OpenCloudOS-Kernel/drivers/md/dm-cache-target.c

3442 lines
82 KiB
C
Raw Normal View History

/*
* Copyright (C) 2012 Red Hat. All rights reserved.
*
* This file is released under the GPL.
*/
#include "dm.h"
#include "dm-bio-prison-v2.h"
dm cache: fix writes to cache device in writethrough mode The dm-cache writethrough strategy introduced by commit e2e74d617eadc15 ("dm cache: fix race in writethrough implementation") issues a bio to the origin device, remaps and then issues the bio to the cache device. This more conservative in-series approach was selected to favor correctness over performance (of the previous parallel writethrough). However, this in-series implementation that reuses the same bio to write both the origin and cache device didn't take into account that the block layer's req_bio_endio() modifies a completing bio's bi_sector and bi_size. So the new writethrough strategy needs to preserve these bio fields, and restore them before submission to the cache device, otherwise nothing gets written to the cache (because bi_size is 0). This patch adds a struct dm_bio_details field to struct per_bio_data, and uses dm_bio_record() and dm_bio_restore() to ensure the bio is restored before reissuing to the cache device. Adding such a large structure to the per_bio_data is not ideal but we can improve this later, for now correctness is the important thing. This problem initially went unnoticed because the dm-cache test-suite uses a linear DM device for the dm-cache device's origin device. Writethrough worked as expected because DM submits a *clone* of the original bio, so the original bio which was reused for the cache was never touched. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
2013-04-05 22:36:32 +08:00
#include "dm-bio-record.h"
#include "dm-cache-metadata.h"
#include "dm-io-tracker.h"
#include <linux/dm-io.h>
#include <linux/dm-kcopyd.h>
#include <linux/jiffies.h>
#include <linux/init.h>
#include <linux/mempool.h>
#include <linux/module.h>
#include <linux/rwsem.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#define DM_MSG_PREFIX "cache"
DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
"A percentage of time allocated for copying to and/or from cache");
/*----------------------------------------------------------------*/
/*
* Glossary:
*
* oblock: index of an origin block
* cblock: index of a cache block
* promotion: movement of a block from origin to cache
* demotion: movement of a block from cache to origin
* migration: movement of a block between the origin and cache device,
* either direction
*/
/*----------------------------------------------------------------*/
/*
* Represents a chunk of future work. 'input' allows continuations to pass
* values between themselves, typically error values.
*/
struct continuation {
struct work_struct ws;
blk_status_t input;
};
static inline void init_continuation(struct continuation *k,
void (*fn)(struct work_struct *))
{
INIT_WORK(&k->ws, fn);
k->input = 0;
}
static inline void queue_continuation(struct workqueue_struct *wq,
struct continuation *k)
{
queue_work(wq, &k->ws);
}
/*----------------------------------------------------------------*/
/*
* The batcher collects together pieces of work that need a particular
* operation to occur before they can proceed (typically a commit).
*/
struct batcher {
/*
* The operation that everyone is waiting for.
*/
blk_status_t (*commit_op)(void *context);
void *commit_context;
/*
* This is how bios should be issued once the commit op is complete
* (accounted_request).
*/
void (*issue_op)(struct bio *bio, void *context);
void *issue_context;
/*
* Queued work gets put on here after commit.
*/
struct workqueue_struct *wq;
spinlock_t lock;
struct list_head work_items;
struct bio_list bios;
struct work_struct commit_work;
bool commit_scheduled;
};
static void __commit(struct work_struct *_ws)
{
struct batcher *b = container_of(_ws, struct batcher, commit_work);
blk_status_t r;
struct list_head work_items;
struct work_struct *ws, *tmp;
struct continuation *k;
struct bio *bio;
struct bio_list bios;
INIT_LIST_HEAD(&work_items);
bio_list_init(&bios);
/*
* We have to grab these before the commit_op to avoid a race
* condition.
*/
spin_lock_irq(&b->lock);
list_splice_init(&b->work_items, &work_items);
bio_list_merge(&bios, &b->bios);
bio_list_init(&b->bios);
b->commit_scheduled = false;
spin_unlock_irq(&b->lock);
r = b->commit_op(b->commit_context);
list_for_each_entry_safe(ws, tmp, &work_items, entry) {
k = container_of(ws, struct continuation, ws);
k->input = r;
INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
queue_work(b->wq, ws);
}
while ((bio = bio_list_pop(&bios))) {
if (r) {
bio->bi_status = r;
bio_endio(bio);
} else
b->issue_op(bio, b->issue_context);
}
}
static void batcher_init(struct batcher *b,
blk_status_t (*commit_op)(void *),
void *commit_context,
void (*issue_op)(struct bio *bio, void *),
void *issue_context,
struct workqueue_struct *wq)
{
b->commit_op = commit_op;
b->commit_context = commit_context;
b->issue_op = issue_op;
b->issue_context = issue_context;
b->wq = wq;
spin_lock_init(&b->lock);
INIT_LIST_HEAD(&b->work_items);
bio_list_init(&b->bios);
INIT_WORK(&b->commit_work, __commit);
b->commit_scheduled = false;
}
static void async_commit(struct batcher *b)
{
queue_work(b->wq, &b->commit_work);
}
static void continue_after_commit(struct batcher *b, struct continuation *k)
{
bool commit_scheduled;
spin_lock_irq(&b->lock);
commit_scheduled = b->commit_scheduled;
list_add_tail(&k->ws.entry, &b->work_items);
spin_unlock_irq(&b->lock);
if (commit_scheduled)
async_commit(b);
}
/*
* Bios are errored if commit failed.
*/
static void issue_after_commit(struct batcher *b, struct bio *bio)
{
bool commit_scheduled;
spin_lock_irq(&b->lock);
commit_scheduled = b->commit_scheduled;
bio_list_add(&b->bios, bio);
spin_unlock_irq(&b->lock);
if (commit_scheduled)
async_commit(b);
}
/*
* Call this if some urgent work is waiting for the commit to complete.
*/
static void schedule_commit(struct batcher *b)
{
bool immediate;
spin_lock_irq(&b->lock);
immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
b->commit_scheduled = true;
spin_unlock_irq(&b->lock);
if (immediate)
async_commit(b);
}
/*
* There are a couple of places where we let a bio run, but want to do some
* work before calling its endio function. We do this by temporarily
* changing the endio fn.
*/
struct dm_hook_info {
bio_end_io_t *bi_end_io;
};
static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
bio_end_io_t *bi_end_io, void *bi_private)
{
h->bi_end_io = bio->bi_end_io;
bio->bi_end_io = bi_end_io;
bio->bi_private = bi_private;
}
static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
{
bio->bi_end_io = h->bi_end_io;
}
/*----------------------------------------------------------------*/
#define MIGRATION_POOL_SIZE 128
#define COMMIT_PERIOD HZ
#define MIGRATION_COUNT_WINDOW 10
/*
* The block size of the device holding cache data must be
* between 32KB and 1GB.
*/
#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
enum cache_metadata_mode {
CM_WRITE, /* metadata may be changed */
CM_READ_ONLY, /* metadata may not be changed */
CM_FAIL
};
enum cache_io_mode {
/*
* Data is written to cached blocks only. These blocks are marked
* dirty. If you lose the cache device you will lose data.
* Potential performance increase for both reads and writes.
*/
CM_IO_WRITEBACK,
/*
* Data is written to both cache and origin. Blocks are never
* dirty. Potential performance benfit for reads only.
*/
CM_IO_WRITETHROUGH,
/*
* A degraded mode useful for various cache coherency situations
* (eg, rolling back snapshots). Reads and writes always go to the
* origin. If a write goes to a cached oblock, then the cache
* block is invalidated.
*/
CM_IO_PASSTHROUGH
};
struct cache_features {
enum cache_metadata_mode mode;
enum cache_io_mode io_mode;
unsigned metadata_version;
bool discard_passdown:1;
};
struct cache_stats {
atomic_t read_hit;
atomic_t read_miss;
atomic_t write_hit;
atomic_t write_miss;
atomic_t demotion;
atomic_t promotion;
atomic_t writeback;
atomic_t copies_avoided;
atomic_t cache_cell_clash;
atomic_t commit_count;
atomic_t discard_count;
};
struct cache {
struct dm_target *ti;
spinlock_t lock;
/*
* Fields for converting from sectors to blocks.
*/
int sectors_per_block_shift;
sector_t sectors_per_block;
struct dm_cache_metadata *cmd;
/*
* Metadata is written to this device.
*/
struct dm_dev *metadata_dev;
/*
* The slower of the two data devices. Typically a spindle.
*/
struct dm_dev *origin_dev;
/*
* The faster of the two data devices. Typically an SSD.
*/
struct dm_dev *cache_dev;
/*
* Size of the origin device in _complete_ blocks and native sectors.
*/
dm_oblock_t origin_blocks;
sector_t origin_sectors;
/*
* Size of the cache device in blocks.
*/
dm_cblock_t cache_size;
/*
* Invalidation fields.
*/
spinlock_t invalidation_lock;
struct list_head invalidation_requests;
sector_t migration_threshold;
wait_queue_head_t migration_wait;
atomic_t nr_allocated_migrations;
/*
* The number of in flight migrations that are performing
* background io. eg, promotion, writeback.
*/
atomic_t nr_io_migrations;
struct bio_list deferred_bios;
struct rw_semaphore quiesce_lock;
/*
* origin_blocks entries, discarded if set.
*/
dm_dblock_t discard_nr_blocks;
unsigned long *discard_bitset;
uint32_t discard_block_size; /* a power of 2 times sectors per block */
/*
* Rather than reconstructing the table line for the status we just
* save it and regurgitate.
*/
unsigned nr_ctr_args;
const char **ctr_args;
struct dm_kcopyd_client *copier;
struct work_struct deferred_bio_worker;
struct work_struct migration_worker;
struct workqueue_struct *wq;
struct delayed_work waker;
struct dm_bio_prison_v2 *prison;
/*
* cache_size entries, dirty if set
*/
unsigned long *dirty_bitset;
atomic_t nr_dirty;
unsigned policy_nr_args;
struct dm_cache_policy *policy;
/*
* Cache features such as write-through.
*/
struct cache_features features;
struct cache_stats stats;
bool need_tick_bio:1;
bool sized:1;
bool invalidate:1;
bool commit_requested:1;
bool loaded_mappings:1;
bool loaded_discards:1;
struct rw_semaphore background_work_lock;
struct batcher committer;
struct work_struct commit_ws;
struct dm_io_tracker tracker;
mempool_t migration_pool;
struct bio_set bs;
};
struct per_bio_data {
bool tick:1;
unsigned req_nr:2;
struct dm_bio_prison_cell_v2 *cell;
struct dm_hook_info hook_info;
sector_t len;
};
struct dm_cache_migration {
struct continuation k;
struct cache *cache;
struct policy_work *op;
struct bio *overwrite_bio;
struct dm_bio_prison_cell_v2 *cell;
dm_cblock_t invalidate_cblock;
dm_oblock_t invalidate_oblock;
};
/*----------------------------------------------------------------*/
static bool writethrough_mode(struct cache *cache)
{
return cache->features.io_mode == CM_IO_WRITETHROUGH;
}
static bool writeback_mode(struct cache *cache)
{
return cache->features.io_mode == CM_IO_WRITEBACK;
}
static inline bool passthrough_mode(struct cache *cache)
{
return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
}
/*----------------------------------------------------------------*/
static void wake_deferred_bio_worker(struct cache *cache)
{
queue_work(cache->wq, &cache->deferred_bio_worker);
}
static void wake_migration_worker(struct cache *cache)
{
if (passthrough_mode(cache))
return;
queue_work(cache->wq, &cache->migration_worker);
}
/*----------------------------------------------------------------*/
static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
{
return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
}
static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
{
dm_bio_prison_free_cell_v2(cache->prison, cell);
}
static struct dm_cache_migration *alloc_migration(struct cache *cache)
{
struct dm_cache_migration *mg;
mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
memset(mg, 0, sizeof(*mg));
mg->cache = cache;
atomic_inc(&cache->nr_allocated_migrations);
return mg;
}
static void free_migration(struct dm_cache_migration *mg)
{
struct cache *cache = mg->cache;
if (atomic_dec_and_test(&cache->nr_allocated_migrations))
wake_up(&cache->migration_wait);
mempool_free(mg, &cache->migration_pool);
}
/*----------------------------------------------------------------*/
static inline dm_oblock_t oblock_succ(dm_oblock_t b)
{
return to_oblock(from_oblock(b) + 1ull);
}
static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
{
key->virtual = 0;
key->dev = 0;
key->block_begin = from_oblock(begin);
key->block_end = from_oblock(end);
}
/*
* We have two lock levels. Level 0, which is used to prevent WRITEs, and
* level 1 which prevents *both* READs and WRITEs.
