OpenCloudOS-Kernel/drivers/pci/pci-sysfs.c

1334 lines
33 KiB
C
Raw Normal View History

/*
* drivers/pci/pci-sysfs.c
*
* (C) Copyright 2002-2004 Greg Kroah-Hartman <greg@kroah.com>
* (C) Copyright 2002-2004 IBM Corp.
* (C) Copyright 2003 Matthew Wilcox
* (C) Copyright 2003 Hewlett-Packard
* (C) Copyright 2004 Jon Smirl <jonsmirl@yahoo.com>
* (C) Copyright 2004 Silicon Graphics, Inc. Jesse Barnes <jbarnes@sgi.com>
*
* File attributes for PCI devices
*
* Modeled after usb's driverfs.c
*
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/stat.h>
#include <linux/topology.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/capability.h>
#include <linux/security.h>
#include <linux/pci-aspm.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include "pci.h"
static int sysfs_initialized; /* = 0 */
/* show configuration fields */
#define pci_config_attr(field, format_string) \
static ssize_t \
field##_show(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
struct pci_dev *pdev; \
\
pdev = to_pci_dev (dev); \
return sprintf (buf, format_string, pdev->field); \
}
pci_config_attr(vendor, "0x%04x\n");
pci_config_attr(device, "0x%04x\n");
pci_config_attr(subsystem_vendor, "0x%04x\n");
pci_config_attr(subsystem_device, "0x%04x\n");
pci_config_attr(class, "0x%06x\n");
pci_config_attr(irq, "%u\n");
static ssize_t broken_parity_status_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct pci_dev *pdev = to_pci_dev(dev);
return sprintf (buf, "%u\n", pdev->broken_parity_status);
}
static ssize_t broken_parity_status_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct pci_dev *pdev = to_pci_dev(dev);
unsigned long val;
if (strict_strtoul(buf, 0, &val) < 0)
return -EINVAL;
pdev->broken_parity_status = !!val;
return count;
}
static ssize_t local_cpus_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
const struct cpumask *mask;
int len;
#ifdef CONFIG_NUMA
mask = (dev_to_node(dev) == -1) ? cpu_online_mask :
cpumask_of_node(dev_to_node(dev));
#else
mask = cpumask_of_pcibus(to_pci_dev(dev)->bus);
#endif
len = cpumask_scnprintf(buf, PAGE_SIZE-2, mask);
buf[len++] = '\n';
buf[len] = '\0';
return len;
}
static ssize_t local_cpulist_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
const struct cpumask *mask;
int len;
#ifdef CONFIG_NUMA
mask = (dev_to_node(dev) == -1) ? cpu_online_mask :
cpumask_of_node(dev_to_node(dev));
#else
mask = cpumask_of_pcibus(to_pci_dev(dev)->bus);
#endif
len = cpulist_scnprintf(buf, PAGE_SIZE-2, mask);
buf[len++] = '\n';
buf[len] = '\0';
return len;
}
/*
* PCI Bus Class Devices
*/
static ssize_t pci_bus_show_cpuaffinity(struct device *dev,
int type,
struct device_attribute *attr,
char *buf)
{
int ret;
const struct cpumask *cpumask;
cpumask = cpumask_of_pcibus(to_pci_bus(dev));
ret = type ?
cpulist_scnprintf(buf, PAGE_SIZE-2, cpumask) :
cpumask_scnprintf(buf, PAGE_SIZE-2, cpumask);
buf[ret++] = '\n';
buf[ret] = '\0';
return ret;
}
static inline ssize_t pci_bus_show_cpumaskaffinity(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return pci_bus_show_cpuaffinity(dev, 0, attr, buf);
}
static inline ssize_t pci_bus_show_cpulistaffinity(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return pci_bus_show_cpuaffinity(dev, 1, attr, buf);
}
/* show resources */
static ssize_t
resource_show(struct device * dev, struct device_attribute *attr, char * buf)
{
struct pci_dev * pci_dev = to_pci_dev(dev);
char * str = buf;
int i;
int max;
resource_size_t start, end;
if (pci_dev->subordinate)
max = DEVICE_COUNT_RESOURCE;
else
max = PCI_BRIDGE_RESOURCES;
for (i = 0; i < max; i++) {
struct resource *res = &pci_dev->resource[i];
pci_resource_to_user(pci_dev, i, res, &start, &end);
str += sprintf(str,"0x%016llx 0x%016llx 0x%016llx\n",
(unsigned long long)start,
(unsigned long long)end,
(unsigned long long)res->flags);
}
return (str - buf);
}
static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
return sprintf(buf, "pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02x\n",
pci_dev->vendor, pci_dev->device,
pci_dev->subsystem_vendor, pci_dev->subsystem_device,
(u8)(pci_dev->class >> 16), (u8)(pci_dev->class >> 8),
(u8)(pci_dev->class));
}
PCI: switch pci_{enable,disable}_device() to be nestable Changes the pci_{enable,disable}_device() functions to work in a nested basis, so that eg, three calls to enable_device() require three calls to disable_device(). The reason for this is to simplify PCI drivers for multi-interface/capability devices. These are devices that cram more than one interface in a single function. A relevant example of that is the Wireless [USB] Host Controller Interface (similar to EHCI) [see http://www.intel.com/technology/comms/wusb/whci.htm]. In these kind of devices, multiple interfaces are accessed through a single bar and IRQ line. For that, the drivers map only the smallest area of the bar to access their register banks and use shared IRQ handlers. However, because the order at which those drivers load cannot be known ahead of time, the sequence in which the calls to pci_enable_device() and pci_disable_device() cannot be predicted. Thus: 1. driverA starts pci_enable_device() 2. driverB starts pci_enable_device() 3. driverA shutdown pci_disable_device() 4. driverB shutdown pci_disable_device() between steps 3 and 4, driver B would loose access to it's device, even if it didn't intend to. By using this modification, the device won't be disabled until all the callers to enable() have called disable(). This is implemented by replacing 'struct pci_dev->is_enabled' from a bitfield to an atomic use count. Each caller to enable increments it, each caller to disable decrements it. When the count increments from 0 to 1, __pci_enable_device() is called to actually enable the device. When it drops to zero, pci_disable_device() actually does the disabling. We keep the backend __pci_enable_device() for pci_default_resume() to use and also change the sysfs method implementation, so that userspace enabling/disabling the device doesn't disable it one time too much. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-11-23 04:40:31 +08:00
static ssize_t is_enabled_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct pci_dev *pdev = to_pci_dev(dev);
unsigned long val;
ssize_t result = strict_strtoul(buf, 0, &val);
if (result < 0)
return result;
/* this can crash the machine when done on the "wrong" device */
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!val) {
if (pci_is_enabled(pdev))
