data8 sys_rt_sigaction
data8 sys_rt_sigpending
data8 sys_rt_sigprocmask
data8 sys_rt_sigqueueinfo // 1180
data8 sys_rt_sigreturn
data8 sys_rt_sigsuspend
data8 sys_rt_sigtimedwait
data8 sys_getcwd
data8 sys_capget // 1185
data8 sys_capset
data8 sys_sendfile64
data8 sys_ni_syscall // sys_getpmsg (STREAMS)
data8 sys_ni_syscall // sys_putpmsg (STREAMS)
data8 sys_socket // 1190
data8 sys_bind
data8 sys_connect
data8 sys_listen
data8 sys_accept
data8 sys_getsockname // 1195
data8 sys_getpeername
data8 sys_socketpair
data8 sys_send
data8 sys_sendto
data8 sys_recv // 1200
data8 sys_recvfrom
data8 sys_shutdown
data8 sys_setsockopt
data8 sys_getsockopt
data8 sys_sendmsg // 1205
data8 sys_recvmsg
data8 sys_pivot_root
data8 sys_mincore
data8 sys_madvise
data8 sys_newstat // 1210
data8 sys_newlstat
data8 sys_newfstat
data8 sys_clone2
data8 sys_getdents64
data8 sys_getunwind // 1215
data8 sys_readahead
data8 sys_setxattr
data8 sys_lsetxattr
data8 sys_fsetxattr
data8 sys_getxattr // 1220
data8 sys_lgetxattr
data8 sys_fgetxattr
data8 sys_listxattr
data8 sys_llistxattr
data8 sys_flistxattr // 1225
data8 sys_removexattr
data8 sys_lremovexattr
data8 sys_fremovexattr
data8 sys_tkill
data8 sys_futex // 1230
data8 sys_sched_setaffinity
data8 sys_sched_getaffinity
data8 sys_set_tid_address
data8 sys_fadvise64_64
data8 sys_tgkill // 1235
data8 sys_exit_group
data8 sys_lookup_dcookie
data8 sys_io_setup
data8 sys_io_destroy
data8 sys_io_getevents // 1240
data8 sys_io_submit
data8 sys_io_cancel
data8 sys_epoll_create
data8 sys_epoll_ctl
data8 sys_epoll_wait // 1245
data8 sys_restart_syscall
data8 sys_semtimedop
data8 sys_timer_create
data8 sys_timer_settime
data8 sys_timer_gettime // 1250
data8 sys_timer_getoverrun
data8 sys_timer_delete
data8 sys_clock_settime
data8 sys_clock_gettime
data8 sys_clock_getres // 1255
data8 sys_clock_nanosleep
data8 sys_fstatfs64
data8 sys_statfs64
data8 sys_mbind
data8 sys_get_mempolicy // 1260
data8 sys_set_mempolicy
data8 sys_mq_open
data8 sys_mq_unlink
data8 sys_mq_timedsend
data8 sys_mq_timedreceive // 1265
data8 sys_mq_notify
data8 sys_mq_getsetattr
data8 sys_ni_syscall // reserved for kexec_load
data8 sys_ni_syscall // reserved for vserver
data8 sys_waitid // 1270
data8 sys_add_key
data8 sys_request_key
data8 sys_keyctl
data8 sys_ioprio_set
data8 sys_ioprio_get // 1275
[PATCH] remove sys_set_zone_reclaim() This removes sys_set_zone_reclaim() for now. While i'm sure Martin is trying to solve a real problem, we must not hard-code an incomplete and insufficient approach into a syscall, because syscalls are pretty much for eternity. I am quite strongly convinced that this syscall must not hit v2.6.13 in its current form. Firstly, the syscall lacks basic syscall design: e.g. it allows the global setting of VM policy for unprivileged users. (!) [ Imagine an Oracle installation and a SAP installation on the same NUMA box fighting over the 'optimal' setting for this flag. What will they do? Will they try to set the flag to their own preferred value every second or so? ] Secondly, it was added based on a single datapoint from Martin: http://marc.theaimsgroup.com/?l=linux-mm&m=111763597218177&w=2 where Martin characterizes the numbers the following way: ' Run-to-run variability for "make -j" is huge, so these numbers aren't terribly useful except to see that with reclaim the benchmark still finishes in a reasonable amount of time. ' in other words: the fundamental problem has likely not been solved, only a tendential move into the right direction has been observed, and a handful of numbers were picked out of a set of hugely variable results, without showing the variability data. How much variance is there run-to-run? I'd really suggest to first walk the walk and see what's needed to get stable & predictable kernel compilation numbers on that NUMA box, before adding random syscalls to tune a particular aspect of the VM ... which approach might not even matter once the whole picture has been analyzed and understood! The third, most important point is that the syscall exposes VM tuning internals in a completely unstructured way. What sense does it make to have a _GLOBAL_ per-node setting for 'should we go to another node for reclaim'? If then it might make sense to do this per-app, via numalib or so. The change is minimalistic in that it doesnt remove the syscall and the underlying infrastructure changes, only the user-visible changes. We could perhaps add a CAP_SYS_ADMIN-only sysctl for this hack, a'ka /proc/sys/vm/swappiness, but even that looks quite counterproductive when the generic approach is that we are trying to reduce the number of external factors in the VM balance picture. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-08-01 19:39:13 +08:00
data8 sys_ni_syscall
data8 sys_inotify_init
data8 sys_inotify_add_watch
data8 sys_inotify_rm_watch
.org sys_call_table + 8*NR_syscalls // guard against failures to increase NR_syscalls