OpenCloudOS-Kernel/arch/powerpc/include/asm/kvm_book3s.h

317 lines
9.6 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright SUSE Linux Products GmbH 2009
*
* Authors: Alexander Graf <agraf@suse.de>
*/
#ifndef __ASM_KVM_BOOK3S_H__
#define __ASM_KVM_BOOK3S_H__
#include <linux/types.h>
#include <linux/kvm_host.h>
#include <asm/kvm_book3s_asm.h>
struct kvmppc_bat {
u64 raw;
u32 bepi;
u32 bepi_mask;
u32 brpn;
u8 wimg;
u8 pp;
bool vs : 1;
bool vp : 1;
};
struct kvmppc_sid_map {
u64 guest_vsid;
u64 guest_esid;
u64 host_vsid;
bool valid : 1;
};
#define SID_MAP_BITS 9
#define SID_MAP_NUM (1 << SID_MAP_BITS)
#define SID_MAP_MASK (SID_MAP_NUM - 1)
#ifdef CONFIG_PPC_BOOK3S_64
#define SID_CONTEXTS 1
#else
#define SID_CONTEXTS 128
#define VSID_POOL_SIZE (SID_CONTEXTS * 16)
#endif
struct hpte_cache {
struct hlist_node list_pte;
struct hlist_node list_pte_long;
struct hlist_node list_vpte;
struct hlist_node list_vpte_long;
KVM: PPC: Book3S PR: Allow guest to use 64k pages This adds the code to interpret 64k HPTEs in the guest hashed page table (HPT), 64k SLB entries, and to tell the guest about 64k pages in kvm_vm_ioctl_get_smmu_info(). Guest 64k pages are still shadowed by 4k pages. This also adds another hash table to the four we have already in book3s_mmu_hpte.c to allow us to find all the PTEs that we have instantiated that match a given 64k guest page. The tlbie instruction changed starting with POWER6 to use a bit in the RB operand to indicate large page invalidations, and to use other RB bits to indicate the base and actual page sizes and the segment size. 64k pages came in slightly earlier, with POWER5++. We use one bit in vcpu->arch.hflags to indicate that the emulated cpu supports 64k pages, and another to indicate that it has the new tlbie definition. The KVM_PPC_GET_SMMU_INFO ioctl presents a bit of a problem, because the MMU capabilities depend on which CPU model we're emulating, but it is a VM ioctl not a VCPU ioctl and therefore doesn't get passed a VCPU fd. In addition, commonly-used userspace (QEMU) calls it before setting the PVR for any VCPU. Therefore, as a best effort we look at the first vcpu in the VM and return 64k pages or not depending on its capabilities. We also make the PVR default to the host PVR on recent CPUs that support 1TB segments (and therefore multiple page sizes as well) so that KVM_PPC_GET_SMMU_INFO will include 64k page and 1TB segment support on those CPUs. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:44 +08:00
#ifdef CONFIG_PPC_BOOK3S_64
struct hlist_node list_vpte_64k;
#endif
struct rcu_head rcu_head;
u64 host_vpn;
u64 pfn;
ulong slot;
struct kvmppc_pte pte;
int pagesize;
};
struct kvmppc_vcpu_book3s {
struct kvmppc_sid_map sid_map[SID_MAP_NUM];
struct {
u64 esid;
u64 vsid;
} slb_shadow[64];
u8 slb_shadow_max;
struct kvmppc_bat ibat[8];
struct kvmppc_bat dbat[8];
u64 hid[6];
u64 gqr[8];
u64 sdr1;
u64 hior;
u64 msr_mask;
u64 purr_offset;
u64 spurr_offset;
#ifdef CONFIG_PPC_BOOK3S_32
u32 vsid_pool[VSID_POOL_SIZE];
u32 vsid_next;
#else
u64 proto_vsid_first;
u64 proto_vsid_max;
u64 proto_vsid_next;
#endif
int context_id[SID_CONTEXTS];
bool hior_explicit; /* HIOR is set by ioctl, not PVR */
struct hlist_head hpte_hash_pte[HPTEG_HASH_NUM_PTE];
struct hlist_head hpte_hash_pte_long[HPTEG_HASH_NUM_PTE_LONG];
struct hlist_head hpte_hash_vpte[HPTEG_HASH_NUM_VPTE];
struct hlist_head hpte_hash_vpte_long[HPTEG_HASH_NUM_VPTE_LONG];
KVM: PPC: Book3S PR: Allow guest to use 64k pages This adds the code to interpret 64k HPTEs in the guest hashed page table (HPT), 64k SLB entries, and to tell the guest about 64k pages in kvm_vm_ioctl_get_smmu_info(). Guest 64k pages are still shadowed by 4k pages. This also adds another hash table to the four we have already in book3s_mmu_hpte.c to allow us to find all the PTEs that we have instantiated that match a given 64k guest page. The tlbie instruction changed starting with POWER6 to use a bit in the RB operand to indicate large page invalidations, and to use other RB bits to indicate the base and actual page sizes and the segment size. 64k pages came in slightly earlier, with POWER5++. We use one bit in vcpu->arch.hflags to indicate that the emulated cpu supports 64k pages, and another to indicate that it has the new tlbie definition. The KVM_PPC_GET_SMMU_INFO ioctl presents a bit of a problem, because the MMU capabilities depend on which CPU model we're emulating, but it is a VM ioctl not a VCPU ioctl and therefore doesn't get passed a VCPU fd. In addition, commonly-used userspace (QEMU) calls it before setting the PVR for any VCPU. Therefore, as a best effort we look at the first vcpu in the VM and return 64k pages or not depending on its capabilities. We also make the PVR default to the host PVR on recent CPUs that support 1TB segments (and therefore multiple page sizes as well) so that KVM_PPC_GET_SMMU_INFO will include 64k page and 1TB segment support on those CPUs. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:44 +08:00
#ifdef CONFIG_PPC_BOOK3S_64
struct hlist_head hpte_hash_vpte_64k[HPTEG_HASH_NUM_VPTE_64K];
