OpenCloudOS-Kernel/arch/ia64/kvm/vtlb.c

641 lines
14 KiB
C
Raw Normal View History

/*
* vtlb.c: guest virtual tlb handling module.
* Copyright (c) 2004, Intel Corporation.
* Yaozu Dong (Eddie Dong) <Eddie.dong@intel.com>
* Xuefei Xu (Anthony Xu) <anthony.xu@intel.com>
*
* Copyright (c) 2007, Intel Corporation.
* Xuefei Xu (Anthony Xu) <anthony.xu@intel.com>
* Xiantao Zhang <xiantao.zhang@intel.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
* Place - Suite 330, Boston, MA 02111-1307 USA.
*
*/
#include "vcpu.h"
#include <linux/rwsem.h>
#include <asm/tlb.h>
/*
* Check to see if the address rid:va is translated by the TLB
*/
static int __is_tr_translated(struct thash_data *trp, u64 rid, u64 va)
{
return ((trp->p) && (trp->rid == rid)
&& ((va-trp->vadr) < PSIZE(trp->ps)));
}
/*
* Only for GUEST TR format.
*/
static int __is_tr_overlap(struct thash_data *trp, u64 rid, u64 sva, u64 eva)
{
u64 sa1, ea1;
if (!trp->p || trp->rid != rid)
return 0;
sa1 = trp->vadr;
ea1 = sa1 + PSIZE(trp->ps) - 1;
eva -= 1;
if ((sva > ea1) || (sa1 > eva))
return 0;
else
return 1;
}
void machine_tlb_purge(u64 va, u64 ps)
{
ia64_ptcl(va, ps << 2);
}
void local_flush_tlb_all(void)
{
int i, j;
unsigned long flags, count0, count1;
unsigned long stride0, stride1, addr;
addr = current_vcpu->arch.ptce_base;
count0 = current_vcpu->arch.ptce_count[0];
count1 = current_vcpu->arch.ptce_count[1];
stride0 = current_vcpu->arch.ptce_stride[0];
stride1 = current_vcpu->arch.ptce_stride[1];
local_irq_save(flags);
for (i = 0; i < count0; ++i) {
for (j = 0; j < count1; ++j) {
ia64_ptce(addr);
addr += stride1;
}
addr += stride0;
}
local_irq_restore(flags);
ia64_srlz_i(); /* srlz.i implies srlz.d */
}
int vhpt_enabled(struct kvm_vcpu *vcpu, u64 vadr, enum vhpt_ref ref)
{
union ia64_rr vrr;
union ia64_pta vpta;
struct ia64_psr vpsr;
vpsr = *(struct ia64_psr *)&VCPU(vcpu, vpsr);
vrr.val = vcpu_get_rr(vcpu, vadr);
vpta.val = vcpu_get_pta(vcpu);
if (vrr.ve & vpta.ve) {
switch (ref) {
case DATA_REF:
case NA_REF:
return vpsr.dt;
case INST_REF:
return vpsr.dt && vpsr.it && vpsr.ic;
case RSE_REF:
return vpsr.dt && vpsr.rt;
}
}
return 0;
}
struct thash_data *vsa_thash(union ia64_pta vpta, u64 va, u64 vrr, u64 *tag)
{
u64 index, pfn, rid, pfn_bits;
pfn_bits = vpta.size - 5 - 8;
pfn = REGION_OFFSET(va) >> _REGION_PAGE_SIZE(vrr);
rid = _REGION_ID(vrr);
index = ((rid & 0xff) << pfn_bits)|(pfn & ((1UL << pfn_bits) - 1));
*tag = ((rid >> 8) & 0xffff) | ((pfn >> pfn_bits) << 16);
return (struct thash_data *)((vpta.base << PTA_BASE_SHIFT) +
(index << 5));
}
struct thash_data *__vtr_lookup(struct kvm_vcpu *vcpu, u64 va, int type)
{
struct thash_data *trp;
int i;
u64 rid;
rid = vcpu_get_rr(vcpu, va);
rid = rid & RR_RID_MASK;
if (type == D_TLB) {
if (vcpu_quick_region_check(vcpu->arch.dtr_regions, va)) {
for (trp = (struct thash_data *)&vcpu->arch.dtrs, i = 0;
i < NDTRS; i++, trp++) {
if (__is_tr_translated(trp, rid, va))
return trp;
}
}