*/
#define WRITE_LOCK_LEVEL 0
#define READ_WRITE_LOCK_LEVEL 1
static unsigned lock_level(struct bio *bio)
{
return bio_data_dir(bio) == WRITE ?
WRITE_LOCK_LEVEL :
READ_WRITE_LOCK_LEVEL;
}
/*----------------------------------------------------------------
* Per bio data
*--------------------------------------------------------------*/
static struct per_bio_data *get_per_bio_data(struct bio *bio)
{
struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
BUG_ON(!pb);
return pb;
}
static struct per_bio_data *init_per_bio_data(struct bio *bio)
{
struct per_bio_data *pb = get_per_bio_data(bio);
pb->tick = false;
pb->req_nr = dm_bio_get_target_bio_nr(bio);
pb->cell = NULL;
pb->len = 0;
return pb;
}
/*----------------------------------------------------------------*/
static void defer_bio(struct cache *cache, struct bio *bio)
{
spin_lock_irq(&cache->lock);
bio_list_add(&cache->deferred_bios, bio);
spin_unlock_irq(&cache->lock);
wake_deferred_bio_worker(cache);
}
static void defer_bios(struct cache *cache, struct bio_list *bios)
{
spin_lock_irq(&cache->lock);
bio_list_merge(&cache->deferred_bios, bios);
bio_list_init(bios);
spin_unlock_irq(&cache->lock);
wake_deferred_bio_worker(cache);
}
/*----------------------------------------------------------------*/
static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
{
bool r;
struct per_bio_data *pb;
struct dm_cell_key_v2 key;
dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
build_key(oblock, end, &key);
r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
if (!r) {
/*
* Failed to get the lock.
*/
free_prison_cell(cache, cell_prealloc);
return r;
}
if (cell != cell_prealloc)
free_prison_cell(cache, cell_prealloc);
pb = get_per_bio_data(bio);
pb->cell = cell;
return r;
}
/*----------------------------------------------------------------*/
static bool is_dirty(struct cache *cache, dm_cblock_t b)
{
return test_bit(from_cblock(b), cache->dirty_bitset);
}
static void set_dirty(struct cache *cache, dm_cblock_t cblock)
{
if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
atomic_inc(&cache->nr_dirty);
policy_set_dirty(cache->policy, cblock);
}
}
/*
* These two are called when setting after migrations to force the policy
* and dirty bitset to be in sync.
*/
static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
{
if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
atomic_inc(&cache->nr_dirty);
policy_set_dirty(cache->policy, cblock);
}
static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
{
if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
if (atomic_dec_return(&cache->nr_dirty) == 0)
dm_table_event(cache->ti->table);
}
policy_clear_dirty(cache->policy, cblock);
}
/*----------------------------------------------------------------*/
static bool block_size_is_power_of_two(struct cache *cache)
{
return cache->sectors_per_block_shift >= 0;
}
static dm_block_t block_div(dm_block_t b, uint32_t n)
{
do_div(b, n);
return b;
}
static dm_block_t oblocks_per_dblock(struct cache *cache)
{
dm_block_t oblocks = cache->discard_block_size;
if (block_size_is_power_of_two(cache))
oblocks >>= cache->sectors_per_block_shift;
else
oblocks = block_div(oblocks, cache->sectors_per_block);
return oblocks;
}
static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
{
return to_dblock(block_div(from_oblock(oblock),
oblocks_per_dblock(cache)));
}
static void set_discard(struct cache *cache, dm_dblock_t b)
{
BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
atomic_inc(&cache->stats.discard_count);
spin_lock_irq(&cache->lock);
set_bit(from_dblock(b), cache->discard_bitset);
spin_unlock_irq(&cache->lock);
}
static void clear_discard(struct cache *cache, dm_dblock_t b)
{
spin_lock_irq(&cache->lock);
clear_bit(from_dblock(b), cache->discard_bitset);
spin_unlock_irq(&cache->lock);
}
static bool is_discarded(struct cache *cache, dm_dblock_t b)
{
int r;
spin_lock_irq(&cache->lock);
r = test_bit(from_dblock(b), cache->discard_bitset);
spin_unlock_irq(&cache->lock);
return r;
}
static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
{
int r;
spin_lock_irq(&cache->lock);
r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
cache->discard_bitset);
spin_unlock_irq(&cache->lock);
return r;
}
/*----------------------------------------------------------------
* Remapping
*--------------------------------------------------------------*/
static void remap_to_origin(struct cache *cache, struct bio *bio)
{
bio_set_dev(bio, cache->origin_dev->bdev);
}
static void remap_to_cache(struct cache *cache, struct bio *bio,
dm_cblock_t cblock)
{
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-12 06:44:27 +08:00
sector_t bi_sector = bio->bi_iter.bi_sector;
sector_t block = from_cblock(cblock);
bio_set_dev(bio, cache->cache_dev->bdev);
if (!block_size_is_power_of_two(cache))
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-12 06:44:27 +08:00
bio->bi_iter.bi_sector =
(block * cache->sectors_per_block) +
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-12 06:44:27 +08:00
sector_div(bi_sector, cache->sectors_per_block);
else
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-12 06:44:27 +08:00
bio->bi_iter.bi_sector =
(block << cache->sectors_per_block_shift) |
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-12 06:44:27 +08:00
(bi_sector & (cache->sectors_per_block - 1));
}
static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
{
struct per_bio_data *pb;
spin_lock_irq(&cache->lock);
if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
bio_op(bio) != REQ_OP_DISCARD) {
pb = get_per_bio_data(bio);
pb->tick = true;
cache->need_tick_bio = false;
}
spin_unlock_irq(&cache->lock);
}
static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
dm_oblock_t oblock, bool bio_has_pbd)
{
if (bio_has_pbd)
check_if_tick_bio_needed(cache, bio);
remap_to_origin(cache, bio);
if (bio_data_dir(bio) == WRITE)
clear_discard(cache, oblock_to_dblock(cache, oblock));
}
static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
dm_oblock_t oblock)
{
// FIXME: check_if_tick_bio_needed() is called way too much through this interface
__remap_to_origin_clear_discard(cache, bio, oblock, true);
}
static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
dm_oblock_t oblock, dm_cblock_t cblock)
{
check_if_tick_bio_needed(cache, bio);
remap_to_cache(cache, bio, cblock);
if (bio_data_dir(bio) == WRITE) {
set_dirty(cache, cblock);
clear_discard(cache, oblock_to_dblock(cache, oblock));
}
}
static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
{
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-12 06:44:27 +08:00
sector_t block_nr = bio->bi_iter.bi_sector;
if (!block_size_is_power_of_two(cache))
(void) sector_div(block_nr, cache->sectors_per_block);
else
block_nr >>= cache->sectors_per_block_shift;
return to_oblock(block_nr);
}
static bool accountable_bio(struct cache *cache, struct bio *bio)
{
return bio_op(bio) != REQ_OP_DISCARD;
}
static void accounted_begin(struct cache *cache, struct bio *bio)
{
struct per_bio_data *pb;
if (accountable_bio(cache, bio)) {
pb = get_per_bio_data(bio);
pb->len = bio_sectors(bio);
dm_iot_io_begin(&cache->tracker, pb->len);
}
}
static void accounted_complete(struct cache *cache, struct bio *bio)
{
struct per_bio_data *pb = get_per_bio_data(bio);
dm_iot_io_end(&cache->tracker, pb->len);
}
static void accounted_request(struct cache *cache, struct bio *bio)
{
accounted_begin(cache, bio);
submit_bio_noacct(bio);
}
static void issue_op(struct bio *bio, void *context)
{
struct cache *cache = context;
accounted_request(cache, bio);
}
dm cache: fix race in writethrough implementation We have found a race in the optimisation used in the dm cache writethrough implementation. Currently, dm core sends the cache target two bios, one for the origin device and one for the cache device and these are processed in parallel. This patch avoids the race by changing the code back to a simpler (slower) implementation which processes the two writes in series, one after the other, until we can develop a complete fix for the problem. When the cache is in writethrough mode it needs to send WRITE bios to both the origin and cache devices. Previously we've been implementing this by having dm core query the cache target on every write to find out how many copies of the bio it wants. The cache will ask for two bios if the block is in the cache, and one otherwise. Then main problem with this is it's racey. At the time this check is made the bio hasn't yet been submitted and so isn't being taken into account when quiescing a block for migration (promotion or demotion). This means a single bio may be submitted when two were needed because the block has since been promoted to the cache (catastrophic), or two bios where only one is needed (harmless). I really don't want to start entering bios into the quiescing system (deferred_set) in the get_num_write_bios callback. Instead this patch simplifies things; only one bio is submitted by the core, this is first written to the origin and then the cache device in series. Obviously this will have a latency impact. deferred_writethrough_bios is introduced to record bios that must be later issued to the cache device from the worker thread. This deferred submission, after the origin bio completes, is required given that we're in interrupt context (writethrough_endio). Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
2013-03-21 01:21:27 +08:00
/*
* When running in writethrough mode we need to send writes to clean blocks
* to both the cache and origin devices. Clone the bio and send them in parallel.
