OpenCloudOS-Kernel/ipc/msgutil.c

183 lines
3.6 KiB
C
Raw Normal View History

/*
* linux/ipc/msgutil.c
* Copyright (C) 1999, 2004 Manfred Spraul
*
* This file is released under GNU General Public Licence version 2 or
* (at your option) any later version.
*
* See the file COPYING for more details.
*/
#include <linux/spinlock.h>
#include <linux/init.h>
#include <linux/security.h>
#include <linux/slab.h>
#include <linux/ipc.h>
#include <linux/msg.h>
#include <linux/ipc_namespace.h>
#include <linux/utsname.h>
#include <linux/proc_ns.h>
#include <linux/uaccess.h>
#include "util.h"
namespaces: ipc namespaces: implement support for posix msqueues Implement multiple mounts of the mqueue file system, and link it to usage of CLONE_NEWIPC. Each ipc ns has a corresponding mqueuefs superblock. When a user does clone(CLONE_NEWIPC) or unshare(CLONE_NEWIPC), the unshare will cause an internal mount of a new mqueuefs sb linked to the new ipc ns. When a user does 'mount -t mqueue mqueue /dev/mqueue', he mounts the mqueuefs superblock. Posix message queues can be worked with both through the mq_* system calls (see mq_overview(7)), and through the VFS through the mqueue mount. Any usage of mq_open() and friends will work with the acting task's ipc namespace. Any actions through the VFS will work with the mqueuefs in which the file was created. So if a user doesn't remount mqueuefs after unshare(CLONE_NEWIPC), mq_open("/ab") will not be reflected in "ls /dev/mqueue". If task a mounts mqueue for ipc_ns:1, then clones task b with a new ipcns, ipcns:2, and then task a is the last task in ipc_ns:1 to exit, then (1) ipc_ns:1 will be freed, (2) it's superblock will live on until task b umounts the corresponding mqueuefs, and vfs actions will continue to succeed, but (3) sb->s_fs_info will be NULL for the sb corresponding to the deceased ipc_ns:1. To make this happen, we must protect the ipc reference count when a) a task exits and drops its ipcns->count, since it might be dropping it to 0 and freeing the ipcns b) a task accesses the ipcns through its mqueuefs interface, since it bumps the ipcns refcount and might race with the last task in the ipcns exiting. So the kref is changed to an atomic_t so we can use atomic_dec_and_lock(&ns->count,mq_lock), and every access to the ipcns through ns = mqueuefs_sb->s_fs_info is protected by the same lock. Signed-off-by: Cedric Le Goater <clg@fr.ibm.com> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-07 10:01:10 +08:00
DEFINE_SPINLOCK(mq_lock);
/*
* The next 2 defines are here bc this is the only file
* compiled when either CONFIG_SYSVIPC and CONFIG_POSIX_MQUEUE
* and not CONFIG_IPC_NS.
*/
struct ipc_namespace init_ipc_ns = {
namespaces: ipc namespaces: implement support for posix msqueues Implement multiple mounts of the mqueue file system, and link it to usage of CLONE_NEWIPC. Each ipc ns has a corresponding mqueuefs superblock. When a user does clone(CLONE_NEWIPC) or unshare(CLONE_NEWIPC), the unshare will cause an internal mount of a new mqueuefs sb linked to the new ipc ns. When a user does 'mount -t mqueue mqueue /dev/mqueue', he mounts the mqueuefs superblock. Posix message queues can be worked with both through the mq_* system calls (see mq_overview(7)), and through the VFS through the mqueue mount. Any usage of mq_open() and friends will work with the acting task's ipc namespace. Any actions through the VFS will work with the mqueuefs in which the file was created. So if a user doesn't remount mqueuefs after unshare(CLONE_NEWIPC), mq_open("/ab") will not be reflected in "ls /dev/mqueue". If task a mounts mqueue for ipc_ns:1, then clones task b with a new ipcns, ipcns:2, and then task a is the last task in ipc_ns:1 to exit, then (1) ipc_ns:1 will be freed, (2) it's superblock will live on until task b umounts the corresponding mqueuefs, and vfs actions will continue to succeed, but (3) sb->s_fs_info will be NULL for the sb corresponding to the deceased ipc_ns:1. To make this happen, we must protect the ipc reference count when a) a task exits and drops its ipcns->count, since it might be dropping it to 0 and freeing the ipcns b) a task accesses the ipcns through its mqueuefs interface, since it bumps the ipcns refcount and might race with the last task in the ipcns exiting. So the kref is changed to an atomic_t so we can use atomic_dec_and_lock(&ns->count,mq_lock), and every access to the ipcns through ns = mqueuefs_sb->s_fs_info is protected by the same lock. Signed-off-by: Cedric Le Goater <clg@fr.ibm.com> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-07 10:01:10 +08:00
