OpenCloudOS-Kernel/drivers/gpu/drm/msm/dsi/pll/dsi_pll_28nm.c

653 lines
19 KiB
C
Raw Normal View History

/*
* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include "dsi_pll.h"
#include "dsi.xml.h"
/*
* DSI PLL 28nm - clock diagram (eg: DSI0):
*
* dsi0analog_postdiv_clk
* | dsi0indirect_path_div2_clk
* | |
* +------+ | +----+ | |\ dsi0byte_mux
* dsi0vco_clk --o--| DIV1 |--o--| /2 |--o--| \ |
* | +------+ +----+ | m| | +----+
* | | u|--o--| /4 |-- dsi0pllbyte
* | | x| +----+
* o--------------------------| /
* | |/
* | +------+
* o----------| DIV3 |------------------------- dsi0pll
* +------+
*/
#define POLL_MAX_READS 10
#define POLL_TIMEOUT_US 50
#define NUM_PROVIDED_CLKS 2
#define VCO_REF_CLK_RATE 19200000
#define VCO_MIN_RATE 350000000
#define VCO_MAX_RATE 750000000
#define DSI_BYTE_PLL_CLK 0
#define DSI_PIXEL_PLL_CLK 1
#define LPFR_LUT_SIZE 10
struct lpfr_cfg {
unsigned long vco_rate;
u32 resistance;
};
/* Loop filter resistance: */
static const struct lpfr_cfg lpfr_lut[LPFR_LUT_SIZE] = {
{ 479500000, 8 },
{ 480000000, 11 },
{ 575500000, 8 },
{ 576000000, 12 },
{ 610500000, 8 },
{ 659500000, 9 },
{ 671500000, 10 },
{ 672000000, 14 },
{ 708500000, 10 },
{ 750000000, 11 },
};
struct pll_28nm_cached_state {
unsigned long vco_rate;
u8 postdiv3;
u8 postdiv1;
u8 byte_mux;
};
struct dsi_pll_28nm {
struct msm_dsi_pll base;
int id;
struct platform_device *pdev;
void __iomem *mmio;
int vco_delay;
/* private clocks: */
struct clk *clks[NUM_DSI_CLOCKS_MAX];
u32 num_clks;
/* clock-provider: */
struct clk *provided_clks[NUM_PROVIDED_CLKS];
struct clk_onecell_data clk_data;
struct pll_28nm_cached_state cached_state;
};
#define to_pll_28nm(x) container_of(x, struct dsi_pll_28nm, base)
static bool pll_28nm_poll_for_ready(struct dsi_pll_28nm *pll_28nm,
u32 nb_tries, u32 timeout_us)
{
bool pll_locked = false;
u32 val;
while (nb_tries--) {
val = pll_read(pll_28nm->mmio + REG_DSI_28nm_PHY_PLL_STATUS);
pll_locked = !!(val & DSI_28nm_PHY_PLL_STATUS_PLL_RDY);
if (pll_locked)
break;
udelay(timeout_us);
}
DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* ");
return pll_locked;
}
static void pll_28nm_software_reset(struct dsi_pll_28nm *pll_28nm)
{
void __iomem *base = pll_28nm->mmio;
/*
* Add HW recommended delays after toggling the software
* reset bit off and back on.