} else {
if (vcpu_quick_region_check(vcpu->arch.itr_regions, va)) {
for (trp = (struct thash_data *)&vcpu->arch.itrs, i = 0;
i < NITRS; i++, trp++) {
if (__is_tr_translated(trp, rid, va))
return trp;
}
}
}
return NULL;
}
static void vhpt_insert(u64 pte, u64 itir, u64 ifa, u64 gpte)
{
union ia64_rr rr;
struct thash_data *head;
unsigned long ps, gpaddr;
ps = itir_ps(itir);
rr.val = ia64_get_rr(ifa);
gpaddr = ((gpte & _PAGE_PPN_MASK) >> ps << ps) |
(ifa & ((1UL << ps) - 1));
head = (struct thash_data *)ia64_thash(ifa);
head->etag = INVALID_TI_TAG;
ia64_mf();
head->page_flags = pte & ~PAGE_FLAGS_RV_MASK;
head->itir = rr.ps << 2;
head->etag = ia64_ttag(ifa);
head->gpaddr = gpaddr;
}
void mark_pages_dirty(struct kvm_vcpu *v, u64 pte, u64 ps)
{
u64 i, dirty_pages = 1;
u64 base_gfn = (pte&_PAGE_PPN_MASK) >> PAGE_SHIFT;
vmm_spinlock_t *lock = __kvm_va(v->arch.dirty_log_lock_pa);
void *dirty_bitmap = (void *)KVM_MEM_DIRTY_LOG_BASE;
dirty_pages <<= ps <= PAGE_SHIFT ? 0 : ps - PAGE_SHIFT;
vmm_spin_lock(lock);
for (i = 0; i < dirty_pages; i++) {
/* avoid RMW */
if (!test_bit(base_gfn + i, dirty_bitmap))
set_bit(base_gfn + i , dirty_bitmap);
}
vmm_spin_unlock(lock);
}
void thash_vhpt_insert(struct kvm_vcpu *v, u64 pte, u64 itir, u64 va, int type)
{
u64 phy_pte, psr;
union ia64_rr mrr;
mrr.val = ia64_get_rr(va);
phy_pte = translate_phy_pte(&pte, itir, va);
if (itir_ps(itir) >= mrr.ps) {
vhpt_insert(phy_pte, itir, va, pte);
} else {
phy_pte &= ~PAGE_FLAGS_RV_MASK;
psr = ia64_clear_ic();
ia64_itc(type, va, phy_pte, itir_ps(itir));
paravirt_dv_serialize_data();
ia64_set_psr(psr);
}
if (!(pte&VTLB_PTE_IO))
mark_pages_dirty(v, pte, itir_ps(itir));
}
/*
* vhpt lookup
*/
struct thash_data *vhpt_lookup(u64 va)
{
struct thash_data *head;
u64 tag;
head = (struct thash_data *)ia64_thash(va);
tag = ia64_ttag(va);
if (head->etag == tag)
return head;
return NULL;
}
u64 guest_vhpt_lookup(u64 iha, u64 *pte)
{
u64 ret;
struct thash_data *data;
data = __vtr_lookup(current_vcpu, iha, D_TLB);
if (data != NULL)
thash_vhpt_insert(current_vcpu, data->page_flags,
data->itir, iha, D_TLB);
asm volatile ("rsm psr.ic|psr.i;;"
"srlz.d;;"
"ld8.s r9=[%1];;"
"tnat.nz p6,p7=r9;;"
"(p6) mov %0=1;"
"(p6) mov r9=r0;"
"(p7) extr.u r9=r9,0,53;;"
"(p7) mov %0=r0;"
"(p7) st8 [%2]=r9;;"
"ssm psr.ic;;"
"srlz.d;;"
"ssm psr.i;;"
"srlz.d;;"
: "=r"(ret) : "r"(iha), "r"(pte):"memory");
return ret;
}
/*
* purge software guest tlb
*/
static void vtlb_purge(struct kvm_vcpu *v, u64 va, u64 ps)
{
struct thash_data *cur;
u64 start, curadr, size, psbits, tag, rr_ps, num;
union ia64_rr vrr;
struct thash_cb *hcb = &v->arch.vtlb;
vrr.val = vcpu_get_rr(v, va);
psbits = VMX(v, psbits[(va >> 61)]);
start = va & ~((1UL << ps) - 1);
while (psbits) {
curadr = start;
rr_ps = __ffs(psbits);
psbits &= ~(1UL << rr_ps);
num = 1UL << ((ps < rr_ps) ? 0 : (ps - rr_ps));
size = PSIZE(rr_ps);
vrr.ps = rr_ps;
while (num) {
cur = vsa_thash(hcb->pta, curadr, vrr.val, &tag);
