OpenCloudOS-Kernel/fs/nfs/nfs4session.h

184 lines
5.2 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* fs/nfs/nfs4session.h
*
* Copyright (c) 2012 Trond Myklebust <Trond.Myklebust@netapp.com>
*
*/
#ifndef __LINUX_FS_NFS_NFS4SESSION_H
#define __LINUX_FS_NFS_NFS4SESSION_H
/* maximum number of slots to use */
#define NFS4_DEF_SLOT_TABLE_SIZE (64U)
#define NFS4_DEF_CB_SLOT_TABLE_SIZE (1U)
#define NFS4_MAX_SLOT_TABLE (1024U)
#define NFS4_NO_SLOT ((u32)-1)
#if IS_ENABLED(CONFIG_NFS_V4)
/* Sessions slot seqid */
struct nfs4_slot {
struct nfs4_slot_table *table;
struct nfs4_slot *next;
unsigned long generation;
u32 slot_nr;
u32 seq_nr;
unsigned int interrupted : 1,
privileged : 1,
seq_done : 1;
};
/* Sessions */
enum nfs4_slot_tbl_state {
NFS4_SLOT_TBL_DRAINING,
};
#define SLOT_TABLE_SZ DIV_ROUND_UP(NFS4_MAX_SLOT_TABLE, 8*sizeof(long))
struct nfs4_slot_table {
struct nfs4_session *session; /* Parent session */
struct nfs4_slot *slots; /* seqid per slot */
unsigned long used_slots[SLOT_TABLE_SZ]; /* used/unused bitmap */
spinlock_t slot_tbl_lock;
struct rpc_wait_queue slot_tbl_waitq; /* allocators may wait here */
wait_queue_head_t slot_waitq; /* Completion wait on slot */
u32 max_slots; /* # slots in table */
u32 max_slotid; /* Max allowed slotid value */
u32 highest_used_slotid; /* sent to server on each SEQ.
* op for dynamic resizing */
u32 target_highest_slotid; /* Server max_slot target */
u32 server_highest_slotid; /* Server highest slotid */
s32 d_target_highest_slotid; /* Derivative */
s32 d2_target_highest_slotid; /* 2nd derivative */
unsigned long generation; /* Generation counter for
target_highest_slotid */
struct completion complete;
unsigned long slot_tbl_state;
};
/*
* Session related parameters
*/
struct nfs4_session {
struct nfs4_sessionid sess_id;
u32 flags;
unsigned long session_state;
u32 hash_alg;
u32 ssv_len;
/* The fore and back channel */
struct nfs4_channel_attrs fc_attrs;
struct nfs4_slot_table fc_slot_table;
struct nfs4_channel_attrs bc_attrs;
struct nfs4_slot_table bc_slot_table;
struct nfs_client *clp;
};
enum nfs4_session_state {
NFS4_SESSION_INITING,
NFS4_SESSION_ESTABLISHED,
};
extern int nfs4_setup_slot_table(struct nfs4_slot_table *tbl,
unsigned int max_reqs, const char *queue);
extern void nfs4_shutdown_slot_table(struct nfs4_slot_table *tbl);
extern struct nfs4_slot *nfs4_alloc_slot(struct nfs4_slot_table *tbl);
extern struct nfs4_slot *nfs4_lookup_slot(struct nfs4_slot_table *tbl, u32 slotid);
extern int nfs4_slot_wait_on_seqid(struct nfs4_slot_table *tbl,
u32 slotid, u32 seq_nr,
unsigned long timeout);
extern bool nfs4_try_to_lock_slot(struct nfs4_slot_table *tbl, struct nfs4_slot *slot);
extern void nfs4_free_slot(struct nfs4_slot_table *tbl, struct nfs4_slot *slot);
extern void nfs4_slot_tbl_drain_complete(struct nfs4_slot_table *tbl);
bool nfs41_wake_and_assign_slot(struct nfs4_slot_table *tbl,
struct nfs4_slot *slot);
void nfs41_wake_slot_table(struct nfs4_slot_table *tbl);
static inline bool nfs4_slot_tbl_draining(struct nfs4_slot_table *tbl)
{
return !!test_bit(NFS4_SLOT_TBL_DRAINING, &tbl->slot_tbl_state);
}
static inline bool nfs4_test_locked_slot(const struct nfs4_slot_table *tbl,
u32 slotid)
{
return !!test_bit(slotid, tbl->used_slots);
}
static inline struct nfs4_session *nfs4_get_session(const struct nfs_client *clp)
{
return clp->cl_session;
}
#if defined(CONFIG_NFS_V4_1)
extern void nfs41_set_target_slotid(struct nfs4_slot_table *tbl,
u32 target_highest_slotid);
extern void nfs41_update_target_slotid(struct nfs4_slot_table *tbl,
struct nfs4_slot *slot,
struct nfs4_sequence_res *res);
extern int nfs4_setup_session_slot_tables(struct nfs4_session *ses);
extern struct nfs4_session *nfs4_alloc_session(struct nfs_client *clp);
extern void nfs4_destroy_session(struct nfs4_session *session);
extern int nfs4_init_session(struct nfs_client *clp);
extern int nfs4_init_ds_session(struct nfs_client *, unsigned long);
/*
* Determine if sessions are in use.
*/
static inline int nfs4_has_session(const struct nfs_client *clp)
{
if (clp->cl_session)
return 1;
return 0;
}
static inline int nfs4_has_persistent_session(const struct nfs_client *clp)
{
if (nfs4_has_session(clp))
return (clp->cl_session->flags & SESSION4_PERSIST);
return 0;
}
static inline void nfs4_copy_sessionid(struct nfs4_sessionid *dst,
const struct nfs4_sessionid *src)
{
memcpy(dst->data, src->data, NFS4_MAX_SESSIONID_LEN);
}
#ifdef CONFIG_CRC32
/*
* nfs_session_id_hash - calculate the crc32 hash for the session id
* @session - pointer to session
*/
#define nfs_session_id_hash(sess_id) \
(~crc32_le(0xFFFFFFFF, &(sess_id)->data[0], sizeof((sess_id)->data)))
#else
#define nfs_session_id_hash(session) (0)
#endif
#else /* defined(CONFIG_NFS_V4_1) */
static inline int nfs4_init_session(struct nfs_client *clp)
{
return 0;
}
/*
* Determine if sessions are in use.
*/
static inline int nfs4_has_session(const struct nfs_client *clp)
{
return 0;
}
static inline int nfs4_has_persistent_session(const struct nfs_client *clp)
{
return 0;
}
#define nfs_session_id_hash(session) (0)
#endif /* defined(CONFIG_NFS_V4_1) */
#endif /* IS_ENABLED(CONFIG_NFS_V4) */
#endif /* __LINUX_FS_NFS_NFS4SESSION_H */