*/
pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_TEST_CFG,
DSI_28nm_PHY_PLL_TEST_CFG_PLL_SW_RESET, 1);
pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_TEST_CFG, 0x00, 1);
}
/*
* Clock Callbacks
*/
static int dsi_pll_28nm_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
struct device *dev = &pll_28nm->pdev->dev;
void __iomem *base = pll_28nm->mmio;
unsigned long div_fbx1000, gen_vco_clk;
u32 refclk_cfg, frac_n_mode, frac_n_value;
u32 sdm_cfg0, sdm_cfg1, sdm_cfg2, sdm_cfg3;
u32 cal_cfg10, cal_cfg11;
u32 rem;
int i;
VERB("rate=%lu, parent's=%lu", rate, parent_rate);
/* Force postdiv2 to be div-4 */
pll_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV2_CFG, 3);
/* Configure the Loop filter resistance */
for (i = 0; i < LPFR_LUT_SIZE; i++)
if (rate <= lpfr_lut[i].vco_rate)
break;
if (i == LPFR_LUT_SIZE) {
dev_err(dev, "unable to get loop filter resistance. vco=%lu\n",
rate);
return -EINVAL;
}
pll_write(base + REG_DSI_28nm_PHY_PLL_LPFR_CFG, lpfr_lut[i].resistance);
/* Loop filter capacitance values : c1 and c2 */
pll_write(base + REG_DSI_28nm_PHY_PLL_LPFC1_CFG, 0x70);
pll_write(base + REG_DSI_28nm_PHY_PLL_LPFC2_CFG, 0x15);
rem = rate % VCO_REF_CLK_RATE;
if (rem) {
refclk_cfg = DSI_28nm_PHY_PLL_REFCLK_CFG_DBLR;
frac_n_mode = 1;
div_fbx1000 = rate / (VCO_REF_CLK_RATE / 500);
gen_vco_clk = div_fbx1000 * (VCO_REF_CLK_RATE / 500);
} else {
refclk_cfg = 0x0;
frac_n_mode = 0;
div_fbx1000 = rate / (VCO_REF_CLK_RATE / 1000);
gen_vco_clk = div_fbx1000 * (VCO_REF_CLK_RATE / 1000);
}
DBG("refclk_cfg = %d", refclk_cfg);
rem = div_fbx1000 % 1000;
frac_n_value = (rem << 16) / 1000;
DBG("div_fb = %lu", div_fbx1000);
DBG("frac_n_value = %d", frac_n_value);
DBG("Generated VCO Clock: %lu", gen_vco_clk);
rem = 0;
sdm_cfg1 = pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1);
sdm_cfg1 &= ~DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET__MASK;
if (frac_n_mode) {
sdm_cfg0 = 0x0;
sdm_cfg0 |= DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV(0);
sdm_cfg1 |= DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET(
(u32)(((div_fbx1000 / 1000) & 0x3f) - 1));
sdm_cfg3 = frac_n_value >> 8;
sdm_cfg2 = frac_n_value & 0xff;
} else {
sdm_cfg0 = DSI_28nm_PHY_PLL_SDM_CFG0_BYP;
sdm_cfg0 |= DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV(
(u32)(((div_fbx1000 / 1000) & 0x3f) - 1));
sdm_cfg1 |= DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET(0);
sdm_cfg2 = 0;
sdm_cfg3 = 0;
}
DBG("sdm_cfg0=%d", sdm_cfg0);
DBG("sdm_cfg1=%d", sdm_cfg1);
DBG("sdm_cfg2=%d", sdm_cfg2);
DBG("sdm_cfg3=%d", sdm_cfg3);
cal_cfg11 = (u32)(gen_vco_clk / (256 * 1000000));
cal_cfg10 = (u32)((gen_vco_clk % (256 * 1000000)) / 1000000);
DBG("cal_cfg10=%d, cal_cfg11=%d", cal_cfg10, cal_cfg11);
pll_write(base + REG_DSI_28nm_PHY_PLL_CHGPUMP_CFG, 0x02);
pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG3, 0x2b);
pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG4, 0x06);
pll_write(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x0d);
pll_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1, sdm_cfg1);
pll_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG2,
DSI_28nm_PHY_PLL_SDM_CFG2_FREQ_SEED_7_0(sdm_cfg2));
pll_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG3,
DSI_28nm_PHY_PLL_SDM_CFG3_FREQ_SEED_15_8(sdm_cfg3));
pll_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG4, 0x00);
/* Add hardware recommended delay for correct PLL configuration */
if (pll_28nm->vco_delay)
udelay(pll_28nm->vco_delay);
pll_write(base + REG_DSI_28nm_PHY_PLL_REFCLK_CFG, refclk_cfg);
pll_write(base + REG_DSI_28nm_PHY_PLL_PWRGEN_CFG, 0x00);
pll_write(base + REG_DSI_28nm_PHY_PLL_VCOLPF_CFG, 0x31);
pll_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0, sdm_cfg0);
pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG0, 0x12);
pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG6, 0x30);
pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG7, 0x00);
pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG8, 0x60);
pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG9, 0x00);
pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG10, cal_cfg10 & 0xff);
pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG11, cal_cfg11 & 0xff);
pll_write(base + REG_DSI_28nm_PHY_PLL_EFUSE_CFG, 0x20);
return 0;
}