#endif
int hpte_cache_count;
spinlock_t mmu_lock;
};
#define CONTEXT_HOST 0
#define CONTEXT_GUEST 1
#define CONTEXT_GUEST_END 2
#define VSID_REAL 0x07ffffffffc00000ULL
#define VSID_BAT 0x07ffffffffb00000ULL
#define VSID_64K 0x0800000000000000ULL
#define VSID_1T 0x1000000000000000ULL
#define VSID_REAL_DR 0x2000000000000000ULL
#define VSID_REAL_IR 0x4000000000000000ULL
#define VSID_PR 0x8000000000000000ULL
extern void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, ulong ea, ulong ea_mask);
extern void kvmppc_mmu_pte_vflush(struct kvm_vcpu *vcpu, u64 vp, u64 vp_mask);
extern void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end);
extern void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 new_msr);
extern void kvmppc_mmu_book3s_64_init(struct kvm_vcpu *vcpu);
extern void kvmppc_mmu_book3s_32_init(struct kvm_vcpu *vcpu);
KVM: PPC: Add support for Book3S processors in hypervisor mode This adds support for KVM running on 64-bit Book 3S processors, specifically POWER7, in hypervisor mode. Using hypervisor mode means that the guest can use the processor's supervisor mode. That means that the guest can execute privileged instructions and access privileged registers itself without trapping to the host. This gives excellent performance, but does mean that KVM cannot emulate a processor architecture other than the one that the hardware implements. This code assumes that the guest is running paravirtualized using the PAPR (Power Architecture Platform Requirements) interface, which is the interface that IBM's PowerVM hypervisor uses. That means that existing Linux distributions that run on IBM pSeries machines will also run under KVM without modification. In order to communicate the PAPR hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code to include/linux/kvm.h. Currently the choice between book3s_hv support and book3s_pr support (i.e. the existing code, which runs the guest in user mode) has to be made at kernel configuration time, so a given kernel binary can only do one or the other. This new book3s_hv code doesn't support MMIO emulation at present. Since we are running paravirtualized guests, this isn't a serious restriction. With the guest running in supervisor mode, most exceptions go straight to the guest. We will never get data or instruction storage or segment interrupts, alignment interrupts, decrementer interrupts, program interrupts, single-step interrupts, etc., coming to the hypervisor from the guest. Therefore this introduces a new KVMTEST_NONHV macro for the exception entry path so that we don't have to do the KVM test on entry to those exception handlers. We do however get hypervisor decrementer, hypervisor data storage, hypervisor instruction storage, and hypervisor emulation assist interrupts, so we have to handle those. In hypervisor mode, real-mode accesses can access all of RAM, not just a limited amount. Therefore we put all the guest state in the vcpu.arch and use the shadow_vcpu in the PACA only for temporary scratch space. We allocate the vcpu with kzalloc rather than vzalloc, and we don't use anything in the kvmppc_vcpu_book3s struct, so we don't allocate it. We don't have a shared page with the guest, but we still need a kvm_vcpu_arch_shared struct to store the values of various registers, so we include one in the vcpu_arch struct. The POWER7 processor has a restriction that all threads in a core have to be in the same partition. MMU-on kernel code counts as a partition (partition 0), so we have to do a partition switch on every entry to and exit from the guest. At present we require the host and guest to run in single-thread mode because of this hardware restriction. This code allocates a hashed page table for the guest and initializes it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We require that the guest memory is allocated using 16MB huge pages, in order to simplify the low-level memory management. This also means that we can get away without tracking paging activity in the host for now, since huge pages can't be paged or swapped. This also adds a few new exports needed by the book3s_hv code. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
extern void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu);
KVM: PPC: Book3S PR: Better handling of host-side read-only pages Currently we request write access to all pages that get mapped into the guest, even if the guest is only loading from the page. This reduces the effectiveness of KSM because it means that we unshare every page we access. Also, we always set the changed (C) bit in the guest HPTE if it allows writing, even for a guest load. This fixes both these problems. We pass an 'iswrite' flag to the mmu.xlate() functions and to kvmppc_mmu_map_page() to indicate whether the access is a load or a store. The mmu.xlate() functions now only set C for stores. kvmppc_gfn_to_pfn() now calls gfn_to_pfn_prot() instead of gfn_to_pfn() so that it can indicate whether we need write access to the page, and get back a 'writable' flag to indicate whether the page is writable