OpenCloudOS-Kernel/include/uapi/linux/tcp.h

353 lines
11 KiB
C
Raw Normal View History

License cleanup: add SPDX license identifier to uapi header files with a license Many user space API headers have licensing information, which is either incomplete, badly formatted or just a shorthand for referring to the license under which the file is supposed to be. This makes it hard for compliance tools to determine the correct license. Update these files with an SPDX license identifier. The identifier was chosen based on the license information in the file. GPL/LGPL licensed headers get the matching GPL/LGPL SPDX license identifier with the added 'WITH Linux-syscall-note' exception, which is the officially assigned exception identifier for the kernel syscall exception: NOTE! This copyright does *not* cover user programs that use kernel services by normal system calls - this is merely considered normal use of the kernel, and does *not* fall under the heading of "derived work". This exception makes it possible to include GPL headers into non GPL code, without confusing license compliance tools. Headers which have either explicit dual licensing or are just licensed under a non GPL license are updated with the corresponding SPDX identifier and the GPLv2 with syscall exception identifier. The format is: ((GPL-2.0 WITH Linux-syscall-note) OR SPDX-ID-OF-OTHER-LICENSE) SPDX license identifiers are a legally binding shorthand, which can be used instead of the full boiler plate text. The update does not remove existing license information as this has to be done on a case by case basis and the copyright holders might have to be consulted. This will happen in a separate step. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. See the previous patch in this series for the methodology of how this patch was researched. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:09:13 +08:00
/* SPDX-License-Identifier: GPL-2.0+ WITH Linux-syscall-note */
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Definitions for the TCP protocol.
*
* Version: @(#)tcp.h 1.0.2 04/28/93
*
* Author: Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _UAPI_LINUX_TCP_H
#define _UAPI_LINUX_TCP_H
#include <linux/types.h>
#include <asm/byteorder.h>
#include <linux/socket.h>
struct tcphdr {
__be16 source;
__be16 dest;
__be32 seq;
__be32 ack_seq;
#if defined(__LITTLE_ENDIAN_BITFIELD)
__u16 res1:4,
doff:4,
fin:1,
syn:1,
rst:1,
psh:1,
ack:1,
urg:1,
ece:1,
cwr:1;
#elif defined(__BIG_ENDIAN_BITFIELD)
__u16 doff:4,
res1:4,
cwr:1,
ece:1,
urg:1,
ack:1,
psh:1,
rst:1,
syn:1,
fin:1;
#else
#error "Adjust your <asm/byteorder.h> defines"
#endif
__be16 window;
__sum16 check;
__be16 urg_ptr;
};
/*
* The union cast uses a gcc extension to avoid aliasing problems
* (union is compatible to any of its members)
* This means this part of the code is -fstrict-aliasing safe now.
*/
union tcp_word_hdr {
struct tcphdr hdr;
__be32 words[5];
};
#define tcp_flag_word(tp) ( ((union tcp_word_hdr *)(tp))->words [3])
enum {
TCP_FLAG_CWR = __constant_cpu_to_be32(0x00800000),
TCP_FLAG_ECE = __constant_cpu_to_be32(0x00400000),
TCP_FLAG_URG = __constant_cpu_to_be32(0x00200000),
TCP_FLAG_ACK = __constant_cpu_to_be32(0x00100000),
TCP_FLAG_PSH = __constant_cpu_to_be32(0x00080000),
TCP_FLAG_RST = __constant_cpu_to_be32(0x00040000),
TCP_FLAG_SYN = __constant_cpu_to_be32(0x00020000),
TCP_FLAG_FIN = __constant_cpu_to_be32(0x00010000),
TCP_RESERVED_BITS = __constant_cpu_to_be32(0x0F000000),
TCP_DATA_OFFSET = __constant_cpu_to_be32(0xF0000000)
};
/*
* TCP general constants
*/
#define TCP_MSS_DEFAULT 536U /* IPv4 (RFC1122, RFC2581) */
#define TCP_MSS_DESIRED 1220U /* IPv6 (tunneled), EDNS0 (RFC3226) */
/* TCP socket options */
#define TCP_NODELAY 1 /* Turn off Nagle's algorithm. */
#define TCP_MAXSEG 2 /* Limit MSS */
#define TCP_CORK 3 /* Never send partially complete segments */
#define TCP_KEEPIDLE 4 /* Start keeplives after this period */
#define TCP_KEEPINTVL 5 /* Interval between keepalives */
#define TCP_KEEPCNT 6 /* Number of keepalives before death */
#define TCP_SYNCNT 7 /* Number of SYN retransmits */
#define TCP_LINGER2 8 /* Life time of orphaned FIN-WAIT-2 state */
#define TCP_DEFER_ACCEPT 9 /* Wake up listener only when data arrive */
#define TCP_WINDOW_CLAMP 10 /* Bound advertised window */
#define TCP_INFO 11 /* Information about this connection. */