PCI: switch pci_{enable,disable}_device() to be nestable Changes the pci_{enable,disable}_device() functions to work in a nested basis, so that eg, three calls to enable_device() require three calls to disable_device(). The reason for this is to simplify PCI drivers for multi-interface/capability devices. These are devices that cram more than one interface in a single function. A relevant example of that is the Wireless [USB] Host Controller Interface (similar to EHCI) [see http://www.intel.com/technology/comms/wusb/whci.htm]. In these kind of devices, multiple interfaces are accessed through a single bar and IRQ line. For that, the drivers map only the smallest area of the bar to access their register banks and use shared IRQ handlers. However, because the order at which those drivers load cannot be known ahead of time, the sequence in which the calls to pci_enable_device() and pci_disable_device() cannot be predicted. Thus: 1. driverA starts pci_enable_device() 2. driverB starts pci_enable_device() 3. driverA shutdown pci_disable_device() 4. driverB shutdown pci_disable_device() between steps 3 and 4, driver B would loose access to it's device, even if it didn't intend to. By using this modification, the device won't be disabled until all the callers to enable() have called disable(). This is implemented by replacing 'struct pci_dev->is_enabled' from a bitfield to an atomic use count. Each caller to enable increments it, each caller to disable decrements it. When the count increments from 0 to 1, __pci_enable_device() is called to actually enable the device. When it drops to zero, pci_disable_device() actually does the disabling. We keep the backend __pci_enable_device() for pci_default_resume() to use and also change the sysfs method implementation, so that userspace enabling/disabling the device doesn't disable it one time too much. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-11-23 04:40:31 +08:00
pci_disable_device(pdev);
else
result = -EIO;
} else
PCI: switch pci_{enable,disable}_device() to be nestable Changes the pci_{enable,disable}_device() functions to work in a nested basis, so that eg, three calls to enable_device() require three calls to disable_device(). The reason for this is to simplify PCI drivers for multi-interface/capability devices. These are devices that cram more than one interface in a single function. A relevant example of that is the Wireless [USB] Host Controller Interface (similar to EHCI) [see http://www.intel.com/technology/comms/wusb/whci.htm]. In these kind of devices, multiple interfaces are accessed through a single bar and IRQ line. For that, the drivers map only the smallest area of the bar to access their register banks and use shared IRQ handlers. However, because the order at which those drivers load cannot be known ahead of time, the sequence in which the calls to pci_enable_device() and pci_disable_device() cannot be predicted. Thus: 1. driverA starts pci_enable_device() 2. driverB starts pci_enable_device() 3. driverA shutdown pci_disable_device() 4. driverB shutdown pci_disable_device() between steps 3 and 4, driver B would loose access to it's device, even if it didn't intend to. By using this modification, the device won't be disabled until all the callers to enable() have called disable(). This is implemented by replacing 'struct pci_dev->is_enabled' from a bitfield to an atomic use count. Each caller to enable increments it, each caller to disable decrements it. When the count increments from 0 to 1, __pci_enable_device() is called to actually enable the device. When it drops to zero, pci_disable_device() actually does the disabling. We keep the backend __pci_enable_device() for pci_default_resume() to use and also change the sysfs method implementation, so that userspace enabling/disabling the device doesn't disable it one time too much. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-11-23 04:40:31 +08:00
result = pci_enable_device(pdev);
PCI: switch pci_{enable,disable}_device() to be nestable Changes the pci_{enable,disable}_device() functions to work in a nested basis, so that eg, three calls to enable_device() require three calls to disable_device(). The reason for this is to simplify PCI drivers for multi-interface/capability devices. These are devices that cram more than one interface in a single function. A relevant example of that is the Wireless [USB] Host Controller Interface (similar to EHCI) [see http://www.intel.com/technology/comms/wusb/whci.htm]. In these kind of devices, multiple interfaces are accessed through a single bar and IRQ line. For that, the drivers map only the smallest area of the bar to access their register banks and use shared IRQ handlers. However, because the order at which those drivers load cannot be known ahead of time, the sequence in which the calls to pci_enable_device() and pci_disable_device() cannot be predicted. Thus: 1. driverA starts pci_enable_device() 2. driverB starts pci_enable_device() 3. driverA shutdown pci_disable_device() 4. driverB shutdown pci_disable_device() between steps 3 and 4, driver B would loose access to it's device, even if it didn't intend to. By using this modification, the device won't be disabled until all the callers to enable() have called disable(). This is implemented by replacing 'struct pci_dev->is_enabled' from a bitfield to an atomic use count. Each caller to enable increments it, each caller to disable decrements it. When the count increments from 0 to 1, __pci_enable_device() is called to actually enable the device. When it drops to zero, pci_disable_device() actually does the disabling. We keep the backend __pci_enable_device() for pci_default_resume() to use and also change the sysfs method implementation, so that userspace enabling/disabling the device doesn't disable it one time too much. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-11-23 04:40:31 +08:00
return result < 0 ? result : count;
}
static ssize_t is_enabled_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct pci_dev *pdev;
PCI: switch pci_{enable,disable}_device() to be nestable Changes the pci_{enable,disable}_device() functions to work in a nested basis, so that eg, three calls to enable_device() require three calls to disable_device(). The reason for this is to simplify PCI drivers for multi-interface/capability devices. These are devices that cram more than one interface in a single function. A relevant example of that is the Wireless [USB] Host Controller Interface (similar to EHCI) [see http://www.intel.com/technology/comms/wusb/whci.htm]. In these kind of devices, multiple interfaces are accessed through a single bar and IRQ line. For that, the drivers map only the smallest area of the bar to access their register banks and use shared IRQ handlers. However, because the order at which those drivers load cannot be known ahead of time, the sequence in which the calls to pci_enable_device() and pci_disable_device() cannot be predicted. Thus: 1. driverA starts pci_enable_device() 2. driverB starts pci_enable_device() 3. driverA shutdown pci_disable_device() 4. driverB shutdown pci_disable_device() between steps 3 and 4, driver B would loose access to it's device, even if it didn't intend to. By using this modification, the device won't be disabled until all the callers to enable() have called disable(). This is implemented by replacing 'struct pci_dev->is_enabled' from a bitfield to an atomic use count. Each caller to enable increments it, each caller to disable decrements it. When the count increments from 0 to 1, __pci_enable_device() is called to actually enable the device. When it drops to zero, pci_disable_device() actually does the disabling. We keep the backend __pci_enable_device() for pci_default_resume() to use and also change the sysfs method implementation, so that userspace enabling/disabling the device doesn't disable it one time too much. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-11-23 04:40:31 +08:00