or not. If that 'writable' flag is clear, we then make the host HPTE read-only even if the guest HPTE allowed writing. This means that we can get a protection fault when the guest writes to a page that it has mapped read-write but which is read-only on the host side (perhaps due to KSM having merged the page). Thus we now call kvmppc_handle_pagefault() for protection faults as well as HPTE not found faults. In kvmppc_handle_pagefault(), if the access was allowed by the guest HPTE and we thus need to install a new host HPTE, we then need to remove the old host HPTE if there is one. This is done with a new function, kvmppc_mmu_unmap_page(), which uses kvmppc_mmu_pte_vflush() to find and remove the old host HPTE. Since the memslot-related functions require the KVM SRCU read lock to be held, this adds srcu_read_lock/unlock pairs around the calls to kvmppc_handle_pagefault(). Finally, this changes kvmppc_mmu_book3s_32_xlate_pte() to not ignore guest HPTEs that don't permit access, and to return -EPERM for accesses that are not permitted by the page protections. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:51 +08:00
extern int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte,
bool iswrite);
extern void kvmppc_mmu_unmap_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte);
extern int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr);
extern void kvmppc_mmu_flush_segment(struct kvm_vcpu *vcpu, ulong eaddr, ulong seg_size);
extern void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu);
extern int kvmppc_book3s_hv_page_fault(struct kvm_run *run,
struct kvm_vcpu *vcpu, unsigned long addr,
unsigned long status);
extern long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr,
unsigned long slb_v, unsigned long valid);
extern void kvmppc_mmu_hpte_cache_map(struct kvm_vcpu *vcpu, struct hpte_cache *pte);
extern struct hpte_cache *kvmppc_mmu_hpte_cache_next(struct kvm_vcpu *vcpu);
KVM: PPC: Book3S PR: Use mmu_notifier_retry() in kvmppc_mmu_map_page() When the MM code is invalidating a range of pages, it calls the KVM kvm_mmu_notifier_invalidate_range_start() notifier function, which calls kvm_unmap_hva_range(), which arranges to flush all the existing host HPTEs for guest pages. However, the Linux PTEs for the range being flushed are still valid at that point. We are not supposed to establish any new references to pages in the range until the ...range_end() notifier gets called. The PPC-specific KVM code doesn't get any explicit notification of that; instead, we are supposed to use mmu_notifier_retry() to test whether we are or have been inside a range flush notifier pair while we have been getting a page and instantiating a host HPTE for the page. This therefore adds a call to mmu_notifier_retry inside kvmppc_mmu_map_page(). This call is inside a region locked with kvm->mmu_lock, which is the same lock that is called by the KVM MMU notifier functions, thus ensuring that no new notification can proceed while we are in the locked region. Inside this region we also create the host HPTE and link the corresponding hpte_cache structure into the lists used to find it later. We cannot allocate the hpte_cache structure inside this locked region because that can lead to deadlock, so we allocate it outside the region and free it if we end up not using it. This also moves the updates of vcpu3s->hpte_cache_count inside the regions locked with vcpu3s->mmu_lock, and does the increment in kvmppc_mmu_hpte_cache_map() when the pte is added to the cache rather than when it is allocated, in order that the hpte_cache_count is accurate. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:52 +08:00
extern void kvmppc_mmu_hpte_cache_free(struct hpte_cache *pte);
extern void kvmppc_mmu_hpte_destroy(struct kvm_vcpu *vcpu);
extern int kvmppc_mmu_hpte_init(struct kvm_vcpu *vcpu);
extern void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte);
extern int kvmppc_mmu_hpte_sysinit(void);
extern void kvmppc_mmu_hpte_sysexit(void);
KVM: PPC: Add support for Book3S processors in hypervisor mode This adds support for KVM running on 64-bit Book 3S processors, specifically POWER7, in hypervisor mode. Using hypervisor mode means that the guest can use the processor's supervisor mode. That means that the guest can execute privileged instructions and access privileged registers itself without trapping to the host. This gives excellent performance, but does mean that KVM cannot emulate a processor architecture other than the one that the hardware implements. This code assumes that the guest is running paravirtualized using the PAPR (Power Architecture Platform Requirements) interface, which is the interface that IBM's PowerVM hypervisor uses. That means that existing Linux distributions that run on IBM pSeries machines will also run under KVM without modification. In order to communicate the PAPR hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code to include/linux/kvm.h. Currently the choice between book3s_hv support and book3s_pr support (i.e. the existing code, which runs the guest