#define TCP_QUICKACK 12 /* Block/reenable quick acks */
#define TCP_CONGESTION 13 /* Congestion control algorithm */
#define TCP_MD5SIG 14 /* TCP MD5 Signature (RFC2385) */
#define TCP_THIN_LINEAR_TIMEOUTS 16 /* Use linear timeouts for thin streams*/
#define TCP_THIN_DUPACK 17 /* Fast retrans. after 1 dupack */
#define TCP_USER_TIMEOUT 18 /* How long for loss retry before timeout */
#define TCP_REPAIR 19 /* TCP sock is under repair right now */
#define TCP_REPAIR_QUEUE 20
#define TCP_QUEUE_SEQ 21
#define TCP_REPAIR_OPTIONS 22
#define TCP_FASTOPEN 23 /* Enable FastOpen on listeners */
#define TCP_TIMESTAMP 24
tcp: TCP_NOTSENT_LOWAT socket option Idea of this patch is to add optional limitation of number of unsent bytes in TCP sockets, to reduce usage of kernel memory. TCP receiver might announce a big window, and TCP sender autotuning might allow a large amount of bytes in write queue, but this has little performance impact if a large part of this buffering is wasted : Write queue needs to be large only to deal with large BDP, not necessarily to cope with scheduling delays (incoming ACKS make room for the application to queue more bytes) For most workloads, using a value of 128 KB or less is OK to give applications enough time to react to POLLOUT events in time (or being awaken in a blocking sendmsg()) This patch adds two ways to set the limit : 1) Per socket option TCP_NOTSENT_LOWAT 2) A sysctl (/proc/sys/net/ipv4/tcp_notsent_lowat) for sockets not using TCP_NOTSENT_LOWAT socket option (or setting a zero value) Default value being UINT_MAX (0xFFFFFFFF), meaning this has no effect. This changes poll()/select()/epoll() to report POLLOUT only if number of unsent bytes is below tp->nosent_lowat Note this might increase number of sendmsg()/sendfile() calls when using non blocking sockets, and increase number of context switches for blocking sockets. Note this is not related to SO_SNDLOWAT (as SO_SNDLOWAT is defined as : Specify the minimum number of bytes in the buffer until the socket layer will pass the data to the protocol) Tested: netperf sessions, and watching /proc/net/protocols "memory" column for TCP With 200 concurrent netperf -t TCP_STREAM sessions, amount of kernel memory used by TCP buffers shrinks by ~55 % (20567 pages instead of 45458) lpq83:~# echo -1 >/proc/sys/net/ipv4/tcp_notsent_lowat lpq83:~# (super_netperf 200 -t TCP_STREAM -H remote -l 90 &); sleep 60 ; grep TCP /proc/net/protocols TCPv6 1880 2 45458 no 208 yes ipv6 y y y y y y y y y y y y y n y y y y y TCP 1696 508 45458 no 208 yes kernel y y y y y y y y y y y y y n y y y y y lpq83:~# echo 131072 >/proc/sys/net/ipv4/tcp_notsent_lowat lpq83:~# (super_netperf 200 -t TCP_STREAM -H remote -l 90 &); sleep 60 ; grep TCP /proc/net/protocols TCPv6 1880 2 20567 no 208 yes ipv6 y y y y y y y y y y y y y n y y y y y TCP 1696 508 20567 no 208 yes kernel y y y y y y y y y y y y y n y y y y y Using 128KB has no bad effect on the throughput or cpu usage of a single flow, although there is an increase of context switches. A bonus is that we hold socket lock for a shorter amount of time and should improve latencies of ACK processing. lpq83:~# echo -1 >/proc/sys/net/ipv4/tcp_notsent_lowat lpq83:~# perf stat -e context-switches ./netperf -H 7.7.7.84 -t omni -l 20 -c -i10,3 OMNI Send TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : +/-2.500% @ 99% conf. Local Remote Local Elapsed Throughput Throughput Local Local Remote Remote Local Remote Service Send Socket Recv Socket Send Time Units CPU CPU CPU CPU Service Service Demand Size Size Size (sec) Util Util Util Util Demand Demand Units Final Final % Method % Method 1651584 6291456 16384 20.00 17447.90 10^6bits/s 3.13 S -1.00 U 0.353 -1.000 usec/KB Performance counter stats for './netperf -H 7.7.7.84 -t omni -l 20 -c -i10,3': 412,514 context-switches 200.034645535 seconds time elapsed lpq83:~# echo 131072 >/proc/sys/net/ipv4/tcp_notsent_lowat lpq83:~# perf stat -e context-switches ./netperf -H 7.7.7.84 -t omni -l 20 -c -i10,3 OMNI Send TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : +/-2.500% @ 99% conf. Local Remote Local Elapsed Throughput Throughput Local Local Remote Remote Local Remote Service Send Socket Recv Socket Send Time Units CPU CPU CPU CPU Service Service Demand Size Size Size (sec) Util Util Util Util Demand Demand Units Final Final % Method % Method 1593240 6291456 16384 20.00 17321.16 10^6bits/s 3.35 S -1.00 U 0.381 -1.000 usec/KB Performance counter stats for './netperf -H 7.7.7.84 -t omni -l 20 -c -i10,3': 2,675,818 context-switches 200.029651391 seconds time elapsed Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-By: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-07-23 11:27:07 +08:00