pdev = to_pci_dev (dev);
return sprintf (buf, "%u\n", atomic_read(&pdev->enable_cnt));
}
#ifdef CONFIG_NUMA
static ssize_t
numa_node_show(struct device *dev, struct device_attribute *attr, char *buf)
{
return sprintf (buf, "%d\n", dev->numa_node);
}
#endif
static ssize_t
dma_mask_bits_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct pci_dev *pdev = to_pci_dev(dev);
return sprintf (buf, "%d\n", fls64(pdev->dma_mask));
}
static ssize_t
consistent_dma_mask_bits_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sprintf (buf, "%d\n", fls64(dev->coherent_dma_mask));
}
static ssize_t
msi_bus_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct pci_dev *pdev = to_pci_dev(dev);
if (!pdev->subordinate)
return 0;
return sprintf (buf, "%u\n",
!(pdev->subordinate->bus_flags & PCI_BUS_FLAGS_NO_MSI));
}
static ssize_t
msi_bus_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct pci_dev *pdev = to_pci_dev(dev);
unsigned long val;
if (strict_strtoul(buf, 0, &val) < 0)
return -EINVAL;
/* bad things may happen if the no_msi flag is changed
* while some drivers are loaded */
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
/* Maybe pci devices without subordinate busses shouldn't even have this
* attribute in the first place? */
if (!pdev->subordinate)
return count;
/* Is the flag going to change, or keep the value it already had? */
if (!(pdev->subordinate->bus_flags & PCI_BUS_FLAGS_NO_MSI) ^
!!val) {
pdev->subordinate->bus_flags ^= PCI_BUS_FLAGS_NO_MSI;
dev_warn(&pdev->dev, "forced subordinate bus to%s support MSI,"
" bad things could happen\n", val ? "" : " not");
}
return count;
}
#ifdef CONFIG_HOTPLUG
static DEFINE_MUTEX(pci_remove_rescan_mutex);
static ssize_t bus_rescan_store(struct bus_type *bus, const char *buf,
size_t count)
{
unsigned long val;
struct pci_bus *b = NULL;
if (strict_strtoul(buf, 0, &val) < 0)
return -EINVAL;
if (val) {
mutex_lock(&pci_remove_rescan_mutex);
while ((b = pci_find_next_bus(b)) != NULL)
pci_rescan_bus(b);
mutex_unlock(&pci_remove_rescan_mutex);
}
return count;
}
struct bus_attribute pci_bus_attrs[] = {
__ATTR(rescan, (S_IWUSR|S_IWGRP), NULL, bus_rescan_store),
__ATTR_NULL
};
static ssize_t
dev_rescan_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long val;
struct pci_dev *pdev = to_pci_dev(dev);
if (strict_strtoul(buf, 0, &val) < 0)
return -EINVAL;
if (val) {
mutex_lock(&pci_remove_rescan_mutex);
pci_rescan_bus(pdev->bus);
mutex_unlock(&pci_remove_rescan_mutex);
}
return count;
}
static void remove_callback(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
mutex_lock(&pci_remove_rescan_mutex);
pci_remove_bus_device(pdev);
mutex_unlock(&pci_remove_rescan_mutex);
}
static ssize_t
remove_store(struct device *dev, struct device_attribute *dummy,
const char *buf, size_t count)
{
int ret = 0;
unsigned long val;
if (strict_strtoul(buf, 0, &val) < 0)
return -EINVAL;
/* An attribute cannot be unregistered by one of its own methods,
* so we have to use this roundabout approach.
*/
if (val)
ret = device_schedule_callback(dev, remove_callback);
if (ret)
count = ret;
return count;
}
static ssize_t
dev_bus_rescan_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long val;
struct pci_bus *bus = to_pci_bus(dev);
if (strict_strtoul(buf, 0, &val) < 0)
return -EINVAL;
if (val) {
mutex_lock(&pci_remove_rescan_mutex);
pci_rescan_bus(bus);
mutex_unlock(&pci_remove_rescan_mutex);
}
return count;
}
#endif
struct device_attribute pci_dev_attrs[] = {
__ATTR_RO(resource),
__ATTR_RO(vendor),
__ATTR_RO(device),
__ATTR_RO(subsystem_vendor),
__ATTR_RO(subsystem_device),
__ATTR_RO(class),
__ATTR_RO(irq),
__ATTR_RO(local_cpus),
__ATTR_RO(local_cpulist),
__ATTR_RO(modalias),
#ifdef CONFIG_NUMA
__ATTR_RO(numa_node),
#endif
__ATTR_RO(dma_mask_bits),
__ATTR_RO(consistent_dma_mask_bits),
__ATTR(enable, 0600, is_enabled_show, is_enabled_store),
__ATTR(broken_parity_status,(S_IRUGO|S_IWUSR),
broken_parity_status_show,broken_parity_status_store),
__ATTR(msi_bus, 0644, msi_bus_show, msi_bus_store),
#ifdef CONFIG_HOTPLUG
__ATTR(remove, (S_IWUSR|S_IWGRP), NULL, remove_store),
__ATTR(rescan, (S_IWUSR|S_IWGRP), NULL, dev_rescan_store),
#endif
__ATTR_NULL,
};
struct device_attribute pcibus_dev_attrs[] = {
#ifdef CONFIG_HOTPLUG
__ATTR(rescan, (S_IWUSR|S_IWGRP), NULL, dev_bus_rescan_store),
#endif
__ATTR(cpuaffinity, S_IRUGO, pci_bus_show_cpumaskaffinity, NULL),
__ATTR(cpulistaffinity, S_IRUGO, pci_bus_show_cpulistaffinity, NULL),
__ATTR_NULL,
};
static ssize_t
boot_vga_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct pci_dev *pdev = to_pci_dev(dev);
return sprintf(buf, "%u\n",
!!(pdev->resource[PCI_ROM_RESOURCE].flags &
IORESOURCE_ROM_SHADOW));
}
struct device_attribute vga_attr = __ATTR_RO(boot_vga);
static ssize_t
pci_read_config(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr,
sysfs: add parameter "struct bin_attribute *" in .read/.write methods for sysfs binary attributes Well, first of all, I don't want to change so many files either. What I do: Adding a new parameter "struct bin_attribute *" in the .read/.write methods for the sysfs binary attributes. In fact, only the four lines change in fs/sysfs/bin.c and include/linux/sysfs.h do the real work. But I have to update all the files that use binary attributes to make them compatible with the new .read and .write methods. I'm not sure if I missed any. :( Why I do this: For a sysfs attribute, we can get a pointer pointing to the struct attribute in the .show/.store method, while we can't do this for the binary attributes. I don't know why this is different, but this does make it not so handy to use the binary attributes as the regular ones. So I think this patch is reasonable. :) Who benefits from it: The patch that exposes ACPI tables in sysfs requires such an improvement. All the table binary attributes share the same .read method. Parameter "struct bin_attribute *" is used to get the table signature and instance number which are used to distinguish different ACPI table binary attributes. Without this parameter, we need to offer different .read methods for different ACPI table binary attributes. This is impossible as there are various ACPI tables on different platforms, and we don't know what they are until they are loaded. Signed-off-by: Zhang Rui <rui.zhang@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-06-09 13:57:22 +08:00
char *buf, loff_t off, size_t count)
{
struct pci_dev *dev = to_pci_dev(container_of(kobj,struct device,kobj));
unsigned int size = 64;
loff_t init_off = off;
u8 *data = (u8*) buf;
/* Several chips lock up trying to read undefined config space */