dm cache: fix race in writethrough implementation We have found a race in the optimisation used in the dm cache writethrough implementation. Currently, dm core sends the cache target two bios, one for the origin device and one for the cache device and these are processed in parallel. This patch avoids the race by changing the code back to a simpler (slower) implementation which processes the two writes in series, one after the other, until we can develop a complete fix for the problem. When the cache is in writethrough mode it needs to send WRITE bios to both the origin and cache devices. Previously we've been implementing this by having dm core query the cache target on every write to find out how many copies of the bio it wants. The cache will ask for two bios if the block is in the cache, and one otherwise. Then main problem with this is it's racey. At the time this check is made the bio hasn't yet been submitted and so isn't being taken into account when quiescing a block for migration (promotion or demotion). This means a single bio may be submitted when two were needed because the block has since been promoted to the cache (catastrophic), or two bios where only one is needed (harmless). I really don't want to start entering bios into the quiescing system (deferred_set) in the get_num_write_bios callback. Instead this patch simplifies things; only one bio is submitted by the core, this is first written to the origin and then the cache device in series. Obviously this will have a latency impact. deferred_writethrough_bios is introduced to record bios that must be later issued to the cache device from the worker thread. This deferred submission, after the origin bio completes, is required given that we're in interrupt context (writethrough_endio). Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
2013-03-21 01:21:27 +08:00
*/
static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
dm_oblock_t oblock, dm_cblock_t cblock)
dm cache: fix race in writethrough implementation We have found a race in the optimisation used in the dm cache writethrough implementation. Currently, dm core sends the cache target two bios, one for the origin device and one for the cache device and these are processed in parallel. This patch avoids the race by changing the code back to a simpler (slower) implementation which processes the two writes in series, one after the other, until we can develop a complete fix for the problem. When the cache is in writethrough mode it needs to send WRITE bios to both the origin and cache devices. Previously we've been implementing this by having dm core query the cache target on every write to find out how many copies of the bio it wants. The cache will ask for two bios if the block is in the cache, and one otherwise. Then main problem with this is it's racey. At the time this check is made the bio hasn't yet been submitted and so isn't being taken into account when quiescing a block for migration (promotion or demotion). This means a single bio may be submitted when two were needed because the block has since been promoted to the cache (catastrophic), or two bios where only one is needed (harmless). I really don't want to start entering bios into the quiescing system (deferred_set) in the get_num_write_bios callback. Instead this patch simplifies things; only one bio is submitted by the core, this is first written to the origin and then the cache device in series. Obviously this will have a latency impact. deferred_writethrough_bios is introduced to record bios that must be later issued to the cache device from the worker thread. This deferred submission, after the origin bio completes, is required given that we're in interrupt context (writethrough_endio). Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
2013-03-21 01:21:27 +08:00
{
struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
BUG_ON(!origin_bio);
dm cache: fix race in writethrough implementation We have found a race in the optimisation used in the dm cache writethrough implementation. Currently, dm core sends the cache target two bios, one for the origin device and one for the cache device and these are processed in parallel. This patch avoids the race by changing the code back to a simpler (slower) implementation which processes the two writes in series, one after the other, until we can develop a complete fix for the problem. When the cache is in writethrough mode it needs to send WRITE bios to both the origin and cache devices. Previously we've been implementing this by having dm core query the cache target on every write to find out how many copies of the bio it wants. The cache will ask for two bios if the block is in the cache, and one otherwise. Then main problem with this is it's racey. At the time this check is made the bio hasn't yet been submitted and so isn't being taken into account when quiescing a block for migration (promotion or demotion). This means a single bio may be submitted when two were needed because the block has since been promoted to the cache (catastrophic), or two bios where only one is needed (harmless). I really don't want to start entering bios into the quiescing system (deferred_set) in the get_num_write_bios callback. Instead this patch simplifies things; only one bio is submitted by the core, this is first written to the origin and then the cache device in series. Obviously this will have a latency impact. deferred_writethrough_bios is introduced to record bios that must be later issued to the cache device from the worker thread. This deferred submission, after the origin bio completes, is required given that we're in interrupt context (writethrough_endio). Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
2013-03-21 01:21:27 +08:00
bio_chain(origin_bio, bio);
/*
* Passing false to __remap_to_origin_clear_discard() skips
* all code that might use per_bio_data (since clone doesn't have it)
*/
__remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
submit_bio(origin_bio);
dm cache: fix race in writethrough implementation We have found a race in the optimisation used in the dm cache writethrough implementation. Currently, dm core sends the cache target two bios, one for the origin device and one for the cache device and these are processed in parallel. This patch avoids the race by changing the code back to a simpler (slower) implementation which processes the two writes in series, one after the other, until we can develop a complete fix for the problem. When the cache is in writethrough mode it needs to send WRITE bios to both the origin and cache devices. Previously we've been implementing this by having dm core query the cache target on every write to find out how many copies of the bio it wants. The cache will ask for two bios if the block is in the cache, and one otherwise. Then main problem with this is it's racey. At the time this check is made the bio hasn't yet been submitted and so isn't being taken into account when quiescing a block for migration (promotion or demotion). This means a single bio may be submitted when two were needed because the block has since been promoted to the cache (catastrophic), or two bios where only one is needed (harmless). I really don't want to start entering bios into the quiescing system (deferred_set) in the get_num_write_bios callback. Instead this patch simplifies things; only one bio is submitted by the core, this is first written to the origin and then the cache device in series. Obviously this will have a latency impact. deferred_writethrough_bios is introduced to record bios that must be later issued to the cache device from the worker thread. This deferred submission, after the origin bio completes, is required given that we're in interrupt context (writethrough_endio). Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
2013-03-21 01:21:27 +08:00
remap_to_cache(cache, bio, cblock);
dm cache: fix race in writethrough implementation We have found a race in the optimisation used in the dm cache writethrough implementation. Currently, dm core sends the cache target two bios, one for the origin device and one for the cache device and these are processed in parallel. This patch avoids the race by changing the code back to a simpler (slower) implementation which processes the two writes in series, one after the other, until we can develop a complete fix for the problem. When the cache is in writethrough mode it needs to send WRITE bios to both the origin and cache devices. Previously we've been implementing this by having dm core query the cache target on every write to find out how many copies of the bio it wants. The cache will ask for two bios if the block is in the cache, and one otherwise. Then main problem with this is it's racey. At the time this check is made the bio hasn't yet been submitted and so isn't being taken into account when quiescing a block for migration (promotion or demotion). This means a single bio may be submitted when two were needed because the block has since been promoted to the cache (catastrophic), or two bios where only one is needed (harmless). I really don't want to start entering bios into the quiescing system (deferred_set) in the get_num_write_bios callback. Instead this patch simplifies things; only one bio is submitted by the core, this is first written to the origin and then the cache device in series. Obviously this will have a latency impact. deferred_writethrough_bios is introduced to record bios that must be later issued to the cache device from the worker thread. This deferred submission, after the origin bio completes, is required given that we're in interrupt context (writethrough_endio). Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
2013-03-21 01:21:27 +08:00
}
/*----------------------------------------------------------------
* Failure modes
*--------------------------------------------------------------*/
static enum cache_metadata_mode get_cache_mode(struct cache *cache)
{
return cache->features.mode;
}
static const char *cache_device_name(struct cache *cache)
{
return dm_table_device_name(cache->ti->table);
}
static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
{
const char *descs[] = {
"write",
"read-only",
"fail"
};
dm_table_event(cache->ti->table);
DMINFO("%s: switching cache to %s mode",
cache_device_name(cache), descs[(int)mode]);
}
static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
{
bool needs_check;
enum cache_metadata_mode old_mode = get_cache_mode(cache);
if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
DMERR("%s: unable to read needs_check flag, setting failure mode.",
cache_device_name(cache));
new_mode = CM_FAIL;
}
if (new_mode == CM_WRITE && needs_check) {
DMERR("%s: unable to switch cache to write mode until repaired.",
cache_device_name(cache));
if (old_mode != new_mode)
new_mode = old_mode;
else
new_mode = CM_READ_ONLY;
}
/* Never move out of fail mode */
if (old_mode == CM_FAIL)
new_mode = CM_FAIL;
switch (new_mode) {
case CM_FAIL:
case CM_READ_ONLY:
dm_cache_metadata_set_read_only(cache->cmd);
break;
case CM_WRITE:
dm_cache_metadata_set_read_write(cache->cmd);
break;
}
cache->features.mode = new_mode;
if (new_mode != old_mode)
notify_mode_switch(cache, new_mode);
}
static void abort_transaction(struct cache *cache)
{
const char *dev_name = cache_device_name(cache);
if (get_cache_mode(cache) >= CM_READ_ONLY)
return;
if (dm_cache_metadata_set_needs_check(cache->cmd)) {
DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
set_cache_mode(cache, CM_FAIL);
}
DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
if (dm_cache_metadata_abort(cache->cmd)) {
DMERR("%s: failed to abort metadata transaction", dev_name);
set_cache_mode(cache, CM_FAIL);
}
}
static void metadata_operation_failed(struct cache *cache, const char *op, int r)
{
DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
cache_device_name(cache), op, r);
abort_transaction(cache);
set_cache_mode(cache, CM_READ_ONLY);
}
/*----------------------------------------------------------------*/
static void load_stats(struct cache *cache)
{
struct dm_cache_statistics stats;
dm_cache_metadata_get_stats(cache->cmd, &stats);
atomic_set(&cache->stats.read_hit, stats.read_hits);
atomic_set(&cache->stats.read_miss, stats.read_misses);
atomic_set(&cache->stats.write_hit, stats.write_hits);
atomic_set(&cache->stats.write_miss, stats.write_misses);
}
static void save_stats(struct cache *cache)
{
struct dm_cache_statistics stats;
if (get_cache_mode(cache) >= CM_READ_ONLY)
return;
stats.read_hits = atomic_read(&cache->stats.read_hit);
stats.read_misses = atomic_read(&cache->stats.read_miss);
stats.write_hits = atomic_read(&cache->stats.write_hit);
stats.write_misses = atomic_read(&cache->stats.write_miss);
dm_cache_metadata_set_stats(cache->cmd, &stats);
}
static void update_stats(struct cache_stats *stats, enum policy_operation op)
{
switch (op) {
case POLICY_PROMOTE:
atomic_inc(&stats->promotion);
break;
case POLICY_DEMOTE:
atomic_inc(&stats->demotion);
break;
case POLICY_WRITEBACK:
atomic_inc(&stats->writeback);
break;
}
}
/*----------------------------------------------------------------
* Migration processing
*
* Migration covers moving data from the origin device to the cache, or
* vice versa.
*--------------------------------------------------------------*/
static void inc_io_migrations(struct cache *cache)
{
atomic_inc(&cache->nr_io_migrations);
}
static void dec_io_migrations(struct cache *cache)
{
atomic_dec(&cache->nr_io_migrations);
}
static bool discard_or_flush(struct bio *bio)
{
return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
}
static void calc_discard_block_range(struct cache *cache, struct bio *bio,
dm_dblock_t *b, dm_dblock_t *e)
{
sector_t sb = bio->bi_iter.bi_sector;
sector_t se = bio_end_sector(bio);
*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
if (se - sb < cache->discard_block_size)
*e = *b;
else
*e = to_dblock(block_div(se, cache->discard_block_size));
}
/*----------------------------------------------------------------*/
static void prevent_background_work(struct cache *cache)
{
lockdep_off();
down_write(&cache->background_work_lock);
lockdep_on();
}
static void allow_background_work(struct cache *cache)
{
lockdep_off();
up_write(&cache->background_work_lock);
lockdep_on();
}
static bool background_work_begin(struct cache *cache)
{
bool r;
lockdep_off();
r = down_read_trylock(&cache->background_work_lock);
lockdep_on();
return r;
}
static void background_work_end(struct cache *cache)
{
lockdep_off();
up_read(&cache->background_work_lock);
lockdep_on();
}
/*----------------------------------------------------------------*/
static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
{
return (bio_data_dir(bio) == WRITE) &&
(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
}
static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
{
return writeback_mode(cache) &&
(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
}
static void quiesce(struct dm_cache_migration *mg,
void (*continuation)(struct work_struct *))
{
init_continuation(&mg->k, continuation);
dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
}
static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
{
struct continuation *k = container_of(ws, struct continuation, ws);
return container_of(k, struct dm_cache_migration, k);
}
static void copy_complete(int read_err, unsigned long write_err, void *context)
{
struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
if (read_err || write_err)
mg->k.input = BLK_STS_IOERR;
queue_continuation(mg->cache->wq, &mg->k);
}
static void copy(struct dm_cache_migration *mg, bool promote)
{
struct dm_io_region o_region, c_region;
struct cache *cache = mg->cache;
o_region.bdev = cache->origin_dev->bdev;
o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
o_region.count = cache->sectors_per_block;
c_region.bdev = cache->cache_dev->bdev;
c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
c_region.count = cache->sectors_per_block;
if (promote)
dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
else
dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
}
static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
{
struct per_bio_data *pb = get_per_bio_data(bio);
if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
free_prison_cell(cache, pb->cell);
pb->cell = NULL;
}
static void overwrite_endio(struct bio *bio)
{
struct dm_cache_migration *mg = bio->bi_private;
struct cache *cache = mg->cache;
struct per_bio_data *pb = get_per_bio_data(bio);
dm_unhook_bio(&pb->hook_info, bio);
if (bio->bi_status)
mg->k.input = bio->bi_status;
queue_continuation(cache->wq, &mg->k);
}
static void overwrite(struct dm_cache_migration *mg,
void (*continuation)(struct work_struct *))
{
struct bio *bio = mg->overwrite_bio;
struct per_bio_data *pb = get_per_bio_data(bio);
dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
/*
* The overwrite bio is part of the copy operation, as such it does
* not set/clear discard or dirty flags.
*/
if (mg->op->op == POLICY_PROMOTE)
remap_to_cache(mg->cache, bio, mg->op->cblock);
else
remap_to_origin(mg->cache, bio);
init_continuation(&mg->k, continuation);
accounted_request(mg->cache, bio);
}
/*
* Migration steps:
*
* 1) exclusive lock preventing WRITEs
* 2) quiesce
* 3) copy or issue overwrite bio
* 4) upgrade to exclusive lock preventing READs and WRITEs
* 5) quiesce
* 6) update metadata and commit
* 7) unlock
*/
static void mg_complete(struct dm_cache_migration *mg, bool success)
{
struct bio_list bios;
struct cache *cache = mg->cache;
struct policy_work *op = mg->op;
dm_cblock_t cblock = op->cblock;
if (success)
update_stats(&cache->stats, op->op);
switch (op->op) {
case POLICY_PROMOTE:
clear_discard(cache, oblock_to_dblock(cache, op->oblock));
policy_complete_background_work(cache->policy, op, success);
if (mg->overwrite_bio) {
if (success)
force_set_dirty(cache, cblock);
else if (mg->k.input)
mg->overwrite_bio->bi_status = mg->k.input;
else
mg->overwrite_bio->bi_status = BLK_STS_IOERR;
bio_endio(mg->overwrite_bio);
} else {
if (success)
force_clear_dirty(cache, cblock);
dec_io_migrations(cache);
}
break;
case POLICY_DEMOTE:
/*
* We clear dirty here to update the nr_dirty counter.