if (cur->etag == tag && cur->ps == rr_ps)
cur->etag = INVALID_TI_TAG;
curadr += size;
num--;
}
}
}
/*
* purge VHPT and machine TLB
*/
static void vhpt_purge(struct kvm_vcpu *v, u64 va, u64 ps)
{
struct thash_data *cur;
u64 start, size, tag, num;
union ia64_rr rr;
start = va & ~((1UL << ps) - 1);
rr.val = ia64_get_rr(va);
size = PSIZE(rr.ps);
num = 1UL << ((ps < rr.ps) ? 0 : (ps - rr.ps));
while (num) {
cur = (struct thash_data *)ia64_thash(start);
tag = ia64_ttag(start);
if (cur->etag == tag)
cur->etag = INVALID_TI_TAG;
start += size;
num--;
}
machine_tlb_purge(va, ps);
}
/*
* Insert an entry into hash TLB or VHPT.
* NOTES:
* 1: When inserting VHPT to thash, "va" is a must covered
* address by the inserted machine VHPT entry.
* 2: The format of entry is always in TLB.
* 3: The caller need to make sure the new entry will not overlap
* with any existed entry.
*/
void vtlb_insert(struct kvm_vcpu *v, u64 pte, u64 itir, u64 va)
{
struct thash_data *head;
union ia64_rr vrr;
u64 tag;
struct thash_cb *hcb = &v->arch.vtlb;
vrr.val = vcpu_get_rr(v, va);
vrr.ps = itir_ps(itir);
VMX(v, psbits[va >> 61]) |= (1UL << vrr.ps);
head = vsa_thash(hcb->pta, va, vrr.val, &tag);
head->page_flags = pte;
head->itir = itir;
head->etag = tag;
}
int vtr_find_overlap(struct kvm_vcpu *vcpu, u64 va, u64 ps, int type)
{
struct thash_data *trp;
int i;
u64 end, rid;
rid = vcpu_get_rr(vcpu, va);
rid = rid & RR_RID_MASK;
end = va + PSIZE(ps);
if (type == D_TLB) {
if (vcpu_quick_region_check(vcpu->arch.dtr_regions, va)) {
for (trp = (struct thash_data *)&vcpu->arch.dtrs, i = 0;
i < NDTRS; i++, trp++) {
if (__is_tr_overlap(trp, rid, va, end))
return i;
}
}
} else {
if (vcpu_quick_region_check(vcpu->arch.itr_regions, va)) {
for (trp = (struct thash_data *)&vcpu->arch.itrs, i = 0;
i < NITRS; i++, trp++) {
if (__is_tr_overlap(trp, rid, va, end))
return i;
}
}
}
return -1;
}
/*
* Purge entries in VTLB and VHPT
*/
void thash_purge_entries(struct kvm_vcpu *v, u64 va, u64 ps)
{
if (vcpu_quick_region_check(v->arch.tc_regions, va))
vtlb_purge(v, va, ps);
vhpt_purge(v, va, ps);
}
void thash_purge_entries_remote(struct kvm_vcpu *v, u64 va, u64 ps)
{
u64 old_va = va;
va = REGION_OFFSET(va);
if (vcpu_quick_region_check(v->arch.tc_regions, old_va))
vtlb_purge(v, va, ps);
vhpt_purge(v, va, ps);
}
u64 translate_phy_pte(u64 *pte, u64 itir, u64 va)
{
u64 ps, ps_mask, paddr, maddr, io_mask;
union pte_flags phy_pte;
ps = itir_ps(itir);
ps_mask = ~((1UL << ps) - 1);
phy_pte.val = *pte;
paddr = *pte;
paddr = ((paddr & _PAGE_PPN_MASK) & ps_mask) | (va & ~ps_mask);
maddr = kvm_get_mpt_entry(paddr >> PAGE_SHIFT);
io_mask = maddr & GPFN_IO_MASK;
if (io_mask && (io_mask != GPFN_PHYS_MMIO)) {
*pte |= VTLB_PTE_IO;
return -1;
}
maddr = ((maddr & _PAGE_PPN_MASK) & PAGE_MASK) |
(paddr & ~PAGE_MASK);
phy_pte.ppn = maddr >> ARCH_PAGE_SHIFT;
return phy_pte.val;
}
/*
* Purge overlap TCs and then insert the new entry to emulate itc ops.