userns: security: make capabilities relative to the user namespace - Introduce ns_capable to test for a capability in a non-default user namespace. - Teach cap_capable to handle capabilities in a non-default user namespace. The motivation is to get to the unprivileged creation of new namespaces. It looks like this gets us 90% of the way there, with only potential uid confusion issues left. I still need to handle getting all caps after creation but otherwise I think I have a good starter patch that achieves all of your goals. Changelog: 11/05/2010: [serge] add apparmor 12/14/2010: [serge] fix capabilities to created user namespaces Without this, if user serge creates a user_ns, he won't have capabilities to the user_ns he created. THis is because we were first checking whether his effective caps had the caps he needed and returning -EPERM if not, and THEN checking whether he was the creator. Reverse those checks. 12/16/2010: [serge] security_real_capable needs ns argument in !security case 01/11/2011: [serge] add task_ns_capable helper 01/11/2011: [serge] add nsown_capable() helper per Bastian Blank suggestion 02/16/2011: [serge] fix a logic bug: the root user is always creator of init_user_ns, but should not always have capabilities to it! Fix the check in cap_capable(). 02/21/2011: Add the required user_ns parameter to security_capable, fixing a compile failure. 02/23/2011: Convert some macros to functions as per akpm comments. Some couldn't be converted because we can't easily forward-declare them (they are inline if !SECURITY, extern if SECURITY). Add a current_user_ns function so we can use it in capability.h without #including cred.h. Move all forward declarations together to the top of the #ifdef __KERNEL__ section, and use kernel-doc format. 02/23/2011: Per dhowells, clean up comment in cap_capable(). 02/23/2011: Per akpm, remove unreachable 'return -EPERM' in cap_capable. (Original written and signed off by Eric; latest, modified version acked by him) [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: export current_user_ns() for ecryptfs] [serge.hallyn@canonical.com: remove unneeded extra argument in selinux's task_has_capability] Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Daniel Lezcano <daniel.lezcano@free.fr> Acked-by: David Howells <dhowells@redhat.com> Cc: James Morris <jmorris@namei.org> Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-24 07:43:17 +08:00
if (security_capable(&init_user_ns, filp->f_cred, CAP_SYS_ADMIN) == 0) {
size = dev->cfg_size;
} else if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS) {
size = 128;
}
if (off > size)
return 0;
if (off + count > size) {
size -= off;
count = size;
} else {
size = count;
}
if ((off & 1) && size) {
u8 val;
pci_user_read_config_byte(dev, off, &val);
data[off - init_off] = val;
off++;
size--;
}
if ((off & 3) && size > 2) {
u16 val;
pci_user_read_config_word(dev, off, &val);
data[off - init_off] = val & 0xff;
data[off - init_off + 1] = (val >> 8) & 0xff;
off += 2;
size -= 2;
}
while (size > 3) {
u32 val;
pci_user_read_config_dword(dev, off, &val);
data[off - init_off] = val & 0xff;
data[off - init_off + 1] = (val >> 8) & 0xff;
data[off - init_off + 2] = (val >> 16) & 0xff;
data[off - init_off + 3] = (val >> 24) & 0xff;
off += 4;
size -= 4;
}
if (size >= 2) {
u16 val;
pci_user_read_config_word(dev, off, &val);
data[off - init_off] = val & 0xff;
data[off - init_off + 1] = (val >> 8) & 0xff;
off += 2;
size -= 2;
}
if (size > 0) {
u8 val;
pci_user_read_config_byte(dev, off, &val);
data[off - init_off] = val;
off++;
--size;
}
return count;
}
static ssize_t
pci_write_config(struct file* filp, struct kobject *kobj,
struct bin_attribute *bin_attr,
sysfs: add parameter "struct bin_attribute *" in .read/.write methods for sysfs binary attributes Well, first of all, I don't want to change so many files either. What I do: Adding a new parameter "struct bin_attribute *" in the .read/.write methods for the sysfs binary attributes. In fact, only the four lines change in fs/sysfs/bin.c and include/linux/sysfs.h do the real work. But I have to update all the files that use binary attributes to make them compatible with the new .read and .write methods. I'm not sure if I missed any. :( Why I do this: For a sysfs attribute, we can get a pointer pointing to the struct attribute in the .show/.store method, while we can't do this for the binary attributes. I don't know why this is different, but this does make it not so handy to use the binary attributes as the regular ones. So I think this patch is reasonable. :) Who benefits from it: The patch that exposes ACPI tables in sysfs requires such an improvement. All the table binary attributes share the same .read method. Parameter "struct bin_attribute *" is used to get the table signature and instance number which are used to distinguish different ACPI table binary attributes. Without this parameter, we need to offer different .read methods for different ACPI table binary attributes. This is impossible as there are various ACPI tables on different platforms, and we don't know what they are until they are loaded. Signed-off-by: Zhang Rui <rui.zhang@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-06-09 13:57:22 +08:00
char *buf, loff_t off, size_t count)
{
struct pci_dev *dev = to_pci_dev(container_of(kobj,struct device,kobj));
unsigned int size = count;
loff_t init_off = off;
u8 *data = (u8*) buf;
if (off > dev->cfg_size)
return 0;
if (off + count > dev->cfg_size) {
size = dev->cfg_size - off;
count = size;
}
if ((off & 1) && size) {
pci_user_write_config_byte(dev, off, data[off - init_off]);
off++;
size--;
}
if ((off & 3) && size > 2) {
u16 val = data[off - init_off];
val |= (u16) data[off - init_off + 1] << 8;
pci_user_write_config_word(dev, off, val);
off += 2;
size -= 2;
}
while (size > 3) {
u32 val = data[off - init_off];
val |= (u32) data[off - init_off + 1] << 8;
val |= (u32) data[off - init_off + 2] << 16;
val |= (u32) data[off - init_off + 3] << 24;
pci_user_write_config_dword(dev, off, val);
off += 4;
size -= 4;
}
if (size >= 2) {
u16 val = data[off - init_off];
val |= (u16) data[off - init_off + 1] << 8;
pci_user_write_config_word(dev, off, val);
off += 2;
size -= 2;
}
if (size) {
pci_user_write_config_byte(dev, off, data[off - init_off]);
off++;
--size;
}
return count;
}
static ssize_t
read_vpd_attr(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t off, size_t count)
{
struct pci_dev *dev =
to_pci_dev(container_of(kobj, struct device, kobj));
if (off > bin_attr->size)
count = 0;
else if (count > bin_attr->size - off)
count = bin_attr->size - off;
return pci_read_vpd(dev, off, count, buf);
}
static ssize_t
write_vpd_attr(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t off, size_t count)
{
struct pci_dev *dev =
to_pci_dev(container_of(kobj, struct device, kobj));
if (off > bin_attr->size)
count = 0;
else if (count > bin_attr->size - off)
count = bin_attr->size - off;
return pci_write_vpd(dev, off, count, buf);
}
#ifdef HAVE_PCI_LEGACY
/**
* pci_read_legacy_io - read byte(s) from legacy I/O port space
* @filp: open sysfs file
* @kobj: kobject corresponding to file to read from
* @bin_attr: struct bin_attribute for this file
* @buf: buffer to store results
* @off: offset into legacy I/O port space
* @count: number of bytes to read
*
* Reads 1, 2, or 4 bytes from legacy I/O port space using an arch specific
* callback routine (pci_legacy_read).