.count = ATOMIC_INIT(1),
.user_ns = &init_user_ns,
.ns.inum = PROC_IPC_INIT_INO,
#ifdef CONFIG_IPC_NS
.ns.ops = &ipcns_operations,
#endif
};
struct msg_msgseg {
struct msg_msgseg *next;
/* the next part of the message follows immediately */
};
ipc, msg: fix message length check for negative values On 64 bit systems the test for negative message sizes is bogus as the size, which may be positive when evaluated as a long, will get truncated to an int when passed to load_msg(). So a long might very well contain a positive value but when truncated to an int it would become negative. That in combination with a small negative value of msg_ctlmax (which will be promoted to an unsigned type for the comparison against msgsz, making it a big positive value and therefore make it pass the check) will lead to two problems: 1/ The kmalloc() call in alloc_msg() will allocate a too small buffer as the addition of alen is effectively a subtraction. 2/ The copy_from_user() call in load_msg() will first overflow the buffer with userland data and then, when the userland access generates an access violation, the fixup handler copy_user_handle_tail() will try to fill the remainder with zeros -- roughly 4GB. That almost instantly results in a system crash or reset. ,-[ Reproducer (needs to be run as root) ]-- | #include <sys/stat.h> | #include <sys/msg.h> | #include <unistd.h> | #include <fcntl.h> | | int main(void) { | long msg = 1; | int fd; | | fd = open("/proc/sys/kernel/msgmax", O_WRONLY); | write(fd, "-1", 2); | close(fd); | | msgsnd(0, &msg, 0xfffffff0, IPC_NOWAIT); | | return 0; | } '--- Fix the issue by preventing msgsz from getting truncated by consistently using size_t for the message length. This way the size checks in do_msgsnd() could still be passed with a negative value for msg_ctlmax but we would fail on the buffer allocation in that case and error out. Also change the type of m_ts from int to size_t to avoid similar nastiness in other code paths -- it is used in similar constructs, i.e. signed vs. unsigned checks. It should never become negative under normal circumstances, though. Setting msg_ctlmax to a negative value is an odd configuration and should be prevented. As that might break existing userland, it will be handled in a separate commit so it could easily be reverted and reworked without reintroducing the above described bug. Hardening mechanisms for user copy operations would have catched that bug early -- e.g. checking slab object sizes on user copy operations as the usercopy feature of the PaX patch does. Or, for that matter, detect the long vs. int sign change due to truncation, as the size overflow plugin of the very same patch does. [akpm@linux-foundation.org: fix i386 min() warnings] Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Pax Team <pageexec@freemail.hu> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Brad Spengler <spender@grsecurity.net> Cc: Manfred Spraul <manfred@colorfullife.com> Cc: <stable@vger.kernel.org> [ v2.3.27+ -- yes, that old ;) ] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 07:11:47 +08:00
#define DATALEN_MSG ((size_t)PAGE_SIZE-sizeof(struct msg_msg))
#define DATALEN_SEG ((size_t)PAGE_SIZE-sizeof(struct msg_msgseg))
ipc, msg: fix message length check for negative values On 64 bit systems the test for negative message sizes is bogus as the size, which may be positive when evaluated as a long, will get truncated to an int when passed to load_msg(). So a long might very well contain a positive value but when truncated to an int it would become negative. That in combination with a small negative value of msg_ctlmax (which will be promoted to an unsigned type for the comparison against msgsz, making it a big positive value and therefore make it pass the check) will lead to two problems: 1/ The kmalloc() call in alloc_msg() will allocate a too small buffer as the addition of alen is effectively a subtraction. 