#define TCP_NOTSENT_LOWAT 25 /* limit number of unsent bytes in write queue */
#define TCP_CC_INFO 26 /* Get Congestion Control (optional) info */
#define TCP_SAVE_SYN 27 /* Record SYN headers for new connections */
#define TCP_SAVED_SYN 28 /* Get SYN headers recorded for connection */
#define TCP_REPAIR_WINDOW 29 /* Get/set window parameters */
net/tcp-fastopen: Add new API support This patch adds a new socket option, TCP_FASTOPEN_CONNECT, as an alternative way to perform Fast Open on the active side (client). Prior to this patch, a client needs to replace the connect() call with sendto(MSG_FASTOPEN). This can be cumbersome for applications who want to use Fast Open: these socket operations are often done in lower layer libraries used by many other applications. Changing these libraries and/or the socket call sequences are not trivial. A more convenient approach is to perform Fast Open by simply enabling a socket option when the socket is created w/o changing other socket calls sequence: s = socket() create a new socket setsockopt(s, IPPROTO_TCP, TCP_FASTOPEN_CONNECT …); newly introduced sockopt If set, new functionality described below will be used. Return ENOTSUPP if TFO is not supported or not enabled in the kernel. connect() With cookie present, return 0 immediately. With no cookie, initiate 3WHS with TFO cookie-request option and return -1 with errno = EINPROGRESS. write()/sendmsg() With cookie present, send out SYN with data and return the number of bytes buffered. With no cookie, and 3WHS not yet completed, return -1 with errno = EINPROGRESS. No MSG_FASTOPEN flag is needed. read() Return -1 with errno = EWOULDBLOCK/EAGAIN if connect() is called but write() is not called yet. Return -1 with errno = EWOULDBLOCK/EAGAIN if connection is established but no msg is received yet. Return number of bytes read if socket is established and there is msg received. The new API simplifies life for applications that always perform a write() immediately after a successful connect(). Such applications can now take advantage of Fast Open by merely making one new setsockopt() call at the time of creating the socket. Nothing else about the application's socket call sequence needs to change. Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-24 02:59:22 +08:00
#define TCP_FASTOPEN_CONNECT 30 /* Attempt FastOpen with connect */
#define TCP_ULP 31 /* Attach a ULP to a TCP connection */
#define TCP_MD5SIG_EXT 32 /* TCP MD5 Signature with extensions */
#define TCP_FASTOPEN_KEY 33 /* Set the key for Fast Open (cookie) */
#define TCP_FASTOPEN_NO_COOKIE 34 /* Enable TFO without a TFO cookie */
tcp: add TCP_ZEROCOPY_RECEIVE support for zerocopy receive When adding tcp mmap() implementation, I forgot that socket lock had to be taken before current->mm->mmap_sem. syzbot eventually caught the bug. Since we can not lock the socket in tcp mmap() handler we have to split the operation in two phases. 1) mmap() on a tcp socket simply reserves VMA space, and nothing else. This operation does not involve any TCP locking. 2) getsockopt(fd, IPPROTO_TCP, TCP_ZEROCOPY_RECEIVE, ...) implements the transfert of pages from skbs to one VMA. This operation only uses down_read(&current->mm->mmap_sem) after holding TCP lock, thus solving the lockdep issue. This new implementation was suggested by Andy Lutomirski with great details. Benefits are : - Better scalability, in case multiple threads reuse VMAS (without mmap()/munmap() calls) since mmap_sem wont be write locked. - Better error recovery. The previous mmap() model had to provide the expected size of the mapping. If for some reason one part could not be mapped (partial MSS), the whole operation had to be aborted. With the tcp_zerocopy_receive struct, kernel can report how many bytes were successfuly mapped, and how many bytes should be read to skip the problematic sequence. - No more memory allocation to hold an array of page pointers. 16 MB mappings needed 32 KB for this array, potentially using vmalloc() :/ - skbs are freed while mmap_sem has been released Following patch makes the change in tcp_mmap tool to demonstrate one possible use of mmap() and setsockopt(... TCP_ZEROCOPY_RECEIVE ...) Note that memcg might require additional changes. Fixes: 93ab6cc69162 ("tcp: implement mmap() for zero copy receive") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Suggested-by: Andy Lutomirski <luto@kernel.org> Cc: linux-mm@kvack.org Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-27 23:58:08 +08:00