*/
static ssize_t
pci_read_legacy_io(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr,
sysfs: add parameter "struct bin_attribute *" in .read/.write methods for sysfs binary attributes Well, first of all, I don't want to change so many files either. What I do: Adding a new parameter "struct bin_attribute *" in the .read/.write methods for the sysfs binary attributes. In fact, only the four lines change in fs/sysfs/bin.c and include/linux/sysfs.h do the real work. But I have to update all the files that use binary attributes to make them compatible with the new .read and .write methods. I'm not sure if I missed any. :( Why I do this: For a sysfs attribute, we can get a pointer pointing to the struct attribute in the .show/.store method, while we can't do this for the binary attributes. I don't know why this is different, but this does make it not so handy to use the binary attributes as the regular ones. So I think this patch is reasonable. :) Who benefits from it: The patch that exposes ACPI tables in sysfs requires such an improvement. All the table binary attributes share the same .read method. Parameter "struct bin_attribute *" is used to get the table signature and instance number which are used to distinguish different ACPI table binary attributes. Without this parameter, we need to offer different .read methods for different ACPI table binary attributes. This is impossible as there are various ACPI tables on different platforms, and we don't know what they are until they are loaded. Signed-off-by: Zhang Rui <rui.zhang@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-06-09 13:57:22 +08:00
char *buf, loff_t off, size_t count)
{
struct pci_bus *bus = to_pci_bus(container_of(kobj,
struct device,
kobj));
/* Only support 1, 2 or 4 byte accesses */
if (count != 1 && count != 2 && count != 4)
return -EINVAL;
return pci_legacy_read(bus, off, (u32 *)buf, count);
}
/**
* pci_write_legacy_io - write byte(s) to legacy I/O port space
* @filp: open sysfs file
* @kobj: kobject corresponding to file to read from
* @bin_attr: struct bin_attribute for this file
* @buf: buffer containing value to be written
* @off: offset into legacy I/O port space
* @count: number of bytes to write
*
* Writes 1, 2, or 4 bytes from legacy I/O port space using an arch specific
* callback routine (pci_legacy_write).
*/
static ssize_t
pci_write_legacy_io(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr,
sysfs: add parameter "struct bin_attribute *" in .read/.write methods for sysfs binary attributes Well, first of all, I don't want to change so many files either. What I do: Adding a new parameter "struct bin_attribute *" in the .read/.write methods for the sysfs binary attributes. In fact, only the four lines change in fs/sysfs/bin.c and include/linux/sysfs.h do the real work. But I have to update all the files that use binary attributes to make them compatible with the new .read and .write methods. I'm not sure if I missed any. :( Why I do this: For a sysfs attribute, we can get a pointer pointing to the struct attribute in the .show/.store method, while we can't do this for the binary attributes. I don't know why this is different, but this does make it not so handy to use the binary attributes as the regular ones. So I think this patch is reasonable. :) Who benefits from it: The patch that exposes ACPI tables in sysfs requires such an improvement. All the table binary attributes share the same .read method. Parameter "struct bin_attribute *" is used to get the table signature and instance number which are used to distinguish different ACPI table binary attributes. Without this parameter, we need to offer different .read methods for different ACPI table binary attributes. This is impossible as there are various ACPI tables on different platforms, and we don't know what they are until they are loaded. Signed-off-by: Zhang Rui <rui.zhang@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-06-09 13:57:22 +08:00
char *buf, loff_t off, size_t count)
{
struct pci_bus *bus = to_pci_bus(container_of(kobj,
struct device,
kobj));
/* Only support 1, 2 or 4 byte accesses */
if (count != 1 && count != 2 && count != 4)
return -EINVAL;
return pci_legacy_write(bus, off, *(u32 *)buf, count);
}
/**
* pci_mmap_legacy_mem - map legacy PCI memory into user memory space
* @filp: open sysfs file
* @kobj: kobject corresponding to device to be mapped
* @attr: struct bin_attribute for this file
* @vma: struct vm_area_struct passed to mmap
*
* Uses an arch specific callback, pci_mmap_legacy_mem_page_range, to mmap
* legacy memory space (first meg of bus space) into application virtual
* memory space.
*/
static int
pci_mmap_legacy_mem(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
struct vm_area_struct *vma)
{
struct pci_bus *bus = to_pci_bus(container_of(kobj,
struct device,
kobj));
return pci_mmap_legacy_page_range(bus, vma, pci_mmap_mem);
}
/**
* pci_mmap_legacy_io - map legacy PCI IO into user memory space
* @filp: open sysfs file
* @kobj: kobject corresponding to device to be mapped
* @attr: struct bin_attribute for this file
* @vma: struct vm_area_struct passed to mmap
*
* Uses an arch specific callback, pci_mmap_legacy_io_page_range, to mmap
* legacy IO space (first meg of bus space) into application virtual
* memory space. Returns -ENOSYS if the operation isn't supported
*/
static int
pci_mmap_legacy_io(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
struct vm_area_struct *vma)
{
struct pci_bus *bus = to_pci_bus(container_of(kobj,
struct device,
kobj));
return pci_mmap_legacy_page_range(bus, vma, pci_mmap_io);
}
/**
* pci_adjust_legacy_attr - adjustment of legacy file attributes
* @b: bus to create files under
* @mmap_type: I/O port or memory
*
* Stub implementation. Can be overridden by arch if necessary.
*/
void __weak
pci_adjust_legacy_attr(struct pci_bus *b, enum pci_mmap_state mmap_type)
{
return;
}
/**
* pci_create_legacy_files - create legacy I/O port and memory files
* @b: bus to create files under
*
* Some platforms allow access to legacy I/O port and ISA memory space on
* a per-bus basis. This routine creates the files and ties them into
* their associated read, write and mmap files from pci-sysfs.c
*
* On error unwind, but don't propagate the error to the caller
* as it is ok to set up the PCI bus without these files.