2/ The copy_from_user() call in load_msg() will first overflow the buffer with userland data and then, when the userland access generates an access violation, the fixup handler copy_user_handle_tail() will try to fill the remainder with zeros -- roughly 4GB. That almost instantly results in a system crash or reset. ,-[ Reproducer (needs to be run as root) ]-- | #include <sys/stat.h> | #include <sys/msg.h> | #include <unistd.h> | #include <fcntl.h> | | int main(void) { | long msg = 1; | int fd; | | fd = open("/proc/sys/kernel/msgmax", O_WRONLY); | write(fd, "-1", 2); | close(fd); | | msgsnd(0, &msg, 0xfffffff0, IPC_NOWAIT); | | return 0; | } '--- Fix the issue by preventing msgsz from getting truncated by consistently using size_t for the message length. This way the size checks in do_msgsnd() could still be passed with a negative value for msg_ctlmax but we would fail on the buffer allocation in that case and error out. Also change the type of m_ts from int to size_t to avoid similar nastiness in other code paths -- it is used in similar constructs, i.e. signed vs. unsigned checks. It should never become negative under normal circumstances, though. Setting msg_ctlmax to a negative value is an odd configuration and should be prevented. As that might break existing userland, it will be handled in a separate commit so it could easily be reverted and reworked without reintroducing the above described bug. Hardening mechanisms for user copy operations would have catched that bug early -- e.g. checking slab object sizes on user copy operations as the usercopy feature of the PaX patch does. Or, for that matter, detect the long vs. int sign change due to truncation, as the size overflow plugin of the very same patch does. [akpm@linux-foundation.org: fix i386 min() warnings] Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Pax Team <pageexec@freemail.hu> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Brad Spengler <spender@grsecurity.net> Cc: Manfred Spraul <manfred@colorfullife.com> Cc: <stable@vger.kernel.org> [ v2.3.27+ -- yes, that old ;) ] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 07:11:47 +08:00
static struct msg_msg *alloc_msg(size_t len)
{
struct msg_msg *msg;
struct msg_msgseg **pseg;
ipc, msg: fix message length check for negative values On 64 bit systems the test for negative message sizes is bogus as the size, which may be positive when evaluated as a long, will get truncated to an int when passed to load_msg(). So a long might very well contain a positive value but when truncated to an int it would become negative. That in combination with a small negative value of msg_ctlmax (which will be promoted to an unsigned type for the comparison against msgsz, making it a big positive value and therefore make it pass the check) will lead to two problems: 1/ The kmalloc() call in alloc_msg() will allocate a too small buffer as the addition of alen is effectively a subtraction. 2/ The copy_from_user() call in load_msg() will first overflow the buffer with userland data and then, when the userland access generates an access violation, the fixup handler copy_user_handle_tail() will try to fill the remainder with zeros -- roughly 4GB. That almost instantly results in a system crash or reset. ,-[ Reproducer (needs to be run as root) ]-- | #include <sys/stat.h> | #include <sys/msg.h> | #include <unistd.h> | #include <fcntl.h> | | int main(void) { | long msg = 1; | int fd; | | fd = open("/proc/sys/kernel/msgmax", O_WRONLY); | write(fd, "-1", 2); | close(fd); | | msgsnd(0, &msg, 0xfffffff0, IPC_NOWAIT); | | return 0; | } '--- Fix the issue by preventing msgsz from getting truncated by consistently using size_t for the message length. This way the size checks in do_msgsnd() could still be passed with a negative value for msg_ctlmax but we would fail on the buffer allocation in that case and error out. Also change the type of m_ts from int to size_t to avoid similar nastiness in other code paths -- it is used in similar constructs, i.e. signed vs. unsigned checks. It should never become negative under normal circumstances, though. Setting msg_ctlmax to a negative value is an odd configuration and should be prevented. As that might break existing userland, it will be handled in a separate commit so it could easily be reverted and reworked without reintroducing the above described bug. Hardening mechanisms for user copy operations would