static int dsi_pll_28nm_clk_is_enabled(struct clk_hw *hw)
{
struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
return pll_28nm_poll_for_ready(pll_28nm, POLL_MAX_READS,
POLL_TIMEOUT_US);
}
static unsigned long dsi_pll_28nm_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
void __iomem *base = pll_28nm->mmio;
u32 sdm0, doubler, sdm_byp_div;
u32 sdm_dc_off, sdm_freq_seed, sdm2, sdm3;
u32 ref_clk = VCO_REF_CLK_RATE;
unsigned long vco_rate;
VERB("parent_rate=%lu", parent_rate);
/* Check to see if the ref clk doubler is enabled */
doubler = pll_read(base + REG_DSI_28nm_PHY_PLL_REFCLK_CFG) &
DSI_28nm_PHY_PLL_REFCLK_CFG_DBLR;
ref_clk += (doubler * VCO_REF_CLK_RATE);
/* see if it is integer mode or sdm mode */
sdm0 = pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0);
if (sdm0 & DSI_28nm_PHY_PLL_SDM_CFG0_BYP) {
/* integer mode */
sdm_byp_div = FIELD(
pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0),
DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV) + 1;
vco_rate = ref_clk * sdm_byp_div;
} else {
/* sdm mode */
sdm_dc_off = FIELD(
pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1),
DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET);
DBG("sdm_dc_off = %d", sdm_dc_off);
sdm2 = FIELD(pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG2),
DSI_28nm_PHY_PLL_SDM_CFG2_FREQ_SEED_7_0);
sdm3 = FIELD(pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG3),
DSI_28nm_PHY_PLL_SDM_CFG3_FREQ_SEED_15_8);
sdm_freq_seed = (sdm3 << 8) | sdm2;
DBG("sdm_freq_seed = %d", sdm_freq_seed);
vco_rate = (ref_clk * (sdm_dc_off + 1)) +
mult_frac(ref_clk, sdm_freq_seed, BIT(16));
DBG("vco rate = %lu", vco_rate);
}
DBG("returning vco rate = %lu", vco_rate);
return vco_rate;
}
static const struct clk_ops clk_ops_dsi_pll_28nm_vco = {
.round_rate = msm_dsi_pll_helper_clk_round_rate,
.set_rate = dsi_pll_28nm_clk_set_rate,
.recalc_rate = dsi_pll_28nm_clk_recalc_rate,
.prepare = msm_dsi_pll_helper_clk_prepare,
.unprepare = msm_dsi_pll_helper_clk_unprepare,
.is_enabled = dsi_pll_28nm_clk_is_enabled,
};
/*
* PLL Callbacks
*/
static int dsi_pll_28nm_enable_seq_hpm(struct msm_dsi_pll *pll)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
struct device *dev = &pll_28nm->pdev->dev;
void __iomem *base = pll_28nm->mmio;
u32 max_reads = 5, timeout_us = 100;
bool locked;
u32 val;
int i;
DBG("id=%d", pll_28nm->id);
pll_28nm_software_reset(pll_28nm);
/*
* PLL power up sequence.
* Add necessary delays recommended by hardware.
*/
val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B;
pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 1);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B;
pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B;
pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE;
pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 600);
for (i = 0; i < 2; i++) {
/* DSI Uniphy lock detect setting */
pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2,
0x0c, 100);
pll_write(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x0d);
/* poll for PLL ready status */
locked = pll_28nm_poll_for_ready(pll_28nm,
max_reads, timeout_us);
if (locked)
break;
pll_28nm_software_reset(pll_28nm);
/*
* PLL power up sequence.
* Add necessary delays recommended by hardware.
*/
val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B;
pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 1);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B;
pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B;
pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 250);
val &= ~DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B;
pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B;
pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE;
pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 600);
}
if (unlikely(!locked))
dev_err(dev, "DSI PLL lock failed\n");
else
DBG("DSI PLL Lock success");
return locked ? 0 : -EINVAL;
}
static int dsi_pll_28nm_enable_seq_lp(struct msm_dsi_pll *pll)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
struct device *dev = &pll_28nm->pdev->dev;
void __iomem *base = pll_28nm->mmio;
bool locked;
u32 max_reads = 10, timeout_us = 50;
u32 val;
DBG("id=%d", pll_28nm->id);
pll_28nm_software_reset(pll_28nm);
/*
* PLL power up sequence.
* Add necessary delays recommended by hardware.