*/
if (success)
force_clear_dirty(cache, cblock);
policy_complete_background_work(cache->policy, op, success);
dec_io_migrations(cache);
break;
case POLICY_WRITEBACK:
if (success)
force_clear_dirty(cache, cblock);
policy_complete_background_work(cache->policy, op, success);
dec_io_migrations(cache);
break;
}
bio_list_init(&bios);
if (mg->cell) {
if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
free_prison_cell(cache, mg->cell);
}
free_migration(mg);
defer_bios(cache, &bios);
wake_migration_worker(cache);
background_work_end(cache);
}
static void mg_success(struct work_struct *ws)
{
struct dm_cache_migration *mg = ws_to_mg(ws);
mg_complete(mg, mg->k.input == 0);
}
static void mg_update_metadata(struct work_struct *ws)
{
int r;
struct dm_cache_migration *mg = ws_to_mg(ws);
struct cache *cache = mg->cache;
struct policy_work *op = mg->op;
switch (op->op) {
case POLICY_PROMOTE:
r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
if (r) {
DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
cache_device_name(cache));
metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
mg_complete(mg, false);
return;
}
mg_complete(mg, true);
break;
case POLICY_DEMOTE:
r = dm_cache_remove_mapping(cache->cmd, op->cblock);
if (r) {
DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
cache_device_name(cache));
metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
mg_complete(mg, false);
return;
}
/*
* It would be nice if we only had to commit when a REQ_FLUSH
* comes through. But there's one scenario that we have to
* look out for:
*
* - vblock x in a cache block
* - domotion occurs
* - cache block gets reallocated and over written
* - crash
*
* When we recover, because there was no commit the cache will
* rollback to having the data for vblock x in the cache block.
* But the cache block has since been overwritten, so it'll end
* up pointing to data that was never in 'x' during the history
* of the device.
*
* To avoid this issue we require a commit as part of the
* demotion operation.
*/
init_continuation(&mg->k, mg_success);
continue_after_commit(&cache->committer, &mg->k);
schedule_commit(&cache->committer);
break;
case POLICY_WRITEBACK:
mg_complete(mg, true);
break;
}
}
static void mg_update_metadata_after_copy(struct work_struct *ws)
{
struct dm_cache_migration *mg = ws_to_mg(ws);
/*
* Did the copy succeed?
*/
if (mg->k.input)
mg_complete(mg, false);
else
mg_update_metadata(ws);
}
static void mg_upgrade_lock(struct work_struct *ws)
{
int r;
struct dm_cache_migration *mg = ws_to_mg(ws);
/*
* Did the copy succeed?
*/
if (mg->k.input)
mg_complete(mg, false);
else {
/*
* Now we want the lock to prevent both reads and writes.
*/
r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
READ_WRITE_LOCK_LEVEL);
if (r < 0)
mg_complete(mg, false);
else if (r)
quiesce(mg, mg_update_metadata);
else
mg_update_metadata(ws);
}
}
static void mg_full_copy(struct work_struct *ws)
{
struct dm_cache_migration *mg = ws_to_mg(ws);
struct cache *cache = mg->cache;
struct policy_work *op = mg->op;
bool is_policy_promote = (op->op == POLICY_PROMOTE);
if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
is_discarded_oblock(cache, op->oblock)) {
mg_upgrade_lock(ws);
return;
}
init_continuation(&mg->k, mg_upgrade_lock);
copy(mg, is_policy_promote);
}
static void mg_copy(struct work_struct *ws)
{
struct dm_cache_migration *mg = ws_to_mg(ws);
if (mg->overwrite_bio) {
/*
* No exclusive lock was held when we last checked if the bio
* was optimisable. So we have to check again in case things
* have changed (eg, the block may no longer be discarded).
*/
if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
/*
* Fallback to a real full copy after doing some tidying up.
*/
bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
mg->overwrite_bio = NULL;
inc_io_migrations(mg->cache);
mg_full_copy(ws);
return;
}
/*
* It's safe to do this here, even though it's new data
* because all IO has been locked out of the block.
*
* mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
* so _not_ using mg_upgrade_lock() as continutation.
*/
overwrite(mg, mg_update_metadata_after_copy);
} else
mg_full_copy(ws);
}
static int mg_lock_writes(struct dm_cache_migration *mg)
{
int r;
struct dm_cell_key_v2 key;
struct cache *cache = mg->cache;
struct dm_bio_prison_cell_v2 *prealloc;
prealloc = alloc_prison_cell(cache);
/*
* Prevent writes to the block, but allow reads to continue.
* Unless we're using an overwrite bio, in which case we lock
* everything.
*/
build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
r = dm_cell_lock_v2(cache->prison, &key,
mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
prealloc, &mg->cell);
if (r < 0) {
free_prison_cell(cache, prealloc);
mg_complete(mg, false);
return r;
}
if (mg->cell != prealloc)
free_prison_cell(cache, prealloc);
if (r == 0)
mg_copy(&mg->k.ws);
else
quiesce(mg, mg_copy);
return 0;
}
static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
{
struct dm_cache_migration *mg;
if (!background_work_begin(cache)) {
policy_complete_background_work(cache->policy, op, false);
return -EPERM;
}
mg = alloc_migration(cache);
mg->op = op;
mg->overwrite_bio = bio;
if (!bio)
inc_io_migrations(cache);
return mg_lock_writes(mg);
}
/*----------------------------------------------------------------
* invalidation processing
*--------------------------------------------------------------*/
static void invalidate_complete(struct dm_cache_migration *mg, bool success)
{
struct bio_list bios;
struct cache *cache = mg->cache;
bio_list_init(&bios);
if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
free_prison_cell(cache, mg->cell);
if (!success && mg->overwrite_bio)
bio_io_error(mg->overwrite_bio);
free_migration(mg);
defer_bios(cache, &bios);
background_work_end(cache);
}
static void invalidate_completed(struct work_struct *ws)
{
struct dm_cache_migration *mg = ws_to_mg(ws);
invalidate_complete(mg, !mg->k.input);
}
static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
{
int r = policy_invalidate_mapping(cache->policy, cblock);
if (!r) {
r = dm_cache_remove_mapping(cache->cmd, cblock);
if (r) {
DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
cache_device_name(cache));
metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
}
} else if (r == -ENODATA) {
/*
* Harmless, already unmapped.
*/
r = 0;
} else
DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
return r;
}
static void invalidate_remove(struct work_struct *ws)
{
int r;
struct dm_cache_migration *mg = ws_to_mg(ws);
struct cache *cache = mg->cache;
r = invalidate_cblock(cache, mg->invalidate_cblock);
if (r) {
invalidate_complete(mg, false);
return;
}
init_continuation(&mg->k, invalidate_completed);
continue_after_commit(&cache->committer, &mg->k);
remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
mg->overwrite_bio = NULL;
schedule_commit(&cache->committer);
}
static int invalidate_lock(struct dm_cache_migration *mg)
{
int r;
struct dm_cell_key_v2 key;
struct cache *cache = mg->cache;
struct dm_bio_prison_cell_v2 *prealloc;
prealloc = alloc_prison_cell(cache);
build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
r = dm_cell_lock_v2(cache->prison, &key,
READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
if (r < 0) {
free_prison_cell(cache, prealloc);
invalidate_complete(mg, false);
return r;
}
if (mg->cell != prealloc)
free_prison_cell(cache, prealloc);
if (r)
quiesce(mg, invalidate_remove);
else {
/*
* We can't call invalidate_remove() directly here because we
* might still be in request context.
*/
init_continuation(&mg->k, invalidate_remove);
queue_work(cache->wq, &mg->k.ws);
}
return 0;
}
static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
dm_oblock_t oblock, struct bio *bio)
{
struct dm_cache_migration *mg;
if (!background_work_begin(cache))
return -EPERM;
mg = alloc_migration(cache);
mg->overwrite_bio = bio;
mg->invalidate_cblock = cblock;
mg->invalidate_oblock = oblock;
return invalidate_lock(mg);
}
/*----------------------------------------------------------------
* bio processing
*--------------------------------------------------------------*/
enum busy {
IDLE,
BUSY
};
static enum busy spare_migration_bandwidth(struct cache *cache)
{
bool idle = dm_iot_idle_for(&cache->tracker, HZ);
sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
cache->sectors_per_block;
if (idle && current_volume <= cache->migration_threshold)
return IDLE;
else
return BUSY;
}
static void inc_hit_counter(struct cache *cache, struct bio *bio)
{
atomic_inc(bio_data_dir(bio) == READ ?
&cache->stats.read_hit : &cache->stats.write_hit);
}
static void inc_miss_counter(struct cache *cache, struct bio *bio)
{
atomic_inc(bio_data_dir(bio) == READ ?
&cache->stats.read_miss : &cache->stats.write_miss);
}
/*----------------------------------------------------------------*/
static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
bool *commit_needed)
{
int r, data_dir;
bool rb, background_queued;
dm_cblock_t cblock;
*commit_needed = false;
rb = bio_detain_shared(cache, block, bio);
if (!rb) {
/*
* An exclusive lock is held for this block, so we have to
* wait. We set the commit_needed flag so the current
* transaction will be committed asap, allowing this lock
* to be dropped.
*/
*commit_needed = true;
return DM_MAPIO_SUBMITTED;
}
data_dir = bio_data_dir(bio);
if (optimisable_bio(cache, bio, block)) {
struct policy_work *op = NULL;
r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
if (unlikely(r && r != -ENOENT)) {
DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
cache_device_name(cache), r);
bio_io_error(bio);
return DM_MAPIO_SUBMITTED;
}
if (r == -ENOENT && op) {
bio_drop_shared_lock(cache, bio);
BUG_ON(op->op != POLICY_PROMOTE);
mg_start(cache, op, bio);
return DM_MAPIO_SUBMITTED;
}
} else {
r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
if (unlikely(r && r != -ENOENT)) {
DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
cache_device_name(cache), r);
bio_io_error(bio);
return DM_MAPIO_SUBMITTED;
}
if (background_queued)
wake_migration_worker(cache);
}
if (r == -ENOENT) {
struct per_bio_data *pb = get_per_bio_data(bio);
/*
* Miss.
*/
inc_miss_counter(cache, bio);
if (pb->req_nr == 0) {
accounted_begin(cache, bio);
remap_to_origin_clear_discard(cache, bio, block);
} else {
/*
* This is a duplicate writethrough io that is no
* longer needed because the block has been demoted.
*/
bio_endio(bio);
return DM_MAPIO_SUBMITTED;
}
} else {
/*
* Hit.
*/
inc_hit_counter(cache, bio);
/*
* Passthrough always maps to the origin, invalidating any
* cache blocks that are written to.
*/
if (passthrough_mode(cache)) {
if (bio_data_dir(bio) == WRITE) {
bio_drop_shared_lock(cache, bio);
atomic_inc(&cache->stats.demotion);
invalidate_start(cache, cblock, block, bio);
} else
remap_to_origin_clear_discard(cache, bio, block);
} else {
if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
!is_dirty(cache, cblock)) {
remap_to_origin_and_cache(cache, bio, block, cblock);
accounted_begin(cache, bio);
} else
remap_to_cache_dirty(cache, bio, block, cblock);
}
}
/*
* dm core turns FUA requests into a separate payload and FLUSH req.
*/
if (bio->bi_opf & REQ_FUA) {
/*
* issue_after_commit will call accounted_begin a second time. So
* we call accounted_complete() to avoid double accounting.
*/
accounted_complete(cache, bio);
issue_after_commit(&cache->committer, bio);
*commit_needed = true;
return DM_MAPIO_SUBMITTED;
}
return DM_MAPIO_REMAPPED;
}
static bool process_bio(struct cache *cache, struct bio *bio)
{
bool commit_needed;
if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
submit_bio_noacct(bio);
return commit_needed;
}
/*
* A non-zero return indicates read_only or fail_io mode.