have catched that bug early -- e.g. checking slab object sizes on user copy operations as the usercopy feature of the PaX patch does. Or, for that matter, detect the long vs. int sign change due to truncation, as the size overflow plugin of the very same patch does. [akpm@linux-foundation.org: fix i386 min() warnings] Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Pax Team <pageexec@freemail.hu> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Brad Spengler <spender@grsecurity.net> Cc: Manfred Spraul <manfred@colorfullife.com> Cc: <stable@vger.kernel.org> [ v2.3.27+ -- yes, that old ;) ] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 07:11:47 +08:00
size_t alen;
alen = min(len, DATALEN_MSG);
msg = kmalloc(sizeof(*msg) + alen, GFP_KERNEL_ACCOUNT);
if (msg == NULL)
return NULL;
msg->next = NULL;
msg->security = NULL;
len -= alen;
pseg = &msg->next;
while (len > 0) {
struct msg_msgseg *seg;
alen = min(len, DATALEN_SEG);
seg = kmalloc(sizeof(*seg) + alen, GFP_KERNEL_ACCOUNT);
if (seg == NULL)
goto out_err;
*pseg = seg;
seg->next = NULL;
pseg = &seg->next;
len -= alen;
}
return msg;
out_err:
free_msg(msg);
return NULL;
}
ipc, msg: fix message length check for negative values On 64 bit systems the test for negative message sizes is bogus as the size, which may be positive when evaluated as a long, will get truncated to an int when passed to load_msg(). So a long might very well contain a positive value but when truncated to an int it would become negative. That in combination with a small negative value of msg_ctlmax (which will be promoted to an unsigned type for the comparison against msgsz, making it a big positive value and therefore make it pass the check) will lead to two problems: 1/ The kmalloc() call in alloc_msg() will allocate a too small buffer as the addition of alen is effectively a subtraction. 2/ The copy_from_user() call in load_msg() will first overflow the buffer with userland data and then, when the userland access generates an access violation, the fixup handler copy_user_handle_tail() will try to fill the remainder with zeros -- roughly 4GB. That almost instantly results in a system crash or reset. ,-[ Reproducer (needs to be run as root) ]-- | #include <sys/stat.h> | #include <sys/msg.h> | #include <unistd.h> | #include <fcntl.h> | | int main(void) { | long msg = 1; | int fd; | | fd = open("/proc/sys/kernel/msgmax", O_WRONLY); | write(fd, "-1", 2); | close(fd); | | msgsnd(0, &msg, 0xfffffff0, IPC_NOWAIT); | | return 0; | } '--- Fix the issue by preventing msgsz from getting truncated by consistently using size_t for the message length. This way the size checks in do_msgsnd() could still be passed with a negative value for msg_ctlmax but we would fail on the buffer allocation in that case and error out. Also change the type of m_ts from int to size_t to avoid similar nastiness in other code paths -- it is used in similar constructs, i.e. signed vs. unsigned checks. It should never become negative under normal circumstances, though. Setting msg_ctlmax to a negative value is an odd configuration and should be prevented. As that might break existing userland, it will be handled in a separate commit so it could easily be reverted and reworked without reintroducing the above described bug. Hardening mechanisms for user copy operations would have catched that bug early -- e.g. checking slab object sizes on user copy operations as the usercopy feature of the PaX patch does. Or, for that matter, detect the long vs. int sign change due to truncation, as the size overflow plugin of the very same patch does. [akpm@linux-foundation.org: fix i386 min() warnings] Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Pax Team <pageexec@freemail.hu> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Brad Spengler <spender@grsecurity.net> Cc: Manfred Spraul <manfred@colorfullife.com> Cc: <stable@vger.kernel.org> [ v2.3.27+ -- yes, that old ;) ] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 07:11:47 +08:00
struct msg_msg *load_msg(const void __user *src, size_t len)
{
struct msg_msg *msg;
struct msg_msgseg *seg;
int err = -EFAULT;