*/
void pci_create_legacy_files(struct pci_bus *b)
{
int error;
b->legacy_io = kzalloc(sizeof(struct bin_attribute) * 2,
GFP_ATOMIC);
if (!b->legacy_io)
goto kzalloc_err;
sysfs_bin_attr_init(b->legacy_io);
b->legacy_io->attr.name = "legacy_io";
b->legacy_io->size = 0xffff;
b->legacy_io->attr.mode = S_IRUSR | S_IWUSR;
b->legacy_io->read = pci_read_legacy_io;
b->legacy_io->write = pci_write_legacy_io;
b->legacy_io->mmap = pci_mmap_legacy_io;
pci_adjust_legacy_attr(b, pci_mmap_io);
error = device_create_bin_file(&b->dev, b->legacy_io);
if (error)
goto legacy_io_err;
/* Allocated above after the legacy_io struct */
b->legacy_mem = b->legacy_io + 1;
sysfs_bin_attr_init(b->legacy_mem);
b->legacy_mem->attr.name = "legacy_mem";
b->legacy_mem->size = 1024*1024;
b->legacy_mem->attr.mode = S_IRUSR | S_IWUSR;
b->legacy_mem->mmap = pci_mmap_legacy_mem;
pci_adjust_legacy_attr(b, pci_mmap_mem);
error = device_create_bin_file(&b->dev, b->legacy_mem);
if (error)
goto legacy_mem_err;
return;
legacy_mem_err:
device_remove_bin_file(&b->dev, b->legacy_io);
legacy_io_err:
kfree(b->legacy_io);
b->legacy_io = NULL;
kzalloc_err:
printk(KERN_WARNING "pci: warning: could not create legacy I/O port "
"and ISA memory resources to sysfs\n");
return;
}
void pci_remove_legacy_files(struct pci_bus *b)
{
if (b->legacy_io) {
device_remove_bin_file(&b->dev, b->legacy_io);
device_remove_bin_file(&b->dev, b->legacy_mem);
kfree(b->legacy_io); /* both are allocated here */
}
}
#endif /* HAVE_PCI_LEGACY */
#ifdef HAVE_PCI_MMAP
int pci_mmap_fits(struct pci_dev *pdev, int resno, struct vm_area_struct *vma,
enum pci_mmap_api mmap_api)
{
unsigned long nr, start, size, pci_start;
if (pci_resource_len(pdev, resno) == 0)
return 0;
nr = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
start = vma->vm_pgoff;
size = ((pci_resource_len(pdev, resno) - 1) >> PAGE_SHIFT) + 1;
PCI: fix offset check for sysfs mmapped files I just loaded 2.6.37-rc2 on my machines, and I noticed that X no longer starts. Running an strace of the X server shows that it's doing this: open("/sys/bus/pci/devices/0000:07:00.0/resource0", O_RDWR) = 10 mmap(NULL, 16777216, PROT_READ|PROT_WRITE, MAP_SHARED, 10, 0) = -1 EINVAL (Invalid argument) This code seems to be asking for a shared read/write mapping of 16MB worth of BAR0 starting at file offset 0, and letting the kernel assign a starting address. Unfortunately, this -EINVAL causes X not to start. Looking into dmesg, there's a complaint like so: process "Xorg" tried to map 0x01000000 bytes at page 0x00000000 on 0000:07:00.0 BAR 0 (start 0x 96000000, size 0x 1000000) ...with the following code in pci_mmap_fits: pci_start = (mmap_api == PCI_MMAP_SYSFS) ? pci_resource_start(pdev, resno) >> PAGE_SHIFT : 0; if (start >= pci_start && start < pci_start + size && start + nr <= pci_start + size) It looks like the logic here is set up such that when the mmap call comes via sysfs, the check in pci_mmap_fits wants vma->vm_pgoff to be between the resource's start and end address, and the end of the vma to be no farther than the end. However, the sysfs PCI resource files always start at offset zero, which means that this test always fails for programs that mmap the sysfs files. Given the comment in the original commit 3b519e4ea618b6943a82931630872907f9ac2c2b, I _think_ the old procfs files require that the file offset be equal to the resource's base address when mmapping. I think what we want here is for pci_start to be 0 when mmap_api == PCI_MMAP_PROCFS. The following patch makes that change, after which the Matrox and Mach64 X drivers work again. Acked-by: Martin Wilck <martin.wilck@ts.fujitsu.com> Signed-off-by: Darrick J. Wong <djwong@us.ibm.com> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2010-11-17 01:13:41 +08:00
pci_start = (mmap_api == PCI_MMAP_PROCFS) ?
pci_resource_start(pdev, resno) >> PAGE_SHIFT : 0;
if (start >= pci_start && start < pci_start + size &&
start + nr <= pci_start + size)
return 1;
return 0;
}
/**
* pci_mmap_resource - map a PCI resource into user memory space
* @kobj: kobject for mapping
* @attr: struct bin_attribute for the file being mapped
* @vma: struct vm_area_struct passed into the mmap
* @write_combine: 1 for write_combine mapping
*
* Use the regular PCI mapping routines to map a PCI resource into userspace.
*/
static int
pci_mmap_resource(struct kobject *kobj, struct bin_attribute *attr,
struct vm_area_struct *vma, int write_combine)
{
struct pci_dev *pdev = to_pci_dev(container_of(kobj,
struct device, kobj));
struct resource *res = attr->private;
enum pci_mmap_state mmap_type;
resource_size_t start, end;
int i;
for (i = 0; i < PCI_ROM_RESOURCE; i++)
if (res == &pdev->resource[i])
break;
if (i >= PCI_ROM_RESOURCE)
return -ENODEV;
if (!pci_mmap_fits(pdev, i, vma, PCI_MMAP_SYSFS)) {
WARN(1, "process \"%s\" tried to map 0x%08lx bytes "
"at page 0x%08lx on %s BAR %d (start 0x%16Lx, size 0x%16Lx)\n",
current->comm, vma->vm_end-vma->vm_start, vma->vm_pgoff,
pci_name(pdev), i,
(u64)pci_resource_start(pdev, i),
(u64)pci_resource_len(pdev, i));
return -EINVAL;
}
/* pci_mmap_page_range() expects the same kind of entry as coming
* from /proc/bus/pci/ which is a "user visible" value. If this is
* different from the resource itself, arch will do necessary fixup.
*/
pci_resource_to_user(pdev, i, res, &start, &end);
vma->vm_pgoff += start >> PAGE_SHIFT;
mmap_type = res->flags & IORESOURCE_MEM ? pci_mmap_mem : pci_mmap_io;
if (res->flags & IORESOURCE_MEM && iomem_is_exclusive(start))
return -EINVAL;
return pci_mmap_page_range(pdev, vma, mmap_type, write_combine);
}
static int
pci_mmap_resource_uc(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
struct vm_area_struct *vma)
{
return pci_mmap_resource(kobj, attr, vma, 0);
}
static int
pci_mmap_resource_wc(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
struct vm_area_struct *vma)
{
return pci_mmap_resource(kobj, attr, vma, 1);
}
static ssize_t
pci_resource_io(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t off, size_t count, bool write)
{
struct pci_dev *pdev = to_pci_dev(container_of(kobj,
struct device, kobj));
struct resource *res = attr->private;
unsigned long port = off;
int i;
for (i = 0; i < PCI_ROM_RESOURCE; i++)
if (res == &pdev->resource[i])
break;
if (i >= PCI_ROM_RESOURCE)
return -ENODEV;
port += pci_resource_start(pdev, i);
if (port > pci_resource_end(pdev, i))
return 0;
if (port + count - 1 > pci_resource_end(pdev, i))
return -EINVAL;
switch (count) {
case 1:
if (write)
outb(*(u8 *)buf, port);
else
*(u8 *)buf = inb(port);
return 1;
case 2:
if (write)
outw(*(u16 *)buf, port);
else
*(u16 *)buf = inw(port);
return 2;
case 4:
if (write)
outl(*(u32 *)buf, port);
else
*(u32 *)buf = inl(port);
return 4;
}
return -EINVAL;
}
static ssize_t
pci_read_resource_io(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t off, size_t count)
{
return pci_resource_io(filp, kobj, attr, buf, off, count, false);
}
static ssize_t
pci_write_resource_io(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t off, size_t count)
{
return pci_resource_io(filp, kobj, attr, buf, off, count, true);
}
/**
* pci_remove_resource_files - cleanup resource files
* @pdev: dev to cleanup
*
* If we created resource files for @pdev, remove them from sysfs and
* free their resources.