in user mode) has to be made at kernel configuration time, so a given kernel binary can only do one or the other. This new book3s_hv code doesn't support MMIO emulation at present. Since we are running paravirtualized guests, this isn't a serious restriction. With the guest running in supervisor mode, most exceptions go straight to the guest. We will never get data or instruction storage or segment interrupts, alignment interrupts, decrementer interrupts, program interrupts, single-step interrupts, etc., coming to the hypervisor from the guest. Therefore this introduces a new KVMTEST_NONHV macro for the exception entry path so that we don't have to do the KVM test on entry to those exception handlers. We do however get hypervisor decrementer, hypervisor data storage, hypervisor instruction storage, and hypervisor emulation assist interrupts, so we have to handle those. In hypervisor mode, real-mode accesses can access all of RAM, not just a limited amount. Therefore we put all the guest state in the vcpu.arch and use the shadow_vcpu in the PACA only for temporary scratch space. We allocate the vcpu with kzalloc rather than vzalloc, and we don't use anything in the kvmppc_vcpu_book3s struct, so we don't allocate it. We don't have a shared page with the guest, but we still need a kvm_vcpu_arch_shared struct to store the values of various registers, so we include one in the vcpu_arch struct. The POWER7 processor has a restriction that all threads in a core have to be in the same partition. MMU-on kernel code counts as a partition (partition 0), so we have to do a partition switch on every entry to and exit from the guest. At present we require the host and guest to run in single-thread mode because of this hardware restriction. This code allocates a hashed page table for the guest and initializes it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We require that the guest memory is allocated using 16MB huge pages, in order to simplify the low-level memory management. This also means that we can get away without tracking paging activity in the host for now, since huge pages can't be paged or swapped. This also adds a few new exports needed by the book3s_hv code. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
extern int kvmppc_mmu_hv_init(void);
extern int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, bool data);
extern int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, bool data);
extern void kvmppc_book3s_queue_irqprio(struct kvm_vcpu *vcpu, unsigned int vec);
extern void kvmppc_book3s_dequeue_irqprio(struct kvm_vcpu *vcpu,
unsigned int vec);
KVM: PPC: Add support for Book3S processors in hypervisor mode This adds support for KVM running on 64-bit Book 3S processors, specifically POWER7, in hypervisor mode. Using hypervisor mode means that the guest can use the processor's supervisor mode. That means that the guest can execute privileged instructions and access privileged registers itself without trapping to the host. This gives excellent performance, but does mean that KVM cannot emulate a processor architecture other than the one that the hardware implements. This code assumes that the guest is running paravirtualized using the PAPR (Power Architecture Platform Requirements) interface, which is the interface that IBM's PowerVM hypervisor uses. That means that existing Linux distributions that run on IBM pSeries machines will also run under KVM without modification. In order to communicate the PAPR hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code to include/linux/kvm.h. Currently the choice between book3s_hv support and book3s_pr support (i.e. the existing code, which runs the guest in user mode) has to be made at kernel configuration time, so a given kernel binary can only do one or the other. This new book3s_hv code doesn't support MMIO emulation at present. Since we are running paravirtualized guests, this isn't a serious restriction. With the guest running in supervisor mode, most exceptions go straight to the guest. We will never get data or instruction storage or segment interrupts, alignment interrupts, decrementer interrupts, program interrupts, single-step interrupts, etc., coming to the hypervisor from the guest. Therefore this introduces a new KVMTEST_NONHV macro for the exception entry path so that we don't have to do the KVM test on entry to those exception handlers. We do however get hypervisor decrementer, hypervisor data storage, hypervisor instruction storage, and hypervisor emulation assist interrupts, so we have to handle those. In hypervisor mode, real-mode accesses can access all of RAM, not just a limited amount. Therefore we put all the guest state in the vcpu.arch and use the shadow_vcpu in the PACA only for temporary scratch space. We allocate the vcpu with kzalloc rather than vzalloc, and we don't use anything in the kvmppc_vcpu_book3s struct, so we don't allocate it. We don't have a shared page with the guest, but we still need a kvm_vcpu_arch_shared struct to store the values of various registers, so we include one