#define TCP_ZEROCOPY_RECEIVE 35
tcp: send in-queue bytes in cmsg upon read Applications with many concurrent connections, high variance in receive queue length and tight memory bounds cannot allocate worst-case buffer size to drain sockets. Knowing the size of receive queue length, applications can optimize how they allocate buffers to read from the socket. The number of bytes pending on the socket is directly available through ioctl(FIONREAD/SIOCINQ) and can be approximated using getsockopt(MEMINFO) (rmem_alloc includes skb overheads in addition to application data). But, both of these options add an extra syscall per recvmsg. Moreover, ioctl(FIONREAD/SIOCINQ) takes the socket lock. Add the TCP_INQ socket option to TCP. When this socket option is set, recvmsg() relays the number of bytes available on the socket for reading to the application via the TCP_CM_INQ control message. Calculate the number of bytes after releasing the socket lock to include the processed backlog, if any. To avoid an extra branch in the hot path of recvmsg() for this new control message, move all cmsg processing inside an existing branch for processing receive timestamps. Since the socket lock is not held when calculating the size of receive queue, TCP_INQ is a hint. For example, it can overestimate the queue size by one byte, if FIN is received. With this method, applications can start reading from the socket using a small buffer, and then use larger buffers based on the remaining data when needed. V3 change-log: As suggested by David Miller, added loads with barrier to check whether we have multiple threads calling recvmsg in parallel. When that happens we lock the socket to calculate inq. V4 change-log: Removed inline from a static function. Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Willem de Bruijn <willemb@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Reviewed-by: Neal Cardwell <ncardwell@google.com> Suggested-by: David Miller <davem@davemloft.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-02 03:39:15 +08:00
#define TCP_INQ 36 /* Notify bytes available to read as a cmsg on read */
#define TCP_CM_INQ TCP_INQ
tcp: add optional per socket transmit delay Adding delays to TCP flows is crucial for studying behavior of TCP stacks, including congestion control modules. Linux offers netem module, but it has unpractical constraints : - Need root access to change qdisc - Hard to setup on egress if combined with non trivial qdisc like FQ - Single delay for all flows. EDT (Earliest Departure Time) adoption in TCP stack allows us to enable a per socket delay at a very small cost. Networking tools can now establish thousands of flows, each of them with a different delay, simulating real world conditions. This requires FQ packet scheduler or a EDT-enabled NIC. This patchs adds TCP_TX_DELAY socket option, to set a delay in usec units. unsigned int tx_delay = 10000; /* 10 msec */ setsockopt(fd, SOL_TCP, TCP_TX_DELAY, &tx_delay, sizeof(tx_delay)); Note that FQ packet scheduler limits might need some tweaking : man tc-fq PARAMETERS limit Hard limit on the real queue size. When this limit is reached, new packets are dropped. If the value is lowered, packets are dropped so that the new limit is met. Default is 10000 packets. flow_limit Hard limit on the maximum number of packets queued per flow. Default value is 100. Use of TCP_TX_DELAY option will increase number of skbs in FQ qdisc, so packets would be dropped if any of the previous limit is hit. Use of a jump label makes this support runtime-free, for hosts never using the option. Also note that TSQ (TCP Small Queues) limits are slightly changed with this patch : we need to account that skbs artificially delayed wont stop us providind more skbs to feed the pipe (netem uses skb_orphan_partial() for this purpose, but FQ can not use this trick) Because of that, using big delays might very well trigger old bugs in TSO auto defer logic and/or sndbuf limited detection. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-13 02:57:25 +08:00