*/
static void
pci_remove_resource_files(struct pci_dev *pdev)
{
int i;
for (i = 0; i < PCI_ROM_RESOURCE; i++) {
struct bin_attribute *res_attr;
res_attr = pdev->res_attr[i];
if (res_attr) {
sysfs_remove_bin_file(&pdev->dev.kobj, res_attr);
kfree(res_attr);
}
res_attr = pdev->res_attr_wc[i];
if (res_attr) {
sysfs_remove_bin_file(&pdev->dev.kobj, res_attr);
kfree(res_attr);
}
}
}
static int pci_create_attr(struct pci_dev *pdev, int num, int write_combine)
{
/* allocate attribute structure, piggyback attribute name */
int name_len = write_combine ? 13 : 10;
struct bin_attribute *res_attr;
int retval;
res_attr = kzalloc(sizeof(*res_attr) + name_len, GFP_ATOMIC);
if (res_attr) {
char *res_attr_name = (char *)(res_attr + 1);
sysfs_bin_attr_init(res_attr);
if (write_combine) {
pdev->res_attr_wc[num] = res_attr;
sprintf(res_attr_name, "resource%d_wc", num);
res_attr->mmap = pci_mmap_resource_wc;
} else {
pdev->res_attr[num] = res_attr;
sprintf(res_attr_name, "resource%d", num);
res_attr->mmap = pci_mmap_resource_uc;
}
if (pci_resource_flags(pdev, num) & IORESOURCE_IO) {
res_attr->read = pci_read_resource_io;
res_attr->write = pci_write_resource_io;
}
res_attr->attr.name = res_attr_name;
res_attr->attr.mode = S_IRUSR | S_IWUSR;
res_attr->size = pci_resource_len(pdev, num);
res_attr->private = &pdev->resource[num];
retval = sysfs_create_bin_file(&pdev->dev.kobj, res_attr);
} else
retval = -ENOMEM;
return retval;
}
/**
* pci_create_resource_files - create resource files in sysfs for @dev
* @pdev: dev in question
*
* Walk the resources in @pdev creating files for each resource available.
*/
static int pci_create_resource_files(struct pci_dev *pdev)
{
int i;
int retval;
/* Expose the PCI resources from this device as files */
for (i = 0; i < PCI_ROM_RESOURCE; i++) {
/* skip empty resources */
if (!pci_resource_len(pdev, i))
continue;
retval = pci_create_attr(pdev, i, 0);
/* for prefetchable resources, create a WC mappable file */
if (!retval && pdev->resource[i].flags & IORESOURCE_PREFETCH)
retval = pci_create_attr(pdev, i, 1);
if (retval) {
pci_remove_resource_files(pdev);
return retval;
}
}
return 0;
}
#else /* !HAVE_PCI_MMAP */
int __weak pci_create_resource_files(struct pci_dev *dev) { return 0; }
void __weak pci_remove_resource_files(struct pci_dev *dev) { return; }
#endif /* HAVE_PCI_MMAP */
/**
* pci_write_rom - used to enable access to the PCI ROM display
* @filp: sysfs file
* @kobj: kernel object handle
* @bin_attr: struct bin_attribute for this file
* @buf: user input
* @off: file offset
* @count: number of byte in input
*
* writing anything except 0 enables it
*/
static ssize_t
pci_write_rom(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr,
sysfs: add parameter "struct bin_attribute *" in .read/.write methods for sysfs binary attributes Well, first of all, I don't want to change so many files either. What I do: Adding a new parameter "struct bin_attribute *" in the .read/.write methods for the sysfs binary attributes. In fact, only the four lines change in fs/sysfs/bin.c and include/linux/sysfs.h do the real work. But I have to update all the files that use binary attributes to make them compatible with the new .read and .write methods. I'm not sure if I missed any. :( Why I do this: For a sysfs attribute, we can get a pointer pointing to the struct attribute in the .show/.store method, while we can't do this for the binary attributes. I don't know why this is different, but this does make it not so handy to use the binary attributes as the regular ones. So I think this patch is reasonable. :) Who benefits from it: The patch that exposes ACPI tables in sysfs requires such an improvement. All the table binary attributes share the same .read method. Parameter "struct bin_attribute *" is used to get the table signature and instance number which are used to distinguish different ACPI table binary attributes. Without this parameter, we need to offer different .read methods for different ACPI table binary attributes. This is impossible as there are various ACPI tables on different platforms, and we don't know what they are until they are loaded. Signed-off-by: Zhang Rui <rui.zhang@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-06-09 13:57:22 +08:00
char *buf, loff_t off, size_t count)
{
struct pci_dev *pdev = to_pci_dev(container_of(kobj, struct device, kobj));
if ((off == 0) && (*buf == '0') && (count == 2))
pdev->rom_attr_enabled = 0;
else
pdev->rom_attr_enabled = 1;
return count;
}
/**
* pci_read_rom - read a PCI ROM
* @filp: sysfs file
* @kobj: kernel object handle
* @bin_attr: struct bin_attribute for this file
* @buf: where to put the data we read from the ROM
* @off: file offset
* @count: number of bytes to read
*
* Put @count bytes starting at @off into @buf from the ROM in the PCI
* device corresponding to @kobj.