ipc, msg: fix message length check for negative values On 64 bit systems the test for negative message sizes is bogus as the size, which may be positive when evaluated as a long, will get truncated to an int when passed to load_msg(). So a long might very well contain a positive value but when truncated to an int it would become negative. That in combination with a small negative value of msg_ctlmax (which will be promoted to an unsigned type for the comparison against msgsz, making it a big positive value and therefore make it pass the check) will lead to two problems: 1/ The kmalloc() call in alloc_msg() will allocate a too small buffer as the addition of alen is effectively a subtraction. 2/ The copy_from_user() call in load_msg() will first overflow the buffer with userland data and then, when the userland access generates an access violation, the fixup handler copy_user_handle_tail() will try to fill the remainder with zeros -- roughly 4GB. That almost instantly results in a system crash or reset. ,-[ Reproducer (needs to be run as root) ]-- | #include <sys/stat.h> | #include <sys/msg.h> | #include <unistd.h> | #include <fcntl.h> | | int main(void) { | long msg = 1; | int fd; | | fd = open("/proc/sys/kernel/msgmax", O_WRONLY); | write(fd, "-1", 2); | close(fd); | | msgsnd(0, &msg, 0xfffffff0, IPC_NOWAIT); | | return 0; | } '--- Fix the issue by preventing msgsz from getting truncated by consistently using size_t for the message length. This way the size checks in do_msgsnd() could still be passed with a negative value for msg_ctlmax but we would fail on the buffer allocation in that case and error out. Also change the type of m_ts from int to size_t to avoid similar nastiness in other code paths -- it is used in similar constructs, i.e. signed vs. unsigned checks. It should never become negative under normal circumstances, though. Setting msg_ctlmax to a negative value is an odd configuration and should be prevented. As that might break existing userland, it will be handled in a separate commit so it could easily be reverted and reworked without reintroducing the above described bug. Hardening mechanisms for user copy operations would have catched that bug early -- e.g. checking slab object sizes on user copy operations as the usercopy feature of the PaX patch does. Or, for that matter, detect the long vs. int sign change due to truncation, as the size overflow plugin of the very same patch does. [akpm@linux-foundation.org: fix i386 min() warnings] Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Pax Team <pageexec@freemail.hu> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Brad Spengler <spender@grsecurity.net> Cc: Manfred Spraul <manfred@colorfullife.com> Cc: <stable@vger.kernel.org> [ v2.3.27+ -- yes, that old ;) ] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 07:11:47 +08:00
size_t alen;
msg = alloc_msg(len);
if (msg == NULL)
return ERR_PTR(-ENOMEM);
alen = min(len, DATALEN_MSG);
if (copy_from_user(msg + 1, src, alen))
goto out_err;
for (seg = msg->next; seg != NULL; seg = seg->next) {
len -= alen;
src = (char __user *)src + alen;
alen = min(len, DATALEN_SEG);
if (copy_from_user(seg + 1, src, alen))
goto out_err;
}
err = security_msg_msg_alloc(msg);
if (err)
goto out_err;
return msg;
out_err:
free_msg(msg);
return ERR_PTR(err);
}
#ifdef CONFIG_CHECKPOINT_RESTORE
struct msg_msg *copy_msg(struct msg_msg *src, struct msg_msg *dst)
{
struct msg_msgseg *dst_pseg, *src_pseg;
ipc, msg: fix message length check for negative values On 64 bit systems the test for negative message sizes is bogus as the size, which may be positive when evaluated as a long, will get truncated to an int when passed to load_msg(). So a long might very well contain a positive value but when truncated to an int it would become negative. That in combination with a small negative value of msg_ctlmax (which will be promoted to an unsigned type for the comparison against msgsz, making it a big positive value and therefore make it pass the check) will lead to two problems: 1/ The kmalloc() call in alloc_msg() will allocate a too small buffer as the addition of alen is effectively a subtraction. 