#define TCP_TX_DELAY 37 /* delay outgoing packets by XX usec */
#define TCP_REPAIR_ON 1
#define TCP_REPAIR_OFF 0
#define TCP_REPAIR_OFF_NO_WP -1 /* Turn off without window probes */
struct tcp_repair_opt {
__u32 opt_code;
__u32 opt_val;
};
struct tcp_repair_window {
__u32 snd_wl1;
__u32 snd_wnd;
__u32 max_window;
__u32 rcv_wnd;
__u32 rcv_wup;
};
enum {
TCP_NO_QUEUE,
TCP_RECV_QUEUE,
TCP_SEND_QUEUE,
TCP_QUEUES_NR,
};
tcp: add TCP_INFO status for failed client TFO The TCPI_OPT_SYN_DATA bit as part of tcpi_options currently reports whether or not data-in-SYN was ack'd on both the client and server side. We'd like to gather more information on the client-side in the failure case in order to indicate the reason for the failure. This can be useful for not only debugging TFO, but also for creating TFO socket policies. For example, if a middle box removes the TFO option or drops a data-in-SYN, we can can detect this case, and turn off TFO for these connections saving the extra retransmits. The newly added tcpi_fastopen_client_fail status is 2 bits and has the following 4 states: 1) TFO_STATUS_UNSPEC Catch-all state which includes when TFO is disabled via black hole detection, which is indicated via LINUX_MIB_TCPFASTOPENBLACKHOLE. 2) TFO_COOKIE_UNAVAILABLE If TFO_CLIENT_NO_COOKIE mode is off, this state indicates that no cookie is available in the cache. 3) TFO_DATA_NOT_ACKED Data was sent with SYN, we received a SYN/ACK but it did not cover the data portion. Cookie is not accepted by server because the cookie may be invalid or the server may be overloaded. 4) TFO_SYN_RETRANSMITTED Data was sent with SYN, we received a SYN/ACK which did not cover the data after at least 1 additional SYN was sent (without data). It may be the case that a middle-box is dropping data-in-SYN packets. Thus, it would be more efficient to not use TFO on this connection to avoid extra retransmits during connection establishment. These new fields do not cover all the cases where TFO may fail, but other failures, such as SYN/ACK + data being dropped, will result in the connection not becoming established. And a connection blackhole after session establishment shows up as a stalled connection. Signed-off-by: Jason Baron <jbaron@akamai.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Christoph Paasch <cpaasch@apple.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-23 23:09:26 +08:00
/* why fastopen failed from client perspective */
enum tcp_fastopen_client_fail {
TFO_STATUS_UNSPEC, /* catch-all */
TFO_COOKIE_UNAVAILABLE, /* if not in TFO_CLIENT_NO_COOKIE mode */
TFO_DATA_NOT_ACKED, /* SYN-ACK did not ack SYN data */
TFO_SYN_RETRANSMITTED, /* SYN-ACK did not ack SYN data after timeout */
};
/* for TCP_INFO socket option */
#define TCPI_OPT_TIMESTAMPS 1
#define TCPI_OPT_SACK 2
#define TCPI_OPT_WSCALE 4
#define TCPI_OPT_ECN 8 /* ECN was negociated at TCP session init */
#define TCPI_OPT_ECN_SEEN 16 /* we received at least one packet with ECT */
#define TCPI_OPT_SYN_DATA 32 /* SYN-ACK acked data in SYN sent or rcvd */
/*
* Sender's congestion state indicating normal or abnormal situations
* in the last round of packets sent. The state is driven by the ACK
* information and timer events.
*/
enum tcp_ca_state {
/*
* Nothing bad has been observed recently.
* No apparent reordering, packet loss, or ECN marks.
*/
TCP_CA_Open = 0,
#define TCPF_CA_Open (1<<TCP_CA_Open)
/*
* The sender enters disordered state when it has received DUPACKs or
* SACKs in the last round of packets sent. This could be due to packet
* loss or reordering but needs further information to confirm packets
* have been lost.
*/
TCP_CA_Disorder = 1,
#define TCPF_CA_Disorder (1<<TCP_CA_Disorder)
/*
* The sender enters Congestion Window Reduction (CWR) state when it
* has received ACKs with ECN-ECE marks, or has experienced congestion
* or packet discard on the sender host (e.g. qdisc).
*/
TCP_CA_CWR = 2,
#define TCPF_CA_CWR (1<<TCP_CA_CWR)
/*
* The sender is in fast recovery and retransmitting lost packets,
* typically triggered by ACK events.
*/
TCP_CA_Recovery = 3,
#define TCPF_CA_Recovery (1<<TCP_CA_Recovery)
/*
* The sender is in loss recovery triggered by retransmission timeout.