*/
static int commit(struct cache *cache, bool clean_shutdown)
dm cache: fix race in writethrough implementation We have found a race in the optimisation used in the dm cache writethrough implementation. Currently, dm core sends the cache target two bios, one for the origin device and one for the cache device and these are processed in parallel. This patch avoids the race by changing the code back to a simpler (slower) implementation which processes the two writes in series, one after the other, until we can develop a complete fix for the problem. When the cache is in writethrough mode it needs to send WRITE bios to both the origin and cache devices. Previously we've been implementing this by having dm core query the cache target on every write to find out how many copies of the bio it wants. The cache will ask for two bios if the block is in the cache, and one otherwise. Then main problem with this is it's racey. At the time this check is made the bio hasn't yet been submitted and so isn't being taken into account when quiescing a block for migration (promotion or demotion). This means a single bio may be submitted when two were needed because the block has since been promoted to the cache (catastrophic), or two bios where only one is needed (harmless). I really don't want to start entering bios into the quiescing system (deferred_set) in the get_num_write_bios callback. Instead this patch simplifies things; only one bio is submitted by the core, this is first written to the origin and then the cache device in series. Obviously this will have a latency impact. deferred_writethrough_bios is introduced to record bios that must be later issued to the cache device from the worker thread. This deferred submission, after the origin bio completes, is required given that we're in interrupt context (writethrough_endio). Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
2013-03-21 01:21:27 +08:00
{
int r;
dm cache: fix race in writethrough implementation We have found a race in the optimisation used in the dm cache writethrough implementation. Currently, dm core sends the cache target two bios, one for the origin device and one for the cache device and these are processed in parallel. This patch avoids the race by changing the code back to a simpler (slower) implementation which processes the two writes in series, one after the other, until we can develop a complete fix for the problem. When the cache is in writethrough mode it needs to send WRITE bios to both the origin and cache devices. Previously we've been implementing this by having dm core query the cache target on every write to find out how many copies of the bio it wants. The cache will ask for two bios if the block is in the cache, and one otherwise. Then main problem with this is it's racey. At the time this check is made the bio hasn't yet been submitted and so isn't being taken into account when quiescing a block for migration (promotion or demotion). This means a single bio may be submitted when two were needed because the block has since been promoted to the cache (catastrophic), or two bios where only one is needed (harmless). I really don't want to start entering bios into the quiescing system (deferred_set) in the get_num_write_bios callback. Instead this patch simplifies things; only one bio is submitted by the core, this is first written to the origin and then the cache device in series. Obviously this will have a latency impact. deferred_writethrough_bios is introduced to record bios that must be later issued to the cache device from the worker thread. This deferred submission, after the origin bio completes, is required given that we're in interrupt context (writethrough_endio). Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
2013-03-21 01:21:27 +08:00
if (get_cache_mode(cache) >= CM_READ_ONLY)
return -EINVAL;
dm cache: fix race in writethrough implementation We have found a race in the optimisation used in the dm cache writethrough implementation. Currently, dm core sends the cache target two bios, one for the origin device and one for the cache device and these are processed in parallel. This patch avoids the race by changing the code back to a simpler (slower) implementation which processes the two writes in series, one after the other, until we can develop a complete fix for the problem. When the cache is in writethrough mode it needs to send WRITE bios to both the origin and cache devices. Previously we've been implementing this by having dm core query the cache target on every write to find out how many copies of the bio it wants. The cache will ask for two bios if the block is in the cache, and one otherwise. Then main problem with this is it's racey. At the time this check is made the bio hasn't yet been submitted and so isn't being taken into account when quiescing a block for migration (promotion or demotion). This means a single bio may be submitted when two were needed because the block has since been promoted to the cache (catastrophic), or two bios where only one is needed (harmless). I really don't want to start entering bios into the quiescing system (deferred_set) in the get_num_write_bios callback. Instead this patch simplifies things; only one bio is submitted by the core, this is first written to the origin and then the cache device in series. Obviously this will have a latency impact. deferred_writethrough_bios is introduced to record bios that must be later issued to the cache device from the worker thread. This deferred submission, after the origin bio completes, is required given that we're in interrupt context (writethrough_endio). Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
2013-03-21 01:21:27 +08:00
atomic_inc(&cache->stats.commit_count);
r = dm_cache_commit(cache->cmd, clean_shutdown);
if (r)
metadata_operation_failed(cache, "dm_cache_commit", r);
dm cache: fix race in writethrough implementation We have found a race in the optimisation used in the dm cache writethrough implementation. Currently, dm core sends the cache target two bios, one for the origin device and one for the cache device and these are processed in parallel. This patch avoids the race by changing the code back to a simpler (slower) implementation which processes the two writes in series, one after the other, until we can develop a complete fix for the problem. When the cache is in writethrough mode it needs to send WRITE bios to both the origin and cache devices. Previously we've been implementing this by having dm core query the cache target on every write to find out how many copies of the bio it wants. The cache will ask for two bios if the block is in the cache, and one otherwise. Then main problem with this is it's racey. At the time this check is made the bio hasn't yet been submitted and so isn't being taken into account when quiescing a block for migration (promotion or demotion). This means a single bio may be submitted when two were needed because the block has since been promoted to the cache (catastrophic), or two bios where only one is needed (harmless). I really don't want to start entering bios into the quiescing system (deferred_set) in the get_num_write_bios callback. Instead this patch simplifies things; only one bio is submitted by the core, this is first written to the origin and then the cache device in series. Obviously this will have a latency impact. deferred_writethrough_bios is introduced to record bios that must be later issued to the cache device from the worker thread. This deferred submission, after the origin bio completes, is required given that we're in interrupt context (writethrough_endio). Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
2013-03-21 01:21:27 +08:00
return r;
dm cache: fix race in writethrough implementation We have found a race in the optimisation used in the dm cache writethrough implementation. Currently, dm core sends the cache target two bios, one for the origin device and one for the cache device and these are processed in parallel. This patch avoids the race by changing the code back to a simpler (slower) implementation which processes the two writes in series, one after the other, until we can develop a complete fix for the problem. When the cache is in writethrough mode it needs to send WRITE bios to both the origin and cache devices. Previously we've been implementing this by having dm core query the cache target on every write to find out how many copies of the bio it wants. The cache will ask for two bios if the block is in the cache, and one otherwise. Then main problem with this is it's racey. At the time this check is made the bio hasn't yet been submitted and so isn't being taken into account when quiescing a block for migration (promotion or demotion). This means a single bio may be submitted when two were needed because the block has since been promoted to the cache (catastrophic), or two bios where only one is needed (harmless). I really don't want to start entering bios into the quiescing system (deferred_set) in the get_num_write_bios callback. Instead this patch simplifies things; only one bio is submitted by the core, this is first written to the origin and then the cache device in series. Obviously this will have a latency impact. deferred_writethrough_bios is introduced to record bios that must be later issued to the cache device from the worker thread. This deferred submission, after the origin bio completes, is required given that we're in interrupt context (writethrough_endio). Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
2013-03-21 01:21:27 +08:00
}
/*
* Used by the batcher.
*/
static blk_status_t commit_op(void *context)
{
struct cache *cache = context;
if (dm_cache_changed_this_transaction(cache->cmd))
return errno_to_blk_status(commit(cache, false));
return 0;
}
/*----------------------------------------------------------------*/
static bool process_flush_bio(struct cache *cache, struct bio *bio)
{
struct per_bio_data *pb = get_per_bio_data(bio);
if (!pb->req_nr)
remap_to_origin(cache, bio);
else
remap_to_cache(cache, bio, 0);
issue_after_commit(&cache->committer, bio);
return true;
}
static bool process_discard_bio(struct cache *cache, struct bio *bio)
{
dm_dblock_t b, e;
// FIXME: do we need to lock the region? Or can we just assume the
// user wont be so foolish as to issue discard concurrently with
// other IO?
calc_discard_block_range(cache, bio, &b, &e);
while (b != e) {
set_discard(cache, b);
b = to_dblock(from_dblock(b) + 1);
}
if (cache->features.discard_passdown) {
remap_to_origin(cache, bio);
submit_bio_noacct(bio);
} else
bio_endio(bio);
return false;
}
static void process_deferred_bios(struct work_struct *ws)
{
struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
bool commit_needed = false;
struct bio_list bios;
struct bio *bio;
bio_list_init(&bios);
spin_lock_irq(&cache->lock);
bio_list_merge(&bios, &cache->deferred_bios);
bio_list_init(&cache->deferred_bios);
spin_unlock_irq(&cache->lock);
while ((bio = bio_list_pop(&bios))) {
if (bio->bi_opf & REQ_PREFLUSH)
commit_needed = process_flush_bio(cache, bio) || commit_needed;
else if (bio_op(bio) == REQ_OP_DISCARD)
commit_needed = process_discard_bio(cache, bio) || commit_needed;
else
commit_needed = process_bio(cache, bio) || commit_needed;
}
if (commit_needed)
schedule_commit(&cache->committer);
}
/*----------------------------------------------------------------
* Main worker loop
*--------------------------------------------------------------*/
static void requeue_deferred_bios(struct cache *cache)
{
struct bio *bio;
struct bio_list bios;
bio_list_init(&bios);
bio_list_merge(&bios, &cache->deferred_bios);
bio_list_init(&cache->deferred_bios);
while ((bio = bio_list_pop(&bios))) {
bio->bi_status = BLK_STS_DM_REQUEUE;
bio_endio(bio);
}
}
/*
* We want to commit periodically so that not too much
* unwritten metadata builds up.
*/
static void do_waker(struct work_struct *ws)
{
struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
policy_tick(cache->policy, true);
wake_migration_worker(cache);
schedule_commit(&cache->committer);
queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
}
static void check_migrations(struct work_struct *ws)
{
int r;
struct policy_work *op;
struct cache *cache = container_of(ws, struct cache, migration_worker);
enum busy b;
for (;;) {
b = spare_migration_bandwidth(cache);
r = policy_get_background_work(cache->policy, b == IDLE, &op);
if (r == -ENODATA)
break;
if (r) {
DMERR_LIMIT("%s: policy_background_work failed",
cache_device_name(cache));
break;
}
r = mg_start(cache, op, NULL);
if (r)
break;
}
}
/*----------------------------------------------------------------
* Target methods
*--------------------------------------------------------------*/
/*
* This function gets called on the error paths of the constructor, so we
* have to cope with a partially initialised struct.
*/
static void destroy(struct cache *cache)
{
unsigned i;
mempool_exit(&cache->migration_pool);
if (cache->prison)
dm_bio_prison_destroy_v2(cache->prison);
if (cache->wq)
destroy_workqueue(cache->wq);
if (cache->dirty_bitset)
free_bitset(cache->dirty_bitset);
if (cache->discard_bitset)
free_bitset(cache->discard_bitset);
if (cache->copier)
dm_kcopyd_client_destroy(cache->copier);
if (cache->cmd)
dm_cache_metadata_close(cache->cmd);
if (cache->metadata_dev)
dm_put_device(cache->ti, cache->metadata_dev);
if (cache->origin_dev)
dm_put_device(cache->ti, cache->origin_dev);
if (cache->cache_dev)
dm_put_device(cache->ti, cache->cache_dev);
if (cache->policy)
dm_cache_policy_destroy(cache->policy);
for (i = 0; i < cache->nr_ctr_args ; i++)
kfree(cache->ctr_args[i]);
kfree(cache->ctr_args);
bioset_exit(&cache->bs);
kfree(cache);
}
static void cache_dtr(struct dm_target *ti)
{
struct cache *cache = ti->private;
destroy(cache);
}
static sector_t get_dev_size(struct dm_dev *dev)
{
return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
}
/*----------------------------------------------------------------*/
/*
* Construct a cache device mapping.
*
* cache <metadata dev> <cache dev> <origin dev> <block size>
* <#feature args> [<feature arg>]*
* <policy> <#policy args> [<policy arg>]*
*
* metadata dev : fast device holding the persistent metadata
* cache dev : fast device holding cached data blocks
* origin dev : slow device holding original data blocks
* block size : cache unit size in sectors
*
* #feature args : number of feature arguments passed
* feature args : writethrough. (The default is writeback.)
*
* policy : the replacement policy to use
* #policy args : an even number of policy arguments corresponding
* to key/value pairs passed to the policy
* policy args : key/value pairs passed to the policy
* E.g. 'sequential_threshold 1024'
* See cache-policies.txt for details.
*
* Optional feature arguments are:
* writethrough : write through caching that prohibits cache block
* content from being different from origin block content.
* Without this argument, the default behaviour is to write
* back cache block contents later for performance reasons,
* so they may differ from the corresponding origin blocks.
