OpenCloudOS-Kernel/drivers/md/raid0.h

34 lines
951 B
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _RAID0_H
#define _RAID0_H
struct strip_zone {
sector_t zone_end; /* Start of the next zone (in sectors) */
sector_t dev_start; /* Zone offset in real dev (in sectors) */
int nb_dev; /* # of devices attached to the zone */
md/raid0: add discard support for the 'original' layout We've found that using raid0 with the 'original' layout and discard enabled with different disk sizes (such that at least two zones are created) can result in data corruption. This is due to the fact that the discard handling in 'raid0_handle_discard()' assumes the 'alternate' layout. We've seen this corruption using ext4 but other filesystems are likely susceptible as well. More specifically, while multiple zones are necessary to create the corruption, the corruption may not occur with multiple zones if they layout in such a way the layout matches what the 'alternate' layout would have produced. Thus, not all raid0 devices with the 'original' layout, different size disks and discard enabled will encounter this corruption. The 3.14 kernel inadvertently changed the raid0 disk layout for different size disks. Thus, running a pre-3.14 kernel and post-3.14 kernel on the same raid0 array could corrupt data. This lead to the creation of the 'original' layout (to match the pre-3.14 layout) and the 'alternate' layout (to match the post 3.14 layout) in the 5.4 kernel time frame and an option to tell the kernel which layout to use (since it couldn't be autodetected). However, when the 'original' layout was added back to 5.4 discard support for the 'original' layout was not added leading this issue. I've been able to reliably reproduce the corruption with the following test case: 1. create raid0 array with different size disks using original layout 2. mkfs 3. mount -o discard 4. create lots of files 5. remove 1/2 the files 6. fstrim -a (or just the mount point for the raid0 array) 7. umount 8. fsck -fn /dev/md0 (spews all sorts of corruptions) Let's fix this by adding proper discard support to the 'original' layout. The fix 'maps' the 'original' layout disks to the order in which they are read/written such that we can compare the disks in the same way that the current 'alternate' layout does. A 'disk_shift' field is added to 'struct strip_zone'. This could be computed on the fly in raid0_handle_discard() but by adding this field, we save some computation in the discard path. Note we could also potentially fix this by re-ordering the disks in the zones that follow the first one, and then always read/writing them using the 'alternate' layout. However, that is seen as a more substantial change, and we are attempting the least invasive fix at this time to remedy the corruption. I've verified the change using the reproducer mentioned above. Typically, the corruption is seen after less than 3 iterations, while the patch has run 500+ iterations. Cc: NeilBrown <neilb@suse.de> Cc: Song Liu <song@kernel.org> Fixes: c84a1372df92 ("md/raid0: avoid RAID0 data corruption due to layout confusion.") Cc: stable@vger.kernel.org Signed-off-by: Jason Baron <jbaron@akamai.com> Signed-off-by: Song Liu <song@kernel.org> Link: https://lore.kernel.org/r/20230623180523.1901230-1-jbaron@akamai.com
2023-06-24 02:05:23 +08:00
int disk_shift; /* start disk for the original layout */
};
/* Linux 3.14 (20d0189b101) made an unintended change to
* the RAID0 layout for multi-zone arrays (where devices aren't all
* the same size.
* RAID0_ORIG_LAYOUT restores the original layout
* RAID0_ALT_MULTIZONE_LAYOUT uses the altered layout
* The layouts are identical when there is only one zone (all
* devices the same size).
*/
enum r0layout {
RAID0_ORIG_LAYOUT = 1,
RAID0_ALT_MULTIZONE_LAYOUT = 2,
};
struct r0conf {
struct strip_zone *strip_zone;
struct md_rdev **devlist; /* lists of rdevs, pointed to
* by strip_zone->dev */
int nr_strip_zones;
enum r0layout layout;
};
#endif