2/ The copy_from_user() call in load_msg() will first overflow the buffer with userland data and then, when the userland access generates an access violation, the fixup handler copy_user_handle_tail() will try to fill the remainder with zeros -- roughly 4GB. That almost instantly results in a system crash or reset. ,-[ Reproducer (needs to be run as root) ]-- | #include <sys/stat.h> | #include <sys/msg.h> | #include <unistd.h> | #include <fcntl.h> | | int main(void) { | long msg = 1; | int fd; | | fd = open("/proc/sys/kernel/msgmax", O_WRONLY); | write(fd, "-1", 2); | close(fd); | | msgsnd(0, &msg, 0xfffffff0, IPC_NOWAIT); | | return 0; | } '--- Fix the issue by preventing msgsz from getting truncated by consistently using size_t for the message length. This way the size checks in do_msgsnd() could still be passed with a negative value for msg_ctlmax but we would fail on the buffer allocation in that case and error out. Also change the type of m_ts from int to size_t to avoid similar nastiness in other code paths -- it is used in similar constructs, i.e. signed vs. unsigned checks. It should never become negative under normal circumstances, though. Setting msg_ctlmax to a negative value is an odd configuration and should be prevented. As that might break existing userland, it will be handled in a separate commit so it could easily be reverted and reworked without reintroducing the above described bug. Hardening mechanisms for user copy operations would have catched that bug early -- e.g. checking slab object sizes on user copy operations as the usercopy feature of the PaX patch does. Or, for that matter, detect the long vs. int sign change due to truncation, as the size overflow plugin of the very same patch does. [akpm@linux-foundation.org: fix i386 min() warnings] Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Pax Team <pageexec@freemail.hu> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Brad Spengler <spender@grsecurity.net> Cc: Manfred Spraul <manfred@colorfullife.com> Cc: <stable@vger.kernel.org> [ v2.3.27+ -- yes, that old ;) ] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 07:11:47 +08:00
size_t len = src->m_ts;
size_t alen;
if (src->m_ts > dst->m_ts)
return ERR_PTR(-EINVAL);
alen = min(len, DATALEN_MSG);
memcpy(dst + 1, src + 1, alen);
for (dst_pseg = dst->next, src_pseg = src->next;
src_pseg != NULL;
dst_pseg = dst_pseg->next, src_pseg = src_pseg->next) {
len -= alen;
alen = min(len, DATALEN_SEG);
memcpy(dst_pseg + 1, src_pseg + 1, alen);
}
dst->m_type = src->m_type;
dst->m_ts = src->m_ts;
return dst;
}
#else
struct msg_msg *copy_msg(struct msg_msg *src, struct msg_msg *dst)
{
return ERR_PTR(-ENOSYS);
}
#endif
ipc, msg: fix message length check for negative values On 64 bit systems the test for negative message sizes is bogus as the size, which may be positive when evaluated as a long, will get truncated to an int when passed to load_msg(). So a long might very well contain a positive value but when truncated to an int it would become negative. That in combination with a small negative value of msg_ctlmax (which will be promoted to an unsigned type for the comparison against msgsz, making it a big positive value and therefore make it pass the check) will lead to two problems: 1/ The kmalloc() call in alloc_msg() will allocate a too small buffer as the addition of alen is effectively a subtraction. 2/ The copy_from_user() call in load_msg() will first overflow the buffer with userland data and then, when the userland access generates an access violation, the fixup handler copy_user_handle_tail() will try to fill the remainder with zeros -- roughly 4GB. That almost instantly results in a system crash or reset. ,-[ Reproducer (needs to be run as root) ]-- | #include <sys/stat.h> | #include <sys/msg.h> | #include <unistd.h> | #include <fcntl.h> | | int main(void) { | long msg = 1; | int fd; | | fd = open("/proc/sys/kernel/msgmax", O_WRONLY); | write(fd, "-1", 2); | close(fd); | | msgsnd(0, &msg, 0xfffffff0, IPC_NOWAIT); | | return 0; | } '--- Fix the issue by preventing msgsz from getting truncated by consistently using size_t for the message length. This way the size checks in do_msgsnd() could still be passed with a negative value for msg_ctlmax but we would fail on the buffer allocation in that case and error out. Also change the type of m_ts from int to size_t to avoid similar nastiness in other code paths -- it is used in similar constructs, i.e. signed vs. unsigned checks. It should never become negative under normal circumstances, though. Setting msg_ctlmax to a negative value is an odd configuration and should be prevented. As that might