*/
struct cache_args {
struct dm_target *ti;
struct dm_dev *metadata_dev;
struct dm_dev *cache_dev;
sector_t cache_sectors;
struct dm_dev *origin_dev;
sector_t origin_sectors;
uint32_t block_size;
const char *policy_name;
int policy_argc;
const char **policy_argv;
struct cache_features features;
};
static void destroy_cache_args(struct cache_args *ca)
{
if (ca->metadata_dev)
dm_put_device(ca->ti, ca->metadata_dev);
if (ca->cache_dev)
dm_put_device(ca->ti, ca->cache_dev);
if (ca->origin_dev)
dm_put_device(ca->ti, ca->origin_dev);
kfree(ca);
}
static bool at_least_one_arg(struct dm_arg_set *as, char **error)
{
if (!as->argc) {
*error = "Insufficient args";
return false;
}
return true;
}
static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
char **error)
{
int r;
sector_t metadata_dev_size;
char b[BDEVNAME_SIZE];
if (!at_least_one_arg(as, error))
return -EINVAL;
r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
&ca->metadata_dev);
if (r) {
*error = "Error opening metadata device";
return r;
}
metadata_dev_size = get_dev_size(ca->metadata_dev);
if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
return 0;
}
static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
char **error)
{
int r;
if (!at_least_one_arg(as, error))
return -EINVAL;
r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
&ca->cache_dev);
if (r) {
*error = "Error opening cache device";
return r;
}
ca->cache_sectors = get_dev_size(ca->cache_dev);
return 0;
}
static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
char **error)
{
int r;
if (!at_least_one_arg(as, error))
return -EINVAL;
r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
&ca->origin_dev);
if (r) {
*error = "Error opening origin device";
return r;
}
ca->origin_sectors = get_dev_size(ca->origin_dev);
if (ca->ti->len > ca->origin_sectors) {
*error = "Device size larger than cached device";
return -EINVAL;
}
return 0;
}
static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
char **error)
{
unsigned long block_size;
if (!at_least_one_arg(as, error))
return -EINVAL;
if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
*error = "Invalid data block size";
return -EINVAL;
}
if (block_size > ca->cache_sectors) {
*error = "Data block size is larger than the cache device";
return -EINVAL;
}
ca->block_size = block_size;
return 0;
}
static void init_features(struct cache_features *cf)
{
cf->mode = CM_WRITE;
cf->io_mode = CM_IO_WRITEBACK;
cf->metadata_version = 1;
cf->discard_passdown = true;
}
static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
char **error)
{
static const struct dm_arg _args[] = {
{0, 3, "Invalid number of cache feature arguments"},
};
int r, mode_ctr = 0;
unsigned argc;
const char *arg;
struct cache_features *cf = &ca->features;
init_features(cf);
r = dm_read_arg_group(_args, as, &argc, error);
if (r)
return -EINVAL;
while (argc--) {
arg = dm_shift_arg(as);
if (!strcasecmp(arg, "writeback")) {
cf->io_mode = CM_IO_WRITEBACK;
mode_ctr++;
}
else if (!strcasecmp(arg, "writethrough")) {
cf->io_mode = CM_IO_WRITETHROUGH;
mode_ctr++;
}
else if (!strcasecmp(arg, "passthrough")) {
cf->io_mode = CM_IO_PASSTHROUGH;
mode_ctr++;
}
else if (!strcasecmp(arg, "metadata2"))
cf->metadata_version = 2;
else if (!strcasecmp(arg, "no_discard_passdown"))
cf->discard_passdown = false;
else {
*error = "Unrecognised cache feature requested";
return -EINVAL;
}
}
if (mode_ctr > 1) {
*error = "Duplicate cache io_mode features requested";
return -EINVAL;
}
return 0;
}
static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
char **error)
{
static const struct dm_arg _args[] = {
{0, 1024, "Invalid number of policy arguments"},
};
int r;
if (!at_least_one_arg(as, error))
return -EINVAL;
ca->policy_name = dm_shift_arg(as);
r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
if (r)
return -EINVAL;
ca->policy_argv = (const char **)as->argv;
dm_consume_args(as, ca->policy_argc);
return 0;
}
static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
char **error)
{
int r;
struct dm_arg_set as;
as.argc = argc;
as.argv = argv;
r = parse_metadata_dev(ca, &as, error);
if (r)
return r;
r = parse_cache_dev(ca, &as, error);
if (r)
return r;
r = parse_origin_dev(ca, &as, error);
if (r)
return r;
r = parse_block_size(ca, &as, error);
if (r)
return r;
r = parse_features(ca, &as, error);
if (r)
return r;
r = parse_policy(ca, &as, error);
if (r)
return r;
return 0;
}
/*----------------------------------------------------------------*/
static struct kmem_cache *migration_cache;
#define NOT_CORE_OPTION 1
static int process_config_option(struct cache *cache, const char *key, const char *value)
{
unsigned long tmp;
if (!strcasecmp(key, "migration_threshold")) {
if (kstrtoul(value, 10, &tmp))
return -EINVAL;
cache->migration_threshold = tmp;
return 0;
}
return NOT_CORE_OPTION;
}
static int set_config_value(struct cache *cache, const char *key, const char *value)
{
int r = process_config_option(cache, key, value);
if (r == NOT_CORE_OPTION)
r = policy_set_config_value(cache->policy, key, value);
if (r)
DMWARN("bad config value for %s: %s", key, value);
return r;
}
static int set_config_values(struct cache *cache, int argc, const char **argv)
{
int r = 0;
if (argc & 1) {
DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
return -EINVAL;
}
while (argc) {
r = set_config_value(cache, argv[0], argv[1]);
if (r)
break;
argc -= 2;
argv += 2;
}
return r;
}
static int create_cache_policy(struct cache *cache, struct cache_args *ca,
char **error)
{
struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
cache->cache_size,
cache->origin_sectors,
cache->sectors_per_block);
if (IS_ERR(p)) {
*error = "Error creating cache's policy";
return PTR_ERR(p);
}
cache->policy = p;
BUG_ON(!cache->policy);
return 0;
}
/*
* We want the discard block size to be at least the size of the cache
* block size and have no more than 2^14 discard blocks across the origin.
*/
#define MAX_DISCARD_BLOCKS (1 << 14)
static bool too_many_discard_blocks(sector_t discard_block_size,
sector_t origin_size)
{
(void) sector_div(origin_size, discard_block_size);
return origin_size > MAX_DISCARD_BLOCKS;
}
static sector_t calculate_discard_block_size(sector_t cache_block_size,
sector_t origin_size)
{
sector_t discard_block_size = cache_block_size;
if (origin_size)
while (too_many_discard_blocks(discard_block_size, origin_size))
discard_block_size *= 2;
return discard_block_size;
}
static void set_cache_size(struct cache *cache, dm_cblock_t size)
{
dm_block_t nr_blocks = from_cblock(size);
if (nr_blocks > (1 << 20) && cache->cache_size != size)
DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
"All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
"Please consider increasing the cache block size to reduce the overall cache block count.",
(unsigned long long) nr_blocks);
cache->cache_size = size;
}
#define DEFAULT_MIGRATION_THRESHOLD 2048
static int cache_create(struct cache_args *ca, struct cache **result)
{
int r = 0;
char **error = &ca->ti->error;
struct cache *cache;
struct dm_target *ti = ca->ti;
dm_block_t origin_blocks;
struct dm_cache_metadata *cmd;
bool may_format = ca->features.mode == CM_WRITE;
cache = kzalloc(sizeof(*cache), GFP_KERNEL);
if (!cache)
return -ENOMEM;
cache->ti = ca->ti;
ti->private = cache;
ti->num_flush_bios = 2;
ti->flush_supported = true;
ti->num_discard_bios = 1;
ti->discards_supported = true;
ti->per_io_data_size = sizeof(struct per_bio_data);
cache->features = ca->features;
if (writethrough_mode(cache)) {
/* Create bioset for writethrough bios issued to origin */
r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
if (r)
goto bad;
}
cache->metadata_dev = ca->metadata_dev;
cache->origin_dev = ca->origin_dev;
cache->cache_dev = ca->cache_dev;
ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
origin_blocks = cache->origin_sectors = ca->origin_sectors;
origin_blocks = block_div(origin_blocks, ca->block_size);
cache->origin_blocks = to_oblock(origin_blocks);
cache->sectors_per_block = ca->block_size;
if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
r = -EINVAL;
goto bad;
}
if (ca->block_size & (ca->block_size - 1)) {
dm_block_t cache_size = ca->cache_sectors;
cache->sectors_per_block_shift = -1;
cache_size = block_div(cache_size, ca->block_size);
set_cache_size(cache, to_cblock(cache_size));
} else {
cache->sectors_per_block_shift = __ffs(ca->block_size);
set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
}
r = create_cache_policy(cache, ca, error);
if (r)
goto bad;
cache->policy_nr_args = ca->policy_argc;
cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
if (r) {
*error = "Error setting cache policy's config values";
goto bad;
}
cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
ca->block_size, may_format,
dm_cache_policy_get_hint_size(cache->policy),
ca->features.metadata_version);
if (IS_ERR(cmd)) {
*error = "Error creating metadata object";
r = PTR_ERR(cmd);
goto bad;
}
cache->cmd = cmd;
set_cache_mode(cache, CM_WRITE);
if (get_cache_mode(cache) != CM_WRITE) {
*error = "Unable to get write access to metadata, please check/repair metadata.";
r = -EINVAL;
goto bad;
}
if (passthrough_mode(cache)) {
bool all_clean;
r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
if (r) {
*error = "dm_cache_metadata_all_clean() failed";
goto bad;
}
if (!all_clean) {
*error = "Cannot enter passthrough mode unless all blocks are clean";
r = -EINVAL;
goto bad;
}
policy_allow_migrations(cache->policy, false);
}
spin_lock_init(&cache->lock);
bio_list_init(&cache->deferred_bios);
atomic_set(&cache->nr_allocated_migrations, 0);
atomic_set(&cache->nr_io_migrations, 0);
init_waitqueue_head(&cache->migration_wait);
r = -ENOMEM;
atomic_set(&cache->nr_dirty, 0);
cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
if (!cache->dirty_bitset) {
*error = "could not allocate dirty bitset";
goto bad;
}
clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
cache->discard_block_size =
calculate_discard_block_size(cache->sectors_per_block,
cache->origin_sectors);
cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
cache->discard_block_size));
cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
if (!cache->discard_bitset) {
*error = "could not allocate discard bitset";
goto bad;
}
clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
if (IS_ERR(cache->copier)) {
*error = "could not create kcopyd client";
r = PTR_ERR(cache->copier);
goto bad;
}
cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
if (!cache->wq) {
*error = "could not create workqueue for metadata object";
goto bad;
}
INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
INIT_WORK(&cache->migration_worker, check_migrations);
INIT_DELAYED_WORK(&cache->waker, do_waker);
cache->prison = dm_bio_prison_create_v2(cache->wq);
if (!cache->prison) {
*error = "could not create bio prison";
goto bad;
}
r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
migration_cache);
if (r) {
*error = "Error creating cache's migration mempool";
goto bad;
}
cache->need_tick_bio = true;
cache->sized = false;
cache->invalidate = false;
cache->commit_requested = false;
cache->loaded_mappings = false;
cache->loaded_discards = false;
load_stats(cache);
atomic_set(&cache->stats.demotion, 0);
atomic_set(&cache->stats.promotion, 0);
atomic_set(&cache->stats.copies_avoided, 0);
atomic_set(&cache->stats.cache_cell_clash, 0);
atomic_set(&cache->stats.commit_count, 0);
atomic_set(&cache->stats.discard_count, 0);
spin_lock_init(&cache->invalidation_lock);
INIT_LIST_HEAD(&cache->invalidation_requests);
batcher_init(&cache->committer, commit_op, cache,
issue_op, cache, cache->wq);
dm_iot_init(&cache->tracker);
init_rwsem(&cache->background_work_lock);
prevent_background_work(cache);
*result = cache;
return 0;
bad:
destroy(cache);
return r;
}
static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
{
unsigned i;
const char **copy;
copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
if (!copy)
return -ENOMEM;
for (i = 0; i < argc; i++) {
copy[i] = kstrdup(argv[i], GFP_KERNEL);
if (!copy[i]) {
while (i--)
kfree(copy[i]);
kfree(copy);
return -ENOMEM;
}
}
cache->nr_ctr_args = argc;
cache->ctr_args = copy;
return 0;
}
static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
{
int r = -EINVAL;
struct cache_args *ca;
struct cache *cache = NULL;
ca = kzalloc(sizeof(*ca), GFP_KERNEL);
if (!ca) {
ti->error = "Error allocating memory for cache";
return -ENOMEM;
}
ca->ti = ti;
r = parse_cache_args(ca, argc, argv, &ti->error);
if (r)
goto out;
r = cache_create(ca, &cache);
if (r)
goto out;
r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
if (r) {
destroy(cache);
goto out;
}
ti->private = cache;
out:
destroy_cache_args(ca);
return r;
}
/*----------------------------------------------------------------*/
static int cache_map(struct dm_target *ti, struct bio *bio)
{
struct cache *cache = ti->private;
int r;
bool commit_needed;
dm_oblock_t block = get_bio_block(cache, bio);
init_per_bio_data(bio);
if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
/*
* This can only occur if the io goes to a partial block at
* the end of the origin device. We don't cache these.