in the vcpu_arch struct. The POWER7 processor has a restriction that all threads in a core have to be in the same partition. MMU-on kernel code counts as a partition (partition 0), so we have to do a partition switch on every entry to and exit from the guest. At present we require the host and guest to run in single-thread mode because of this hardware restriction. This code allocates a hashed page table for the guest and initializes it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We require that the guest memory is allocated using 16MB huge pages, in order to simplify the low-level memory management. This also means that we can get away without tracking paging activity in the host for now, since huge pages can't be paged or swapped. This also adds a few new exports needed by the book3s_hv code. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
extern void kvmppc_inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 flags);
extern void kvmppc_set_bat(struct kvm_vcpu *vcpu, struct kvmppc_bat *bat,
bool upper, u32 val);
extern void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr);
extern int kvmppc_emulate_paired_single(struct kvm_run *run, struct kvm_vcpu *vcpu);
KVM: PPC: Book3S PR: Better handling of host-side read-only pages Currently we request write access to all pages that get mapped into the guest, even if the guest is only loading from the page. This reduces the effectiveness of KSM because it means that we unshare every page we access. Also, we always set the changed (C) bit in the guest HPTE if it allows writing, even for a guest load. This fixes both these problems. We pass an 'iswrite' flag to the mmu.xlate() functions and to kvmppc_mmu_map_page() to indicate whether the access is a load or a store. The mmu.xlate() functions now only set C for stores. kvmppc_gfn_to_pfn() now calls gfn_to_pfn_prot() instead of gfn_to_pfn() so that it can indicate whether we need write access to the page, and get back a 'writable' flag to indicate whether the page is writable or not. If that 'writable' flag is clear, we then make the host HPTE read-only even if the guest HPTE allowed writing. This means that we can get a protection fault when the guest writes to a page that it has mapped read-write but which is read-only on the host side (perhaps due to KSM having merged the page). Thus we now call kvmppc_handle_pagefault() for protection faults as well as HPTE not found faults. In kvmppc_handle_pagefault(), if the access was allowed by the guest HPTE and we thus need to install a new host HPTE, we then need to remove the old host HPTE if there is one. This is done with a new function, kvmppc_mmu_unmap_page(), which uses kvmppc_mmu_pte_vflush() to find and remove the old host HPTE. Since the memslot-related functions require the KVM SRCU read lock to be held, this adds srcu_read_lock/unlock pairs around the calls to kvmppc_handle_pagefault(). Finally, this changes kvmppc_mmu_book3s_32_xlate_pte() to not ignore guest HPTEs that don't permit access, and to return -EPERM for accesses that are not permitted by the page protections. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:51 +08:00
extern pfn_t kvmppc_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, bool writing,
bool *writable);
extern void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
unsigned long *rmap, long pte_index, int realmode);
extern void kvmppc_invalidate_hpte(struct kvm *kvm, unsigned long *hptep,
unsigned long pte_index);
void kvmppc_clear_ref_hpte(struct kvm *kvm, unsigned long *hptep,
unsigned long pte_index);
extern void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long addr,
unsigned long *nb_ret);
KVM: PPC: Book3S HV: Report VPA and DTL modifications in dirty map At present, the KVM_GET_DIRTY_LOG ioctl doesn't report modifications done by the host to the virtual processor areas (VPAs) and dispatch trace logs (DTLs) registered by the guest. This is because those modifications are done either in real mode or in the host kernel context, and in neither case does the access go through the guest's HPT, and thus no change (C) bit gets set in the guest's HPT. However, the changes done by the host do need to be tracked so that the modified pages get transferred when doing live migration. In order to track these modifications, this adds a dirty flag to the struct representing the VPA/DTL areas, and arranges to set the flag when the VPA/DTL gets modified by the host. Then, when we are collecting the dirty log, we also check the dirty flags for the VPA and DTL for each vcpu and set the relevant bit in the dirty log if necessary. Doing this also means we now need to keep track of the guest physical address of the VPA/DTL areas. So as not to lose track of modifications to a VPA/DTL area when it gets unregistered, or when a new area gets registered in its place, we need to transfer the dirty state to the rmap chain. This adds code to kvmppc_unpin_guest_page() to do that if the area was dirty. To simplify that code, we now require that all VPA, DTL and SLB shadow buffer areas fit within a single host page. Guests already comply with this requirement because pHyp requires that these areas not cross a 4k boundary. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-19 03:51:04 +08:00