*/
TCP_CA_Loss = 4
#define TCPF_CA_Loss (1<<TCP_CA_Loss)
};
struct tcp_info {
__u8 tcpi_state;
__u8 tcpi_ca_state;
__u8 tcpi_retransmits;
__u8 tcpi_probes;
__u8 tcpi_backoff;
__u8 tcpi_options;
__u8 tcpi_snd_wscale : 4, tcpi_rcv_wscale : 4;
tcp: add TCP_INFO status for failed client TFO The TCPI_OPT_SYN_DATA bit as part of tcpi_options currently reports whether or not data-in-SYN was ack'd on both the client and server side. We'd like to gather more information on the client-side in the failure case in order to indicate the reason for the failure. This can be useful for not only debugging TFO, but also for creating TFO socket policies. For example, if a middle box removes the TFO option or drops a data-in-SYN, we can can detect this case, and turn off TFO for these connections saving the extra retransmits. The newly added tcpi_fastopen_client_fail status is 2 bits and has the following 4 states: 1) TFO_STATUS_UNSPEC Catch-all state which includes when TFO is disabled via black hole detection, which is indicated via LINUX_MIB_TCPFASTOPENBLACKHOLE. 2) TFO_COOKIE_UNAVAILABLE If TFO_CLIENT_NO_COOKIE mode is off, this state indicates that no cookie is available in the cache. 3) TFO_DATA_NOT_ACKED Data was sent with SYN, we received a SYN/ACK but it did not cover the data portion. Cookie is not accepted by server because the cookie may be invalid or the server may be overloaded. 4) TFO_SYN_RETRANSMITTED Data was sent with SYN, we received a SYN/ACK which did not cover the data after at least 1 additional SYN was sent (without data). It may be the case that a middle-box is dropping data-in-SYN packets. Thus, it would be more efficient to not use TFO on this connection to avoid extra retransmits during connection establishment. These new fields do not cover all the cases where TFO may fail, but other failures, such as SYN/ACK + data being dropped, will result in the connection not becoming established. And a connection blackhole after session establishment shows up as a stalled connection. Signed-off-by: Jason Baron <jbaron@akamai.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Christoph Paasch <cpaasch@apple.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-23 23:09:26 +08:00
__u8 tcpi_delivery_rate_app_limited:1, tcpi_fastopen_client_fail:2;
__u32 tcpi_rto;
__u32 tcpi_ato;
__u32 tcpi_snd_mss;
__u32 tcpi_rcv_mss;
__u32 tcpi_unacked;
__u32 tcpi_sacked;
__u32 tcpi_lost;
__u32 tcpi_retrans;
__u32 tcpi_fackets;
/* Times. */
__u32 tcpi_last_data_sent;
__u32 tcpi_last_ack_sent; /* Not remembered, sorry. */
__u32 tcpi_last_data_recv;
__u32 tcpi_last_ack_recv;
/* Metrics. */
__u32 tcpi_pmtu;
__u32 tcpi_rcv_ssthresh;
__u32 tcpi_rtt;
__u32 tcpi_rttvar;
__u32 tcpi_snd_ssthresh;
__u32 tcpi_snd_cwnd;
__u32 tcpi_advmss;
__u32 tcpi_reordering;
__u32 tcpi_rcv_rtt;
__u32 tcpi_rcv_space;
__u32 tcpi_total_retrans;
__u64 tcpi_pacing_rate;
__u64 tcpi_max_pacing_rate;
__u64 tcpi_bytes_acked; /* RFC4898 tcpEStatsAppHCThruOctetsAcked */
__u64 tcpi_bytes_received; /* RFC4898 tcpEStatsAppHCThruOctetsReceived */
__u32 tcpi_segs_out; /* RFC4898 tcpEStatsPerfSegsOut */
__u32 tcpi_segs_in; /* RFC4898 tcpEStatsPerfSegsIn */
__u32 tcpi_notsent_bytes;
__u32 tcpi_min_rtt;
tcp: Add RFC4898 tcpEStatsPerfDataSegsOut/In Per RFC4898, they count segments sent/received containing a positive length data segment (that includes retransmission segments carrying data). Unlike tcpi_segs_out/in, tcpi_data_segs_out/in excludes segments carrying no data (e.g. pure ack). The patch also updates the segs_in in tcp_fastopen_add_skb() so that segs_in >= data_segs_in property is kept. Together with retransmission data, tcpi_data_segs_out gives a better signal on the rxmit rate. v6: Rebase on the latest net-next v5: Eric pointed out that checking skb->len is still needed in tcp_fastopen_add_skb() because skb can carry a FIN without data. Hence, instead of open coding segs_in