* Just remap to the origin and carry on.
*/
remap_to_origin(cache, bio);
accounted_begin(cache, bio);
return DM_MAPIO_REMAPPED;
}
if (discard_or_flush(bio)) {
defer_bio(cache, bio);
return DM_MAPIO_SUBMITTED;
}
r = map_bio(cache, bio, block, &commit_needed);
if (commit_needed)
schedule_commit(&cache->committer);
return r;
}
static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
{
struct cache *cache = ti->private;
unsigned long flags;
struct per_bio_data *pb = get_per_bio_data(bio);
if (pb->tick) {
policy_tick(cache->policy, false);
spin_lock_irqsave(&cache->lock, flags);
cache->need_tick_bio = true;
spin_unlock_irqrestore(&cache->lock, flags);
}
bio_drop_shared_lock(cache, bio);
accounted_complete(cache, bio);
return DM_ENDIO_DONE;
}
static int write_dirty_bitset(struct cache *cache)
{
int r;
if (get_cache_mode(cache) >= CM_READ_ONLY)
return -EINVAL;
r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
if (r)
metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
return r;
}
static int write_discard_bitset(struct cache *cache)
{
unsigned i, r;
if (get_cache_mode(cache) >= CM_READ_ONLY)
return -EINVAL;
r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
cache->discard_nr_blocks);
if (r) {
DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
return r;
}
for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
r = dm_cache_set_discard(cache->cmd, to_dblock(i),
is_discarded(cache, to_dblock(i)));
if (r) {
metadata_operation_failed(cache, "dm_cache_set_discard", r);
return r;
}
}
return 0;
}
static int write_hints(struct cache *cache)
{
int r;
if (get_cache_mode(cache) >= CM_READ_ONLY)
return -EINVAL;
r = dm_cache_write_hints(cache->cmd, cache->policy);
if (r) {
metadata_operation_failed(cache, "dm_cache_write_hints", r);
return r;
}
return 0;
}
/*
* returns true on success
*/
static bool sync_metadata(struct cache *cache)
{
int r1, r2, r3, r4;
r1 = write_dirty_bitset(cache);
if (r1)
DMERR("%s: could not write dirty bitset", cache_device_name(cache));
r2 = write_discard_bitset(cache);
if (r2)
DMERR("%s: could not write discard bitset", cache_device_name(cache));
save_stats(cache);
r3 = write_hints(cache);
if (r3)
DMERR("%s: could not write hints", cache_device_name(cache));
/*
* If writing the above metadata failed, we still commit, but don't
* set the clean shutdown flag. This will effectively force every
* dirty bit to be set on reload.
*/
r4 = commit(cache, !r1 && !r2 && !r3);
if (r4)
DMERR("%s: could not write cache metadata", cache_device_name(cache));
return !r1 && !r2 && !r3 && !r4;
}
static void cache_postsuspend(struct dm_target *ti)
{
struct cache *cache = ti->private;
prevent_background_work(cache);
BUG_ON(atomic_read(&cache->nr_io_migrations));
cancel_delayed_work_sync(&cache->waker);
drain_workqueue(cache->wq);
WARN_ON(cache->tracker.in_flight);
/*
* If it's a flush suspend there won't be any deferred bios, so this
* call is harmless.
*/
requeue_deferred_bios(cache);
if (get_cache_mode(cache) == CM_WRITE)
(void) sync_metadata(cache);
}
static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
bool dirty, uint32_t hint, bool hint_valid)
{
struct cache *cache = context;
if (dirty) {
set_bit(from_cblock(cblock), cache->dirty_bitset);
atomic_inc(&cache->nr_dirty);
} else
clear_bit(from_cblock(cblock), cache->dirty_bitset);
return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
}
/*
* The discard block size in the on disk metadata is not
* neccessarily the same as we're currently using. So we have to
* be careful to only set the discarded attribute if we know it
* covers a complete block of the new size.
*/
struct discard_load_info {
struct cache *cache;
/*
* These blocks are sized using the on disk dblock size, rather
* than the current one.
*/
dm_block_t block_size;
dm_block_t discard_begin, discard_end;
};
static void discard_load_info_init(struct cache *cache,
struct discard_load_info *li)
{
li->cache = cache;
li->discard_begin = li->discard_end = 0;
}
static void set_discard_range(struct discard_load_info *li)
{
sector_t b, e;
if (li->discard_begin == li->discard_end)
return;
/*
* Convert to sectors.
*/
b = li->discard_begin * li->block_size;
e = li->discard_end * li->block_size;
/*
* Then convert back to the current dblock size.
*/
b = dm_sector_div_up(b, li->cache->discard_block_size);
sector_div(e, li->cache->discard_block_size);
/*
* The origin may have shrunk, so we need to check we're still in
* bounds.
*/
if (e > from_dblock(li->cache->discard_nr_blocks))
e = from_dblock(li->cache->discard_nr_blocks);
for (; b < e; b++)
set_discard(li->cache, to_dblock(b));
}
static int load_discard(void *context, sector_t discard_block_size,
dm_dblock_t dblock, bool discard)
{
struct discard_load_info *li = context;
li->block_size = discard_block_size;
if (discard) {
if (from_dblock(dblock) == li->discard_end)
/*
* We're already in a discard range, just extend it.
*/
li->discard_end = li->discard_end + 1ULL;
else {
/*
* Emit the old range and start a new one.
*/
set_discard_range(li);
li->discard_begin = from_dblock(dblock);
li->discard_end = li->discard_begin + 1ULL;
}
} else {
set_discard_range(li);
li->discard_begin = li->discard_end = 0;
}
return 0;
}
static dm_cblock_t get_cache_dev_size(struct cache *cache)
{
sector_t size = get_dev_size(cache->cache_dev);
(void) sector_div(size, cache->sectors_per_block);
return to_cblock(size);
}
static bool can_resize(struct cache *cache, dm_cblock_t new_size)
{
if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
if (cache->sized) {
DMERR("%s: unable to extend cache due to missing cache table reload",
cache_device_name(cache));
return false;
}
}
/*
* We can't drop a dirty block when shrinking the cache.
*/
while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
new_size = to_cblock(from_cblock(new_size) + 1);
if (is_dirty(cache, new_size)) {
DMERR("%s: unable to shrink cache; cache block %llu is dirty",
cache_device_name(cache),
(unsigned long long) from_cblock(new_size));
return false;
}
}
return true;
}
static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
{
int r;
r = dm_cache_resize(cache->cmd, new_size);
if (r) {
DMERR("%s: could not resize cache metadata", cache_device_name(cache));
metadata_operation_failed(cache, "dm_cache_resize", r);
return r;
}
set_cache_size(cache, new_size);
return 0;
}
static int cache_preresume(struct dm_target *ti)
{
int r = 0;
struct cache *cache = ti->private;
dm_cblock_t csize = get_cache_dev_size(cache);
/*
* Check to see if the cache has resized.
*/
if (!cache->sized) {
r = resize_cache_dev(cache, csize);
if (r)
return r;
cache->sized = true;
} else if (csize != cache->cache_size) {
if (!can_resize(cache, csize))
return -EINVAL;
r = resize_cache_dev(cache, csize);
if (r)
return r;
}
if (!cache->loaded_mappings) {
r = dm_cache_load_mappings(cache->cmd, cache->policy,
load_mapping, cache);
if (r) {
DMERR("%s: could not load cache mappings", cache_device_name(cache));
metadata_operation_failed(cache, "dm_cache_load_mappings", r);
return r;
}
cache->loaded_mappings = true;
}
if (!cache->loaded_discards) {
struct discard_load_info li;
/*
* The discard bitset could have been resized, or the
* discard block size changed. To be safe we start by
* setting every dblock to not discarded.
*/
clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
discard_load_info_init(cache, &li);
r = dm_cache_load_discards(cache->cmd, load_discard, &li);
if (r) {
DMERR("%s: could not load origin discards", cache_device_name(cache));
metadata_operation_failed(cache, "dm_cache_load_discards", r);
return r;
}
set_discard_range(&li);
cache->loaded_discards = true;
}
return r;
}
static void cache_resume(struct dm_target *ti)
{
struct cache *cache = ti->private;
cache->need_tick_bio = true;
allow_background_work(cache);
do_waker(&cache->waker.work);
}
static void emit_flags(struct cache *cache, char *result,
unsigned maxlen, ssize_t *sz_ptr)
{
ssize_t sz = *sz_ptr;
struct cache_features *cf = &cache->features;
unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
DMEMIT("%u ", count);
if (cf->metadata_version == 2)
DMEMIT("metadata2 ");
if (writethrough_mode(cache))
DMEMIT("writethrough ");
else if (passthrough_mode(cache))
DMEMIT("passthrough ");
else if (writeback_mode(cache))
DMEMIT("writeback ");
else {
DMEMIT("unknown ");
DMERR("%s: internal error: unknown io mode: %d",
cache_device_name(cache), (int) cf->io_mode);
}
if (!cf->discard_passdown)
DMEMIT("no_discard_passdown ");
*sz_ptr = sz;
}
/*
* Status format:
*
* <metadata block size> <#used metadata blocks>/<#total metadata blocks>
* <cache block size> <#used cache blocks>/<#total cache blocks>
* <#read hits> <#read misses> <#write hits> <#write misses>
* <#demotions> <#promotions> <#dirty>
* <#features> <features>*
* <#core args> <core args>
* <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
*/
static void cache_status(struct dm_target *ti, status_type_t type,
unsigned status_flags, char *result, unsigned maxlen)
{
int r = 0;
unsigned i;
ssize_t sz = 0;
dm_block_t nr_free_blocks_metadata = 0;
dm_block_t nr_blocks_metadata = 0;
char buf[BDEVNAME_SIZE];
struct cache *cache = ti->private;
dm_cblock_t residency;
bool needs_check;
switch (type) {
case STATUSTYPE_INFO:
if (get_cache_mode(cache) == CM_FAIL) {
DMEMIT("Fail");
break;
}
/* Commit to ensure statistics aren't out-of-date */
if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
(void) commit(cache, false);
r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
if (r) {
DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
cache_device_name(cache), r);
goto err;
}
r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
if (r) {
DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
cache_device_name(cache), r);
goto err;
}
residency = policy_residency(cache->policy);
DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
(unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
(unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
(unsigned long long)nr_blocks_metadata,
(unsigned long long)cache->sectors_per_block,
(unsigned long long) from_cblock(residency),
(unsigned long long) from_cblock(cache->cache_size),
(unsigned) atomic_read(&cache->stats.read_hit),
(unsigned) atomic_read(&cache->stats.read_miss),
(unsigned) atomic_read(&cache->stats.write_hit),
(unsigned) atomic_read(&cache->stats.write_miss),
(unsigned) atomic_read(&cache->stats.demotion),
(unsigned) atomic_read(&cache->stats.promotion),
(unsigned long) atomic_read(&cache->nr_dirty));
emit_flags(cache, result, maxlen, &sz);
DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
if (sz < maxlen) {
r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
if (r)
DMERR("%s: policy_emit_config_values returned %d",
cache_device_name(cache), r);
}
if (get_cache_mode(cache) == CM_READ_ONLY)
DMEMIT("ro ");
else
DMEMIT("rw ");
r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
if (r || needs_check)
DMEMIT("needs_check ");
else
DMEMIT("- ");
break;
case STATUSTYPE_TABLE:
format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
DMEMIT("%s ", buf);
format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
DMEMIT("%s ", buf);
format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
DMEMIT("%s", buf);
for (i = 0; i < cache->nr_ctr_args - 1; i++)
DMEMIT(" %s", cache->ctr_args[i]);
if (cache->nr_ctr_args)
DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
}
return;
err:
DMEMIT("Error");
}
/*
* Defines a range of cblocks, begin to (end - 1) are in the range. end is
* the one-past-the-end value.
*/
struct cblock_range {
dm_cblock_t begin;
dm_cblock_t end;
};
/*
* A cache block range can take two forms:
*
* i) A single cblock, eg. '3456'
* ii) A begin and end cblock with a dash between, eg. 123-234
*/
static int parse_cblock_range(struct cache *cache, const char *str,
struct cblock_range *result)
{
char dummy;
uint64_t b, e;
int r;
/*
* Try and parse form (ii) first.