extern void kvmppc_unpin_guest_page(struct kvm *kvm, void *addr,
unsigned long gpa, bool dirty);
KVM: PPC: Only get pages when actually needed, not in prepare_memory_region() This removes the code from kvmppc_core_prepare_memory_region() that looked up the VMA for the region being added and called hva_to_page to get the pfns for the memory. We have no guarantee that there will be anything mapped there at the time of the KVM_SET_USER_MEMORY_REGION ioctl call; userspace can do that ioctl and then map memory into the region later. Instead we defer looking up the pfn for each memory page until it is needed, which generally means when the guest does an H_ENTER hcall on the page. Since we can't call get_user_pages in real mode, if we don't already have the pfn for the page, kvmppc_h_enter() will return H_TOO_HARD and we then call kvmppc_virtmode_h_enter() once we get back to kernel context. That calls kvmppc_get_guest_page() to get the pfn for the page, and then calls back to kvmppc_h_enter() to redo the HPTE insertion. When the first vcpu starts executing, we need to have the RMO or VRMA region mapped so that the guest's real mode accesses will work. Thus we now have a check in kvmppc_vcpu_run() to see if the RMO/VRMA is set up and if not, call kvmppc_hv_setup_rma(). It checks if the memslot starting at guest physical 0 now has RMO memory mapped there; if so it sets it up for the guest, otherwise on POWER7 it sets up the VRMA. The function that does that, kvmppc_map_vrma, is now a bit simpler, as it calls kvmppc_virtmode_h_enter instead of creating the HPTE itself. Since we are now potentially updating entries in the slot_phys[] arrays from multiple vcpu threads, we now have a spinlock protecting those updates to ensure that we don't lose track of any references to pages. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:31:00 +08:00
extern long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
long pte_index, unsigned long pteh, unsigned long ptel);
extern long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
long pte_index, unsigned long pteh, unsigned long ptel,
pgd_t *pgdir, bool realmode, unsigned long *idx_ret);
extern long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
unsigned long pte_index, unsigned long avpn,
unsigned long *hpret);
extern long kvmppc_hv_get_dirty_log(struct kvm *kvm,
struct kvm_memory_slot *memslot, unsigned long *map);
extern void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr,
unsigned long mask);
KVM: PPC: book3s_pr: Simplify transitions between virtual and real mode This simplifies the way that the book3s_pr makes the transition to real mode when entering the guest. We now call kvmppc_entry_trampoline (renamed from kvmppc_rmcall) in the base kernel using a normal function call instead of doing an indirect call through a pointer in the vcpu. If kvm is a module, the module loader takes care of generating a trampoline as it does for other calls to functions outside the module. kvmppc_entry_trampoline then disables interrupts and jumps to kvmppc_handler_trampoline_enter in real mode using an rfi[d]. That then uses the link register as the address to return to (potentially in module space) when the guest exits. This also simplifies the way that we call the Linux interrupt handler when we exit the guest due to an external, decrementer or performance monitor interrupt. Instead of turning on the MMU, then deciding that we need to call the Linux handler and turning the MMU back off again, we now go straight to the handler at the point where we would turn the MMU on. The handler will then return to the virtual-mode code (potentially in the module). Along the way, this moves the setting and clearing of the HID5 DCBZ32 bit into real-mode interrupts-off code, and also makes sure that we clear the MSR[RI] bit before loading values into SRR0/1. The net result is that we no longer need any code addresses to be stored in vcpu->arch. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-23 15:41:44 +08:00
extern void kvmppc_entry_trampoline(void);
KVM: PPC: Add support for Book3S processors in hypervisor mode This adds support for KVM running on 64-bit Book 3S processors, specifically POWER7, in hypervisor mode. Using hypervisor mode means that the guest can use the processor's supervisor mode. That means that the guest can execute privileged instructions and access privileged registers itself without trapping to the host. This gives excellent performance, but does mean that KVM cannot emulate a processor architecture other than the one that the hardware implements. This code assumes that the guest is running paravirtualized using the PAPR (Power Architecture Platform Requirements) interface, which is the interface that IBM's PowerVM hypervisor uses. That means that existing Linux distributions that run on IBM pSeries machines will also run under