and data_segs_in, tcp_segs_in() helper is used. Comment is added to the fastopen case to explain why segs_in has to be reset and tcp_segs_in() has to be called before __skb_pull(). v4: Add comment to the changes in tcp_fastopen_add_skb() and also add remark on this case in the commit message. v3: Add const modifier to the skb parameter in tcp_segs_in() v2: Rework based on recent fix by Eric: commit a9d99ce28ed3 ("tcp: fix tcpi_segs_in after connection establishment") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Cc: Chris Rapier <rapier@psc.edu> Cc: Eric Dumazet <edumazet@google.com> Cc: Marcelo Ricardo Leitner <mleitner@redhat.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-15 01:52:15 +08:00
__u32 tcpi_data_segs_in; /* RFC4898 tcpEStatsDataSegsIn */
__u32 tcpi_data_segs_out; /* RFC4898 tcpEStatsDataSegsOut */
__u64 tcpi_delivery_rate;
__u64 tcpi_busy_time; /* Time (usec) busy sending data */
__u64 tcpi_rwnd_limited; /* Time (usec) limited by receive window */
__u64 tcpi_sndbuf_limited; /* Time (usec) limited by send buffer */
__u32 tcpi_delivered;
__u32 tcpi_delivered_ce;
__u64 tcpi_bytes_sent; /* RFC4898 tcpEStatsPerfHCDataOctetsOut */
__u64 tcpi_bytes_retrans; /* RFC4898 tcpEStatsPerfOctetsRetrans */
__u32 tcpi_dsack_dups; /* RFC4898 tcpEStatsStackDSACKDups */
__u32 tcpi_reord_seen; /* reordering events seen */
__u32 tcpi_rcv_ooopack; /* Out-of-order packets received */
__u32 tcpi_snd_wnd; /* peer's advertised receive window after
* scaling (bytes)
*/
};
/* netlink attributes types for SCM_TIMESTAMPING_OPT_STATS */
enum {
TCP_NLA_PAD,
TCP_NLA_BUSY, /* Time (usec) busy sending data */
TCP_NLA_RWND_LIMITED, /* Time (usec) limited by receive window */
TCP_NLA_SNDBUF_LIMITED, /* Time (usec) limited by send buffer */
TCP_NLA_DATA_SEGS_OUT, /* Data pkts sent including retransmission */
TCP_NLA_TOTAL_RETRANS, /* Data pkts retransmitted */
TCP_NLA_PACING_RATE, /* Pacing rate in bytes per second */
TCP_NLA_DELIVERY_RATE, /* Delivery rate in bytes per second */
TCP_NLA_SND_CWND, /* Sending congestion window */
TCP_NLA_REORDERING, /* Reordering metric */
TCP_NLA_MIN_RTT, /* minimum RTT */
TCP_NLA_RECUR_RETRANS, /* Recurring retransmits for the current pkt */
TCP_NLA_DELIVERY_RATE_APP_LMT, /* delivery rate application limited ? */
TCP_NLA_SNDQ_SIZE, /* Data (bytes) pending in send queue */
TCP_NLA_CA_STATE, /* ca_state of socket */
TCP_NLA_SND_SSTHRESH, /* Slow start size threshold */
TCP_NLA_DELIVERED, /* Data pkts delivered incl. out-of-order */
TCP_NLA_DELIVERED_CE, /* Like above but only ones w/ CE marks */
TCP_NLA_BYTES_SENT, /* Data bytes sent including retransmission */
TCP_NLA_BYTES_RETRANS, /* Data bytes retransmitted */
TCP_NLA_DSACK_DUPS, /* DSACK blocks received */
TCP_NLA_REORD_SEEN, /* reordering events seen */
TCP_NLA_SRTT, /* smoothed RTT in usecs */
TCP_NLA_TIMEOUT_REHASH, /* Timeout-triggered rehash attempts */
TCP_NLA_BYTES_NOTSENT, /* Bytes in write queue not yet sent */
};
/* for TCP_MD5SIG socket option */
#define TCP_MD5SIG_MAXKEYLEN 80
/* tcp_md5sig extension flags for TCP_MD5SIG_EXT */
#define TCP_MD5SIG_FLAG_PREFIX 0x1 /* address prefix length */
#define TCP_MD5SIG_FLAG_IFINDEX 0x2 /* ifindex set */
struct tcp_md5sig {
struct __kernel_sockaddr_storage tcpm_addr; /* address associated */
__u8 tcpm_flags; /* extension flags */
__u8 tcpm_prefixlen; /* address prefix */
__u16 tcpm_keylen; /* key length */
int tcpm_ifindex; /* device index for scope */
__u8 tcpm_key[TCP_MD5SIG_MAXKEYLEN]; /* key (binary) */
};
/* INET_DIAG_MD5SIG */
struct tcp_diag_md5sig {
__u8 tcpm_family;
__u8 tcpm_prefixlen;
__u16 tcpm_keylen;
__be32 tcpm_addr[4];
__u8 tcpm_key[TCP_MD5SIG_MAXKEYLEN];
};