*/
r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
if (r < 0)
return r;
if (r == 2) {
result->begin = to_cblock(b);
result->end = to_cblock(e);
return 0;
}
/*
* That didn't work, try form (i).
*/
r = sscanf(str, "%llu%c", &b, &dummy);
if (r < 0)
return r;
if (r == 1) {
result->begin = to_cblock(b);
result->end = to_cblock(from_cblock(result->begin) + 1u);
return 0;
}
DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
return -EINVAL;
}
static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
{
uint64_t b = from_cblock(range->begin);
uint64_t e = from_cblock(range->end);
uint64_t n = from_cblock(cache->cache_size);
if (b >= n) {
DMERR("%s: begin cblock out of range: %llu >= %llu",
cache_device_name(cache), b, n);
return -EINVAL;
}
if (e > n) {
DMERR("%s: end cblock out of range: %llu > %llu",
cache_device_name(cache), e, n);
return -EINVAL;
}
if (b >= e) {
DMERR("%s: invalid cblock range: %llu >= %llu",
cache_device_name(cache), b, e);
return -EINVAL;
}
return 0;
}
static inline dm_cblock_t cblock_succ(dm_cblock_t b)
{
return to_cblock(from_cblock(b) + 1);
}
static int request_invalidation(struct cache *cache, struct cblock_range *range)
{
int r = 0;
/*
* We don't need to do any locking here because we know we're in
* passthrough mode. There's is potential for a race between an
* invalidation triggered by an io and an invalidation message. This
* is harmless, we must not worry if the policy call fails.
*/
while (range->begin != range->end) {
r = invalidate_cblock(cache, range->begin);
if (r)
return r;
range->begin = cblock_succ(range->begin);
}
cache->commit_requested = true;
return r;
}
static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
const char **cblock_ranges)
{
int r = 0;
unsigned i;
struct cblock_range range;
if (!passthrough_mode(cache)) {
DMERR("%s: cache has to be in passthrough mode for invalidation",
cache_device_name(cache));
return -EPERM;
}
for (i = 0; i < count; i++) {
r = parse_cblock_range(cache, cblock_ranges[i], &range);
if (r)
break;
r = validate_cblock_range(cache, &range);
if (r)
break;
/*
* Pass begin and end origin blocks to the worker and wake it.
*/
r = request_invalidation(cache, &range);
if (r)
break;
}
return r;
}
/*
* Supports
* "<key> <value>"
* and
* "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
*
* The key migration_threshold is supported by the cache target core.
*/
static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
char *result, unsigned maxlen)
{
struct cache *cache = ti->private;
if (!argc)
return -EINVAL;
if (get_cache_mode(cache) >= CM_READ_ONLY) {
DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
cache_device_name(cache));
return -EOPNOTSUPP;
}
if (!strcasecmp(argv[0], "invalidate_cblocks"))
return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
if (argc != 2)
return -EINVAL;
return set_config_value(cache, argv[0], argv[1]);
}
static int cache_iterate_devices(struct dm_target *ti,
iterate_devices_callout_fn fn, void *data)
{
int r = 0;
struct cache *cache = ti->private;
r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
if (!r)
r = fn(ti, cache->origin_dev, 0, ti->len, data);
return r;
}
static bool origin_dev_supports_discard(struct block_device *origin_bdev)
{
struct request_queue *q = bdev_get_queue(origin_bdev);
return blk_queue_discard(q);
}
/*
* If discard_passdown was enabled verify that the origin device
* supports discards. Disable discard_passdown if not.
*/
static void disable_passdown_if_not_supported(struct cache *cache)
{
struct block_device *origin_bdev = cache->origin_dev->bdev;
struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
const char *reason = NULL;
char buf[BDEVNAME_SIZE];
if (!cache->features.discard_passdown)
return;
if (!origin_dev_supports_discard(origin_bdev))
reason = "discard unsupported";
else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
reason = "max discard sectors smaller than a block";
if (reason) {
DMWARN("Origin device (%s) %s: Disabling discard passdown.",
bdevname(origin_bdev, buf), reason);
cache->features.discard_passdown = false;
}
}
static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
{
struct block_device *origin_bdev = cache->origin_dev->bdev;
struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
if (!cache->features.discard_passdown) {
/* No passdown is done so setting own virtual limits */
limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
cache->origin_sectors);
limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
return;
}
/*
* cache_iterate_devices() is stacking both origin and fast device limits
* but discards aren't passed to fast device, so inherit origin's limits.
*/
limits->max_discard_sectors = origin_limits->max_discard_sectors;
limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
limits->discard_granularity = origin_limits->discard_granularity;
limits->discard_alignment = origin_limits->discard_alignment;
limits->discard_misaligned = origin_limits->discard_misaligned;
}
static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
{
struct cache *cache = ti->private;
uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
/*
* If the system-determined stacked limits are compatible with the
* cache's blocksize (io_opt is a factor) do not override them.
*/
if (io_opt_sectors < cache->sectors_per_block ||
do_div(io_opt_sectors, cache->sectors_per_block)) {
blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
}
disable_passdown_if_not_supported(cache);
set_discard_limits(cache, limits);
}
/*----------------------------------------------------------------*/
static struct target_type cache_target = {
.name = "cache",
.version = {2, 2, 0},
.module = THIS_MODULE,
.ctr = cache_ctr,
.dtr = cache_dtr,
.map = cache_map,
.end_io = cache_end_io,
.postsuspend = cache_postsuspend,
.preresume = cache_preresume,
.resume = cache_resume,
.status = cache_status,
.message = cache_message,
.iterate_devices = cache_iterate_devices,
.io_hints = cache_io_hints,
};
static int __init dm_cache_init(void)
{
int r;
migration_cache = KMEM_CACHE(dm_cache_migration, 0);
if (!migration_cache)
return -ENOMEM;
dm: fix various targets to dm_register_target after module __init resources created A NULL pointer is seen if two concurrent "vgchange -ay -K <vg name>" processes race to load the dm-thin-pool module: PID: 25992 TASK: ffff883cd7d23500 CPU: 4 COMMAND: "vgchange" #0 [ffff883cd743d600] machine_kexec at ffffffff81038fa9 0000001 [ffff883cd743d660] crash_kexec at ffffffff810c5992 0000002 [ffff883cd743d730] oops_end at ffffffff81515c90 0000003 [ffff883cd743d760] no_context at ffffffff81049f1b 0000004 [ffff883cd743d7b0] __bad_area_nosemaphore at ffffffff8104a1a5 0000005 [ffff883cd743d800] bad_area at ffffffff8104a2ce 0000006 [ffff883cd743d830] __do_page_fault at ffffffff8104aa6f 0000007 [ffff883cd743d950] do_page_fault at ffffffff81517bae 0000008 [ffff883cd743d980] page_fault at ffffffff81514f95 [exception RIP: kmem_cache_alloc+108] RIP: ffffffff8116ef3c RSP: ffff883cd743da38 RFLAGS: 00010046 RAX: 0000000000000004 RBX: ffffffff81121b90 RCX: ffff881bf1e78cc0 RDX: 0000000000000000 RSI: 00000000000000d0 RDI: 0000000000000000 RBP: ffff883cd743da68 R8: ffff881bf1a4eb00 R9: 0000000080042000 R10: 0000000000002000 R11: 0000000000000000 R12: 00000000000000d0 R13: 0000000000000000 R14: 00000000000000d0 R15: 0000000000000246 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 0000009 [ffff883cd743da70] mempool_alloc_slab at ffffffff81121ba5 0000010 [ffff883cd743da80] mempool_create_node at ffffffff81122083 0000011 [ffff883cd743dad0] mempool_create at ffffffff811220f4 0000012 [ffff883cd743dae0] pool_ctr at ffffffffa08de049 [dm_thin_pool] 0000013 [ffff883cd743dbd0] dm_table_add_target at ffffffffa0005f2f [dm_mod] 0000014 [ffff883cd743dc30] table_load at ffffffffa0008ba9 [dm_mod] 0000015 [ffff883cd743dc90] ctl_ioctl at ffffffffa0009dc4 [dm_mod] The race results in a NULL pointer because: Process A (vgchange -ay -K): a. send DM_LIST_VERSIONS_CMD ioctl; b. pool_target not registered; c. modprobe dm_thin_pool and wait until end. Process B (vgchange -ay -K): a. send DM_LIST_VERSIONS_CMD ioctl; b. pool_target registered; c. table_load->dm_table_add_target->pool_ctr; d. _new_mapping_cache is NULL and panic. Note: 1. process A and process B are two concurrent processes. 2. pool_target can be detected by process B but _new_mapping_cache initialization has not ended. To fix dm-thin-pool, and other targets (cache, multipath, and snapshot) with the same problem, simply dm_register_target() after all resources created during module init (as labelled with __init) are finished. Cc: stable@vger.kernel.org Signed-off-by: monty <monty_pavel@sina.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2017-11-25 01:43:50 +08:00
r = dm_register_target(&cache_target);
if (r) {
DMERR("cache target registration failed: %d", r);
kmem_cache_destroy(migration_cache);
dm: fix various targets to dm_register_target after module __init resources created A NULL pointer is seen if two concurrent "vgchange -ay -K <vg name>" processes race to load the dm-thin-pool module: PID: 25992 TASK: ffff883cd7d23500 CPU: 4 COMMAND: "vgchange" #0 [ffff883cd743d600] machine_kexec at ffffffff81038fa9 0000001 [ffff883cd743d660] crash_kexec at ffffffff810c5992 0000002 [ffff883cd743d730] oops_end at ffffffff81515c90 0000003 [ffff883cd743d760] no_context at ffffffff81049f1b 0000004 [ffff883cd743d7b0] __bad_area_nosemaphore at ffffffff8104a1a5 0000005 [ffff883cd743d800] bad_area at ffffffff8104a2ce 0000006 [ffff883cd743d830] __do_page_fault at ffffffff8104aa6f 0000007 [ffff883cd743d950] do_page_fault at ffffffff81517bae 0000008 [ffff883cd743d980] page_fault at ffffffff81514f95 [exception RIP: kmem_cache_alloc+108] RIP: ffffffff8116ef3c RSP: ffff883cd743da38 RFLAGS: 00010046 RAX: 0000000000000004 RBX: ffffffff81121b90 RCX: ffff881bf1e78cc0 RDX: 0000000000000000 RSI: 00000000000000d0 RDI: 0000000000000000 RBP: ffff883cd743da68 R8: ffff881bf1a4eb00 R9: 0000000080042000 R10: 0000000000002000 R11: 0000000000000000 R12: 00000000000000d0 R13: 0000000000000000 R14: 00000000000000d0 R15: 0000000000000246 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 0000009 [ffff883cd743da70] mempool_alloc_slab at ffffffff81121ba5 0000010 [ffff883cd743da80] mempool_create_node at ffffffff81122083 0000011 [ffff883cd743dad0] mempool_create at ffffffff811220f4 0000012 [ffff883cd743dae0] pool_ctr at ffffffffa08de049 [dm_thin_pool] 0000013 [ffff883cd743dbd0] dm_table_add_target at ffffffffa0005f2f [dm_mod] 0000014 [ffff883cd743dc30] table_load at ffffffffa0008ba9 [dm_mod] 0000015 [ffff883cd743dc90] ctl_ioctl at ffffffffa0009dc4 [dm_mod] The race results in a NULL pointer because: Process A (vgchange -ay -K): a. send DM_LIST_VERSIONS_CMD ioctl; b. pool_target not registered; c. modprobe dm_thin_pool and wait until end. Process B (vgchange -ay -K): a. send DM_LIST_VERSIONS_CMD ioctl; b. pool_target registered; c. table_load->dm_table_add_target->pool_ctr; d. _new_mapping_cache is NULL and panic. Note: 1. process A and process B are two concurrent processes. 2. pool_target can be detected by process B but _new_mapping_cache initialization has not ended. To fix dm-thin-pool, and other targets (cache, multipath, and snapshot) with the same problem, simply dm_register_target() after all resources created during module init (as labelled with __init) are finished. Cc: stable@vger.kernel.org Signed-off-by: monty <monty_pavel@sina.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2017-11-25 01:43:50 +08:00
return r;
}
return 0;
}
static void __exit dm_cache_exit(void)
{
dm_unregister_target(&cache_target);
kmem_cache_destroy(migration_cache);
}
module_init(dm_cache_init);
module_exit(dm_cache_exit);
MODULE_DESCRIPTION(DM_NAME " cache target");
MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
MODULE_LICENSE("GPL");