* Notes: Only TC entry can purge and insert.
*/
void thash_purge_and_insert(struct kvm_vcpu *v, u64 pte, u64 itir,
u64 ifa, int type)
{
u64 ps;
u64 phy_pte, io_mask, index;
union ia64_rr vrr, mrr;
ps = itir_ps(itir);
vrr.val = vcpu_get_rr(v, ifa);
mrr.val = ia64_get_rr(ifa);
index = (pte & _PAGE_PPN_MASK) >> PAGE_SHIFT;
io_mask = kvm_get_mpt_entry(index) & GPFN_IO_MASK;
phy_pte = translate_phy_pte(&pte, itir, ifa);
/* Ensure WB attribute if pte is related to a normal mem page,
* which is required by vga acceleration since qemu maps shared
* vram buffer with WB.
*/
if (!(pte & VTLB_PTE_IO) && ((pte & _PAGE_MA_MASK) != _PAGE_MA_NAT) &&
io_mask != GPFN_PHYS_MMIO) {
pte &= ~_PAGE_MA_MASK;
phy_pte &= ~_PAGE_MA_MASK;
}
vtlb_purge(v, ifa, ps);
vhpt_purge(v, ifa, ps);
if ((ps != mrr.ps) || (pte & VTLB_PTE_IO)) {
vtlb_insert(v, pte, itir, ifa);
vcpu_quick_region_set(VMX(v, tc_regions), ifa);
}
if (pte & VTLB_PTE_IO)
return;
if (ps >= mrr.ps)
vhpt_insert(phy_pte, itir, ifa, pte);
else {
u64 psr;
phy_pte &= ~PAGE_FLAGS_RV_MASK;
psr = ia64_clear_ic();
ia64_itc(type, ifa, phy_pte, ps);
paravirt_dv_serialize_data();
ia64_set_psr(psr);
}
if (!(pte&VTLB_PTE_IO))
mark_pages_dirty(v, pte, ps);
}
/*
* Purge all TCs or VHPT entries including those in Hash table.
*
*/
void thash_purge_all(struct kvm_vcpu *v)
{
int i;
struct thash_data *head;
struct thash_cb *vtlb, *vhpt;
vtlb = &v->arch.vtlb;
vhpt = &v->arch.vhpt;
for (i = 0; i < 8; i++)
VMX(v, psbits[i]) = 0;
head = vtlb->hash;
for (i = 0; i < vtlb->num; i++) {
head->page_flags = 0;
head->etag = INVALID_TI_TAG;
head->itir = 0;
head->next = 0;
head++;
};
head = vhpt->hash;
for (i = 0; i < vhpt->num; i++) {
head->page_flags = 0;
head->etag = INVALID_TI_TAG;
head->itir = 0;
head->next = 0;
head++;
};
local_flush_tlb_all();
}
/*
* Lookup the hash table and its collision chain to find an entry
* covering this address rid:va or the entry.
*
* INPUT:
* in: TLB format for both VHPT & TLB.