KVM without modification. In order to communicate the PAPR hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code to include/linux/kvm.h. Currently the choice between book3s_hv support and book3s_pr support (i.e. the existing code, which runs the guest in user mode) has to be made at kernel configuration time, so a given kernel binary can only do one or the other. This new book3s_hv code doesn't support MMIO emulation at present. Since we are running paravirtualized guests, this isn't a serious restriction. With the guest running in supervisor mode, most exceptions go straight to the guest. We will never get data or instruction storage or segment interrupts, alignment interrupts, decrementer interrupts, program interrupts, single-step interrupts, etc., coming to the hypervisor from the guest. Therefore this introduces a new KVMTEST_NONHV macro for the exception entry path so that we don't have to do the KVM test on entry to those exception handlers. We do however get hypervisor decrementer, hypervisor data storage, hypervisor instruction storage, and hypervisor emulation assist interrupts, so we have to handle those. In hypervisor mode, real-mode accesses can access all of RAM, not just a limited amount. Therefore we put all the guest state in the vcpu.arch and use the shadow_vcpu in the PACA only for temporary scratch space. We allocate the vcpu with kzalloc rather than vzalloc, and we don't use anything in the kvmppc_vcpu_book3s struct, so we don't allocate it. We don't have a shared page with the guest, but we still need a kvm_vcpu_arch_shared struct to store the values of various registers, so we include one in the vcpu_arch struct. The POWER7 processor has a restriction that all threads in a core have to be in the same partition. MMU-on kernel code counts as a partition (partition 0), so we have to do a partition switch on every entry to and exit from the guest. At present we require the host and guest to run in single-thread mode because of this hardware restriction. This code allocates a hashed page table for the guest and initializes it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We require that the guest memory is allocated using 16MB huge pages, in order to simplify the low-level memory management. This also means that we can get away without tracking paging activity in the host for now, since huge pages can't be paged or swapped. This also adds a few new exports needed by the book3s_hv code. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
extern void kvmppc_hv_entry_trampoline(void);
extern void kvmppc_load_up_fpu(void);
extern void kvmppc_load_up_altivec(void);
extern void kvmppc_load_up_vsx(void);
extern u32 kvmppc_alignment_dsisr(struct kvm_vcpu *vcpu, unsigned int inst);
extern ulong kvmppc_alignment_dar(struct kvm_vcpu *vcpu, unsigned int inst);
extern int kvmppc_h_pr(struct kvm_vcpu *vcpu, unsigned long cmd);
static inline struct kvmppc_vcpu_book3s *to_book3s(struct kvm_vcpu *vcpu)
{
return vcpu->arch.book3s;
}
KVM: PPC: Add support for Book3S processors in hypervisor mode This adds support for KVM running on 64-bit Book 3S processors, specifically POWER7, in hypervisor mode. Using hypervisor mode means that the guest can use the processor's supervisor mode. That means that the guest can execute privileged instructions and access privileged registers itself without trapping to the host. This gives excellent performance, but does mean that KVM cannot emulate a processor architecture other than the one that the hardware implements. This code assumes that the guest is running paravirtualized using the PAPR (Power Architecture Platform Requirements) interface, which is the interface that IBM's PowerVM hypervisor uses. That means that existing Linux distributions that run on IBM pSeries machines will also run under KVM without modification. In order to communicate the PAPR hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code to include/linux/kvm.h. Currently the choice between book3s_hv support and book3s_pr support (i.e. the existing code, which runs the guest in user mode) has to be made at kernel configuration time, so a given kernel binary can only do one or the other. This new book3s_hv code doesn't support MMIO emulation at present. Since we are running paravirtualized guests, this isn't a serious restriction. With the guest running in supervisor mode, most exceptions go straight to the guest. We will never get data or instruction storage or segment interrupts, alignment interrupts, decrementer interrupts, program interrupts, single-step interrupts, etc., coming to the hypervisor from the guest. Therefore this introduces a new KVMTEST_NONHV macro for the exception entry path so that we don't have to do the KVM test on entry to those exception handlers. We do however get hypervisor decrementer, hypervisor data storage, hypervisor instruction storage, and hypervisor emulation assist interrupts, so we have to handle those. In hypervisor mode, real-mode accesses can access all of RAM, not just a limited amount. Therefore we put all the guest