tcp: add TCP_ZEROCOPY_RECEIVE support for zerocopy receive When adding tcp mmap() implementation, I forgot that socket lock had to be taken before current->mm->mmap_sem. syzbot eventually caught the bug. Since we can not lock the socket in tcp mmap() handler we have to split the operation in two phases. 1) mmap() on a tcp socket simply reserves VMA space, and nothing else. This operation does not involve any TCP locking. 2) getsockopt(fd, IPPROTO_TCP, TCP_ZEROCOPY_RECEIVE, ...) implements the transfert of pages from skbs to one VMA. This operation only uses down_read(&current->mm->mmap_sem) after holding TCP lock, thus solving the lockdep issue. This new implementation was suggested by Andy Lutomirski with great details. Benefits are : - Better scalability, in case multiple threads reuse VMAS (without mmap()/munmap() calls) since mmap_sem wont be write locked. - Better error recovery. The previous mmap() model had to provide the expected size of the mapping. If for some reason one part could not be mapped (partial MSS), the whole operation had to be aborted. With the tcp_zerocopy_receive struct, kernel can report how many bytes were successfuly mapped, and how many bytes should be read to skip the problematic sequence. - No more memory allocation to hold an array of page pointers. 16 MB mappings needed 32 KB for this array, potentially using vmalloc() :/ - skbs are freed while mmap_sem has been released Following patch makes the change in tcp_mmap tool to demonstrate one possible use of mmap() and setsockopt(... TCP_ZEROCOPY_RECEIVE ...) Note that memcg might require additional changes. Fixes: 93ab6cc69162 ("tcp: implement mmap() for zero copy receive") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Suggested-by: Andy Lutomirski <luto@kernel.org> Cc: linux-mm@kvack.org Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-27 23:58:08 +08:00
/* setsockopt(fd, IPPROTO_TCP, TCP_ZEROCOPY_RECEIVE, ...) */
struct tcp_zerocopy_receive {
__u64 address; /* in: address of mapping */
__u32 length; /* in/out: number of bytes to map/mapped */
__u32 recv_skip_hint; /* out: amount of bytes to skip */
__u32 inq; /* out: amount of bytes in read queue */
__s32 err; /* out: socket error */
tcp: add TCP_ZEROCOPY_RECEIVE support for zerocopy receive When adding tcp mmap() implementation, I forgot that socket lock had to be taken before current->mm->mmap_sem. syzbot eventually caught the bug. Since we can not lock the socket in tcp mmap() handler we have to split the operation in two phases. 1) mmap() on a tcp socket simply reserves VMA space, and nothing else. This operation does not involve any TCP locking. 2) getsockopt(fd, IPPROTO_TCP, TCP_ZEROCOPY_RECEIVE, ...) implements the transfert of pages from skbs to one VMA. This operation only uses down_read(&current->mm->mmap_sem) after holding TCP lock, thus solving the lockdep issue. This new implementation was suggested by Andy Lutomirski with great details. Benefits are : - Better scalability, in case multiple threads reuse VMAS (without mmap()/munmap() calls) since mmap_sem wont be write locked. - Better error recovery. The previous mmap() model had to provide the expected size of the mapping. If for some reason one part could not be mapped (partial MSS), the whole operation had to be aborted. With the tcp_zerocopy_receive struct, kernel can report how many bytes were successfuly mapped, and how many bytes should be read to skip the problematic sequence. - No more memory allocation to hold an array of page pointers. 16 MB mappings needed 32 KB for this array, potentially using vmalloc() :/ - skbs are freed while mmap_sem has been released Following patch makes the change in tcp_mmap tool to demonstrate one possible use of mmap() and setsockopt(... TCP_ZEROCOPY_RECEIVE ...) Note that memcg might require additional changes. Fixes: 93ab6cc69162 ("tcp: implement mmap() for zero copy receive") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Suggested-by: Andy Lutomirski <luto@kernel.org> Cc: linux-mm@kvack.org Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-27 23:58:08 +08:00
};
#endif /* _UAPI_LINUX_TCP_H */