*/
pll_write_ndelay(base + REG_DSI_28nm_PHY_PLL_CAL_CFG1, 0x34, 500);
val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B;
pll_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B;
pll_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B |
DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE;
pll_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
/* DSI PLL toggle lock detect setting */
pll_write_ndelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x04, 500);
pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x05, 512);
locked = pll_28nm_poll_for_ready(pll_28nm, max_reads, timeout_us);
if (unlikely(!locked))
dev_err(dev, "DSI PLL lock failed\n");
else
DBG("DSI PLL lock success");
return locked ? 0 : -EINVAL;
}
static void dsi_pll_28nm_disable_seq(struct msm_dsi_pll *pll)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
DBG("id=%d", pll_28nm->id);
pll_write(pll_28nm->mmio + REG_DSI_28nm_PHY_PLL_GLB_CFG, 0x00);
}
static void dsi_pll_28nm_save_state(struct msm_dsi_pll *pll)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
void __iomem *base = pll_28nm->mmio;
cached_state->postdiv3 =
pll_read(base + REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG);
cached_state->postdiv1 =
pll_read(base + REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG);
cached_state->byte_mux = pll_read(base + REG_DSI_28nm_PHY_PLL_VREG_CFG);
cached_state->vco_rate = __clk_get_rate(pll->clk_hw.clk);
}
static int dsi_pll_28nm_restore_state(struct msm_dsi_pll *pll)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
void __iomem *base = pll_28nm->mmio;
int ret;
if ((cached_state->vco_rate != 0) &&
(cached_state->vco_rate == __clk_get_rate(pll->clk_hw.clk))) {
ret = dsi_pll_28nm_clk_set_rate(&pll->clk_hw,
cached_state->vco_rate, 0);
if (ret) {
dev_err(&pll_28nm->pdev->dev,
"restore vco rate failed. ret=%d\n", ret);
return ret;
}
pll_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG,
cached_state->postdiv3);
pll_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG,
cached_state->postdiv1);
pll_write(base + REG_DSI_28nm_PHY_PLL_VREG_CFG,
cached_state->byte_mux);
cached_state->vco_rate = 0;
}
return 0;
}
static int dsi_pll_28nm_get_provider(struct msm_dsi_pll *pll,
struct clk **byte_clk_provider,
struct clk **pixel_clk_provider)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
if (byte_clk_provider)
*byte_clk_provider = pll_28nm->provided_clks[DSI_BYTE_PLL_CLK];
if (pixel_clk_provider)
*pixel_clk_provider =
pll_28nm->provided_clks[DSI_PIXEL_PLL_CLK];
return 0;
}
static void dsi_pll_28nm_destroy(struct msm_dsi_pll *pll)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
int i;
msm_dsi_pll_helper_unregister_clks(pll_28nm->pdev,
pll_28nm->clks, pll_28nm->num_clks);
for (i = 0; i < NUM_PROVIDED_CLKS; i++)
pll_28nm->provided_clks[i] = NULL;
pll_28nm->num_clks = 0;
pll_28nm->clk_data.clks = NULL;
pll_28nm->clk_data.clk_num = 0;
}
static int pll_28nm_register(struct dsi_pll_28nm *pll_28nm)
{
char clk_name[32], parent1[32], parent2[32], vco_name[32];
struct clk_init_data vco_init = {
.parent_names = (const char *[]){ "xo" },
.num_parents = 1,
.name = vco_name,
.ops = &clk_ops_dsi_pll_28nm_vco,
};
struct device *dev = &pll_28nm->pdev->dev;
struct clk **clks = pll_28nm->clks;
struct clk **provided_clks = pll_28nm->provided_clks;
int num = 0;
int ret;