*/
struct thash_data *vtlb_lookup(struct kvm_vcpu *v, u64 va, int is_data)
{
struct thash_data *cch;
u64 psbits, ps, tag;
union ia64_rr vrr;
struct thash_cb *hcb = &v->arch.vtlb;
cch = __vtr_lookup(v, va, is_data);
if (cch)
return cch;
if (vcpu_quick_region_check(v->arch.tc_regions, va) == 0)
return NULL;
psbits = VMX(v, psbits[(va >> 61)]);
vrr.val = vcpu_get_rr(v, va);
while (psbits) {
ps = __ffs(psbits);
psbits &= ~(1UL << ps);
vrr.ps = ps;
cch = vsa_thash(hcb->pta, va, vrr.val, &tag);
if (cch->etag == tag && cch->ps == ps)
return cch;
}
return NULL;
}
/*
* Initialize internal control data before service.
*/
void thash_init(struct thash_cb *hcb, u64 sz)
{
int i;
struct thash_data *head;
hcb->pta.val = (unsigned long)hcb->hash;
hcb->pta.vf = 1;
hcb->pta.ve = 1;
hcb->pta.size = sz;
head = hcb->hash;
for (i = 0; i < hcb->num; i++) {
head->page_flags = 0;
head->itir = 0;
head->etag = INVALID_TI_TAG;
head->next = 0;
head++;
}
}
u64 kvm_get_mpt_entry(u64 gpfn)
{
u64 *base = (u64 *) KVM_P2M_BASE;
if (gpfn >= (KVM_P2M_SIZE >> 3))
panic_vm(current_vcpu, "Invalid gpfn =%lx\n", gpfn);
return *(base + gpfn);
}
u64 kvm_lookup_mpa(u64 gpfn)
{
u64 maddr;
maddr = kvm_get_mpt_entry(gpfn);
return maddr&_PAGE_PPN_MASK;
}
u64 kvm_gpa_to_mpa(u64 gpa)
{
u64 pte = kvm_lookup_mpa(gpa >> PAGE_SHIFT);
return (pte >> PAGE_SHIFT << PAGE_SHIFT) | (gpa & ~PAGE_MASK);
}
/*
* Fetch guest bundle code.
* INPUT:
* gip: guest ip
* pbundle: used to return fetched bundle.
*/
int fetch_code(struct kvm_vcpu *vcpu, u64 gip, IA64_BUNDLE *pbundle)
{
u64 gpip = 0; /* guest physical IP*/
u64 *vpa;
struct thash_data *tlb;
u64 maddr;
if (!(VCPU(vcpu, vpsr) & IA64_PSR_IT)) {
/* I-side physical mode */
gpip = gip;
} else {
tlb = vtlb_lookup(vcpu, gip, I_TLB);
if (tlb)
gpip = (tlb->ppn >> (tlb->ps - 12) << tlb->ps) |
(gip & (PSIZE(tlb->ps) - 1));
}
if (gpip) {
maddr = kvm_gpa_to_mpa(gpip);
} else {
tlb = vhpt_lookup(gip);
if (tlb == NULL) {
ia64_ptcl(gip, ARCH_PAGE_SHIFT << 2);
return IA64_FAULT;
}
maddr = (tlb->ppn >> (tlb->ps - 12) << tlb->ps)
| (gip & (PSIZE(tlb->ps) - 1));
}
vpa = (u64 *)__kvm_va(maddr);
pbundle->i64[0] = *vpa++;
pbundle->i64[1] = *vpa;
return IA64_NO_FAULT;
}
void kvm_init_vhpt(struct kvm_vcpu *v)
{
v->arch.vhpt.num = VHPT_NUM_ENTRIES;
thash_init(&v->arch.vhpt, VHPT_SHIFT);
ia64_set_pta(v->arch.vhpt.pta.val);
/*Enable VHPT here?*/
}
void kvm_init_vtlb(struct kvm_vcpu *v)
{
v->arch.vtlb.num = VTLB_NUM_ENTRIES;
thash_init(&v->arch.vtlb, VTLB_SHIFT);
}