state in the vcpu.arch and use the shadow_vcpu in the PACA only for temporary scratch space. We allocate the vcpu with kzalloc rather than vzalloc, and we don't use anything in the kvmppc_vcpu_book3s struct, so we don't allocate it. We don't have a shared page with the guest, but we still need a kvm_vcpu_arch_shared struct to store the values of various registers, so we include one in the vcpu_arch struct. The POWER7 processor has a restriction that all threads in a core have to be in the same partition. MMU-on kernel code counts as a partition (partition 0), so we have to do a partition switch on every entry to and exit from the guest. At present we require the host and guest to run in single-thread mode because of this hardware restriction. This code allocates a hashed page table for the guest and initializes it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We require that the guest memory is allocated using 16MB huge pages, in order to simplify the low-level memory management. This also means that we can get away without tracking paging activity in the host for now, since huge pages can't be paged or swapped. This also adds a few new exports needed by the book3s_hv code. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
/* Also add subarch specific defines */
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
#include <asm/kvm_book3s_32.h>
#endif
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
#include <asm/kvm_book3s_64.h>
#endif
static inline void kvmppc_set_gpr(struct kvm_vcpu *vcpu, int num, ulong val)
{
KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:43 +08:00
vcpu->arch.gpr[num] = val;
}
static inline ulong kvmppc_get_gpr(struct kvm_vcpu *vcpu, int num)
{
KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:43 +08:00
return vcpu->arch.gpr[num];
}
static inline void kvmppc_set_cr(struct kvm_vcpu *vcpu, u32 val)
{
KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:43 +08:00
vcpu->arch.cr = val;
}
static inline u32 kvmppc_get_cr(struct kvm_vcpu *vcpu)
{
KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:43 +08:00
return vcpu->arch.cr;
}
static inline void kvmppc_set_xer(struct kvm_vcpu *vcpu, u32 val)
{
KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:43 +08:00
vcpu->arch.xer = val;
}
static inline u32 kvmppc_get_xer(struct kvm_vcpu *vcpu)
{
KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:43 +08:00
return vcpu->arch.xer;
}
static inline void kvmppc_set_ctr(struct kvm_vcpu *vcpu, ulong val)
{
KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:43 +08:00
vcpu->arch.ctr = val;
}
static inline ulong kvmppc_get_ctr(struct kvm_vcpu *vcpu)
{
KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:43 +08:00
return vcpu->arch.ctr;
}
static inline void kvmppc_set_lr(struct kvm_vcpu *vcpu, ulong val)
{
KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:43 +08:00
vcpu->arch.lr = val;
}
static inline ulong kvmppc_get_lr(struct kvm_vcpu *vcpu)
{
KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:43 +08:00
return vcpu->arch.lr;
}
static inline void kvmppc_set_pc(struct kvm_vcpu *vcpu, ulong val)
{
KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:43 +08:00
vcpu->arch.pc = val;
}
static inline ulong kvmppc_get_pc(struct kvm_vcpu *vcpu)
{
KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:43 +08:00
return vcpu->arch.pc;
}
static inline u32 kvmppc_get_last_inst(struct kvm_vcpu *vcpu)
{
ulong pc = kvmppc_get_pc(vcpu);
/* Load the instruction manually if it failed to do so in the
* exit path */
KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:43 +08:00
if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED)
kvmppc_ld(vcpu, &pc, sizeof(u32), &vcpu->arch.last_inst, false);
KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:43 +08:00
return vcpu->arch.last_inst;
}
/*
* Like kvmppc_get_last_inst(), but for fetching a sc instruction.
* Because the sc instruction sets SRR0 to point to the following
* instruction, we have to fetch from pc - 4.
*/
static inline u32 kvmppc_get_last_sc(struct kvm_vcpu *vcpu)
{
ulong pc = kvmppc_get_pc(vcpu) - 4;
/* Load the instruction manually if it failed to do so in the
* exit path */
KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:43 +08:00
if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED)
kvmppc_ld(vcpu, &pc, sizeof(u32), &vcpu->arch.last_inst, false);
KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:43 +08:00
return vcpu->arch.last_inst;
}
static inline ulong kvmppc_get_fault_dar(struct kvm_vcpu *vcpu)
{
KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpu Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:43 +08:00
return vcpu->arch.fault_dar;
}
/* Magic register values loaded into r3 and r4 before the 'sc' assembly
* instruction for the OSI hypercalls */
#define OSI_SC_MAGIC_R3 0x113724FA
#define OSI_SC_MAGIC_R4 0x77810F9B
#define INS_DCBZ 0x7c0007ec
/* TO = 31 for unconditional trap */
#define INS_TW 0x7fe00008
/* LPIDs we support with this build -- runtime limit may be lower */
#define KVMPPC_NR_LPIDS (LPID_RSVD + 1)
#endif /* __ASM_KVM_BOOK3S_H__ */