DBG("%d", pll_28nm->id);
snprintf(vco_name, 32, "dsi%dvco_clk", pll_28nm->id);
pll_28nm->base.clk_hw.init = &vco_init;
clks[num++] = clk_register(dev, &pll_28nm->base.clk_hw);
snprintf(clk_name, 32, "dsi%danalog_postdiv_clk", pll_28nm->id);
snprintf(parent1, 32, "dsi%dvco_clk", pll_28nm->id);
clks[num++] = clk_register_divider(dev, clk_name,
parent1, CLK_SET_RATE_PARENT,
pll_28nm->mmio +
REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG,
0, 4, 0, NULL);
snprintf(clk_name, 32, "dsi%dindirect_path_div2_clk", pll_28nm->id);
snprintf(parent1, 32, "dsi%danalog_postdiv_clk", pll_28nm->id);
clks[num++] = clk_register_fixed_factor(dev, clk_name,
parent1, CLK_SET_RATE_PARENT,
1, 2);
snprintf(clk_name, 32, "dsi%dpll", pll_28nm->id);
snprintf(parent1, 32, "dsi%dvco_clk", pll_28nm->id);
clks[num++] = provided_clks[DSI_PIXEL_PLL_CLK] =
clk_register_divider(dev, clk_name,
parent1, 0, pll_28nm->mmio +
REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG,
0, 8, 0, NULL);
snprintf(clk_name, 32, "dsi%dbyte_mux", pll_28nm->id);
snprintf(parent1, 32, "dsi%dvco_clk", pll_28nm->id);
snprintf(parent2, 32, "dsi%dindirect_path_div2_clk", pll_28nm->id);
clks[num++] = clk_register_mux(dev, clk_name,
(const char *[]){
parent1, parent2
}, 2, CLK_SET_RATE_PARENT, pll_28nm->mmio +
REG_DSI_28nm_PHY_PLL_VREG_CFG, 1, 1, 0, NULL);
snprintf(clk_name, 32, "dsi%dpllbyte", pll_28nm->id);
snprintf(parent1, 32, "dsi%dbyte_mux", pll_28nm->id);
clks[num++] = provided_clks[DSI_BYTE_PLL_CLK] =
clk_register_fixed_factor(dev, clk_name,
parent1, CLK_SET_RATE_PARENT, 1, 4);
pll_28nm->num_clks = num;
pll_28nm->clk_data.clk_num = NUM_PROVIDED_CLKS;
pll_28nm->clk_data.clks = provided_clks;
ret = of_clk_add_provider(dev->of_node,
of_clk_src_onecell_get, &pll_28nm->clk_data);
if (ret) {
dev_err(dev, "failed to register clk provider: %d\n", ret);
return ret;
}
return 0;
}
struct msm_dsi_pll *msm_dsi_pll_28nm_init(struct platform_device *pdev,
enum msm_dsi_phy_type type, int id)
{
struct dsi_pll_28nm *pll_28nm;
struct msm_dsi_pll *pll;
int ret;
if (!pdev)
return ERR_PTR(-ENODEV);
pll_28nm = devm_kzalloc(&pdev->dev, sizeof(*pll_28nm), GFP_KERNEL);
if (!pll_28nm)
return ERR_PTR(-ENOMEM);
pll_28nm->pdev = pdev;
pll_28nm->id = id;
pll_28nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL");
if (IS_ERR_OR_NULL(pll_28nm->mmio)) {
dev_err(&pdev->dev, "%s: failed to map pll base\n", __func__);
return ERR_PTR(-ENOMEM);
}
pll = &pll_28nm->base;
pll->min_rate = VCO_MIN_RATE;
pll->max_rate = VCO_MAX_RATE;
pll->get_provider = dsi_pll_28nm_get_provider;
pll->destroy = dsi_pll_28nm_destroy;
pll->disable_seq = dsi_pll_28nm_disable_seq;
pll->save_state = dsi_pll_28nm_save_state;
pll->restore_state = dsi_pll_28nm_restore_state;
if (type == MSM_DSI_PHY_28NM_HPM) {
pll_28nm->vco_delay = 1;
pll->en_seq_cnt = 3;
pll->enable_seqs[0] = dsi_pll_28nm_enable_seq_hpm;
pll->enable_seqs[1] = dsi_pll_28nm_enable_seq_hpm;
pll->enable_seqs[2] = dsi_pll_28nm_enable_seq_hpm;
} else if (type == MSM_DSI_PHY_28NM_LP) {
pll_28nm->vco_delay = 1000;
pll->en_seq_cnt = 1;
pll->enable_seqs[0] = dsi_pll_28nm_enable_seq_lp;
} else {
dev_err(&pdev->dev, "phy type (%d) is not 28nm\n", type);
return ERR_PTR(-EINVAL);
}
ret = pll_28nm_register(pll_28nm);
if (ret) {
dev_err(&pdev->dev, "failed to register PLL: %d\n", ret);
return ERR_PTR(ret);
}
return pll;
}