*/
static ssize_t
pci_read_rom(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr,
sysfs: add parameter "struct bin_attribute *" in .read/.write methods for sysfs binary attributes Well, first of all, I don't want to change so many files either. What I do: Adding a new parameter "struct bin_attribute *" in the .read/.write methods for the sysfs binary attributes. In fact, only the four lines change in fs/sysfs/bin.c and include/linux/sysfs.h do the real work. But I have to update all the files that use binary attributes to make them compatible with the new .read and .write methods. I'm not sure if I missed any. :( Why I do this: For a sysfs attribute, we can get a pointer pointing to the struct attribute in the .show/.store method, while we can't do this for the binary attributes. I don't know why this is different, but this does make it not so handy to use the binary attributes as the regular ones. So I think this patch is reasonable. :) Who benefits from it: The patch that exposes ACPI tables in sysfs requires such an improvement. All the table binary attributes share the same .read method. Parameter "struct bin_attribute *" is used to get the table signature and instance number which are used to distinguish different ACPI table binary attributes. Without this parameter, we need to offer different .read methods for different ACPI table binary attributes. This is impossible as there are various ACPI tables on different platforms, and we don't know what they are until they are loaded. Signed-off-by: Zhang Rui <rui.zhang@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-06-09 13:57:22 +08:00
char *buf, loff_t off, size_t count)
{
struct pci_dev *pdev = to_pci_dev(container_of(kobj, struct device, kobj));
void __iomem *rom;
size_t size;
if (!pdev->rom_attr_enabled)
return -EINVAL;
rom = pci_map_rom(pdev, &size); /* size starts out as PCI window size */
if (!rom || !size)
return -EIO;
if (off >= size)
count = 0;
else {
if (off + count > size)
count = size - off;
memcpy_fromio(buf, rom + off, count);
}
pci_unmap_rom(pdev, rom);
return count;
}
static struct bin_attribute pci_config_attr = {
.attr = {
.name = "config",
.mode = S_IRUGO | S_IWUSR,
},
.size = PCI_CFG_SPACE_SIZE,
.read = pci_read_config,
.write = pci_write_config,
};
static struct bin_attribute pcie_config_attr = {
.attr = {
.name = "config",
.mode = S_IRUGO | S_IWUSR,
},
.size = PCI_CFG_SPACE_EXP_SIZE,
.read = pci_read_config,
.write = pci_write_config,
};
int __attribute__ ((weak)) pcibios_add_platform_entries(struct pci_dev *dev)
{
return 0;
}
static ssize_t reset_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct pci_dev *pdev = to_pci_dev(dev);
unsigned long val;
ssize_t result = strict_strtoul(buf, 0, &val);
if (result < 0)
return result;
if (val != 1)
return -EINVAL;
result = pci_reset_function(pdev);
if (result < 0)
return result;
return count;
}
static struct device_attribute reset_attr = __ATTR(reset, 0200, NULL, reset_store);
static int pci_create_capabilities_sysfs(struct pci_dev *dev)
{
int retval;
struct bin_attribute *attr;
/* If the device has VPD, try to expose it in sysfs. */
if (dev->vpd) {
attr = kzalloc(sizeof(*attr), GFP_ATOMIC);
if (!attr)
return -ENOMEM;
sysfs_bin_attr_init(attr);
attr->size = dev->vpd->len;
attr->attr.name = "vpd";
attr->attr.mode = S_IRUSR | S_IWUSR;
attr->read = read_vpd_attr;
attr->write = write_vpd_attr;
retval = sysfs_create_bin_file(&dev->dev.kobj, attr);
if (retval) {
kfree(attr);
return retval;
}
dev->vpd->attr = attr;
}
/* Active State Power Management */
pcie_aspm_create_sysfs_dev_files(dev);
if (!pci_probe_reset_function(dev)) {
retval = device_create_file(&dev->dev, &reset_attr);
if (retval)
goto error;
dev->reset_fn = 1;
}
return 0;
error:
pcie_aspm_remove_sysfs_dev_files(dev);
if (dev->vpd && dev->vpd->attr) {
sysfs_remove_bin_file(&dev->dev.kobj, dev->vpd->attr);
kfree(dev->vpd->attr);
}
return retval;
}
int __must_check pci_create_sysfs_dev_files (struct pci_dev *pdev)
{
int retval;
int rom_size = 0;
struct bin_attribute *attr;
if (!sysfs_initialized)
return -EACCES;
if (pdev->cfg_size < PCI_CFG_SPACE_EXP_SIZE)
retval = sysfs_create_bin_file(&pdev->dev.kobj, &pci_config_attr);
else
retval = sysfs_create_bin_file(&pdev->dev.kobj, &pcie_config_attr);
if (retval)
goto err;
retval = pci_create_resource_files(pdev);
if (retval)
goto err_config_file;
if (pci_resource_len(pdev, PCI_ROM_RESOURCE))
rom_size = pci_resource_len(pdev, PCI_ROM_RESOURCE);
else if (pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW)
rom_size = 0x20000;
/* If the device has a ROM, try to expose it in sysfs. */
if (rom_size) {
attr = kzalloc(sizeof(*attr), GFP_ATOMIC);
if (!attr) {
retval = -ENOMEM;
goto err_resource_files;
}
sysfs_bin_attr_init(attr);
attr->size = rom_size;
attr->attr.name = "rom";
attr->attr.mode = S_IRUSR | S_IWUSR;
attr->read = pci_read_rom;
attr->write = pci_write_rom;
retval = sysfs_create_bin_file(&pdev->dev.kobj, attr);
if (retval) {
kfree(attr);
goto err_resource_files;
}
pdev->rom_attr = attr;
}
if ((pdev->class >> 8) == PCI_CLASS_DISPLAY_VGA) {
retval = device_create_file(&pdev->dev, &vga_attr);
if (retval)
goto err_rom_file;
}
/* add platform-specific attributes */
retval = pcibios_add_platform_entries(pdev);
if (retval)
goto err_vga_file;
/* add sysfs entries for various capabilities */
retval = pci_create_capabilities_sysfs(pdev);
if (retval)
goto err_vga_file;
pci_create_firmware_label_files(pdev);
return 0;
err_vga_file:
if ((pdev->class >> 8) == PCI_CLASS_DISPLAY_VGA)
device_remove_file(&pdev->dev, &vga_attr);
err_rom_file:
if (rom_size) {
sysfs_remove_bin_file(&pdev->dev.kobj, pdev->rom_attr);
kfree(pdev->rom_attr);
pdev->rom_attr = NULL;
}
err_resource_files:
pci_remove_resource_files(pdev);
err_config_file:
if (pdev->cfg_size < PCI_CFG_SPACE_EXP_SIZE)
sysfs_remove_bin_file(&pdev->dev.kobj, &pci_config_attr);
else
sysfs_remove_bin_file(&pdev->dev.kobj, &pcie_config_attr);
err:
return retval;
}
static void pci_remove_capabilities_sysfs(struct pci_dev *dev)
{
if (dev->vpd && dev->vpd->attr) {
sysfs_remove_bin_file(&dev->dev.kobj, dev->vpd->attr);
kfree(dev->vpd->attr);
}
pcie_aspm_remove_sysfs_dev_files(dev);
if (dev->reset_fn) {
device_remove_file(&dev->dev, &reset_attr);
dev->reset_fn = 0;
}
}
/**
* pci_remove_sysfs_dev_files - cleanup PCI specific sysfs files
* @pdev: device whose entries we should free
*
* Cleanup when @pdev is removed from sysfs.
*/
void pci_remove_sysfs_dev_files(struct pci_dev *pdev)
{
int rom_size = 0;
if (!sysfs_initialized)
return;
pci_remove_capabilities_sysfs(pdev);
if (pdev->cfg_size < PCI_CFG_SPACE_EXP_SIZE)
sysfs_remove_bin_file(&pdev->dev.kobj, &pci_config_attr);
else
sysfs_remove_bin_file(&pdev->dev.kobj, &pcie_config_attr);
pci_remove_resource_files(pdev);
if (pci_resource_len(pdev, PCI_ROM_RESOURCE))
rom_size = pci_resource_len(pdev, PCI_ROM_RESOURCE);
else if (pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW)
rom_size = 0x20000;
if (rom_size && pdev->rom_attr) {
sysfs_remove_bin_file(&pdev->dev.kobj, pdev->rom_attr);
kfree(pdev->rom_attr);
}
pci_remove_firmware_label_files(pdev);
}
static int __init pci_sysfs_init(void)
{
struct pci_dev *pdev = NULL;
int retval;
sysfs_initialized = 1;
for_each_pci_dev(pdev) {
retval = pci_create_sysfs_dev_files(pdev);
if (retval) {
pci_dev_put(pdev);
return retval;
}
}
return 0;
}
late_initcall(pci_sysfs_init);