break existing userland, it will be handled in a separate commit so it could easily be reverted and reworked without reintroducing the above described bug. Hardening mechanisms for user copy operations would have catched that bug early -- e.g. checking slab object sizes on user copy operations as the usercopy feature of the PaX patch does. Or, for that matter, detect the long vs. int sign change due to truncation, as the size overflow plugin of the very same patch does. [akpm@linux-foundation.org: fix i386 min() warnings] Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Pax Team <pageexec@freemail.hu> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Brad Spengler <spender@grsecurity.net> Cc: Manfred Spraul <manfred@colorfullife.com> Cc: <stable@vger.kernel.org> [ v2.3.27+ -- yes, that old ;) ] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 07:11:47 +08:00
int store_msg(void __user *dest, struct msg_msg *msg, size_t len)
{
ipc, msg: fix message length check for negative values On 64 bit systems the test for negative message sizes is bogus as the size, which may be positive when evaluated as a long, will get truncated to an int when passed to load_msg(). So a long might very well contain a positive value but when truncated to an int it would become negative. That in combination with a small negative value of msg_ctlmax (which will be promoted to an unsigned type for the comparison against msgsz, making it a big positive value and therefore make it pass the check) will lead to two problems: 1/ The kmalloc() call in alloc_msg() will allocate a too small buffer as the addition of alen is effectively a subtraction. 2/ The copy_from_user() call in load_msg() will first overflow the buffer with userland data and then, when the userland access generates an access violation, the fixup handler copy_user_handle_tail() will try to fill the remainder with zeros -- roughly 4GB. That almost instantly results in a system crash or reset. ,-[ Reproducer (needs to be run as root) ]-- | #include <sys/stat.h> | #include <sys/msg.h> | #include <unistd.h> | #include <fcntl.h> | | int main(void) { | long msg = 1; | int fd; | | fd = open("/proc/sys/kernel/msgmax", O_WRONLY); | write(fd, "-1", 2); | close(fd); | | msgsnd(0, &msg, 0xfffffff0, IPC_NOWAIT); | | return 0; | } '--- Fix the issue by preventing msgsz from getting truncated by consistently using size_t for the message length. This way the size checks in do_msgsnd() could still be passed with a negative value for msg_ctlmax but we would fail on the buffer allocation in that case and error out. Also change the type of m_ts from int to size_t to avoid similar nastiness in other code paths -- it is used in similar constructs, i.e. signed vs. unsigned checks. It should never become negative under normal circumstances, though. Setting msg_ctlmax to a negative value is an odd configuration and should be prevented. As that might break existing userland, it will be handled in a separate commit so it could easily be reverted and reworked without reintroducing the above described bug. Hardening mechanisms for user copy operations would have catched that bug early -- e.g. checking slab object sizes on user copy operations as the usercopy feature of the PaX patch does. Or, for that matter, detect the long vs. int sign change due to truncation, as the size overflow plugin of the very same patch does. [akpm@linux-foundation.org: fix i386 min() warnings] Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Pax Team <pageexec@freemail.hu> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Brad Spengler <spender@grsecurity.net> Cc: Manfred Spraul <manfred@colorfullife.com> Cc: <stable@vger.kernel.org> [ v2.3.27+ -- yes, that old ;) ] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 07:11:47 +08:00
size_t alen;
struct msg_msgseg *seg;
alen = min(len, DATALEN_MSG);
if (copy_to_user(dest, msg + 1, alen))
return -1;
for (seg = msg->next; seg != NULL; seg = seg->next) {
len -= alen;
dest = (char __user *)dest + alen;
alen = min(len, DATALEN_SEG);
if (copy_to_user(dest, seg + 1, alen))
return -1;
}
return 0;
}
void free_msg(struct msg_msg *msg)
{
struct msg_msgseg *seg;
security_msg_msg_free(msg);
seg = msg->next;
kfree(msg);
while (seg != NULL) {
struct msg_msgseg *tmp = seg->next;
kfree(seg);
seg = tmp;
}
}