OpenCloudOS-Kernel/fs/efs/super.c

355 lines
8.2 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* super.c
*
* Copyright (c) 1999 Al Smith
*
* Portions derived from work (c) 1995,1996 Christian Vogelgsang.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/exportfs.h>
#include <linux/slab.h>
#include <linux/buffer_head.h>
#include <linux/vfs.h>
#include "efs.h"
#include <linux/efs_vh.h>
#include <linux/efs_fs_sb.h>
static int efs_statfs(struct dentry *dentry, struct kstatfs *buf);
static int efs_fill_super(struct super_block *s, void *d, int silent);
static struct dentry *efs_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return mount_bdev(fs_type, flags, dev_name, data, efs_fill_super);
}
static void efs_kill_sb(struct super_block *s)
{
struct efs_sb_info *sbi = SUPER_INFO(s);
kill_block_super(s);
kfree(sbi);
}
static struct file_system_type efs_fs_type = {
.owner = THIS_MODULE,
.name = "efs",
.mount = efs_mount,
.kill_sb = efs_kill_sb,
.fs_flags = FS_REQUIRES_DEV,
};
fs: Limit sys_mount to only request filesystem modules. Modify the request_module to prefix the file system type with "fs-" and add aliases to all of the filesystems that can be built as modules to match. A common practice is to build all of the kernel code and leave code that is not commonly needed as modules, with the result that many users are exposed to any bug anywhere in the kernel. Looking for filesystems with a fs- prefix limits the pool of possible modules that can be loaded by mount to just filesystems trivially making things safer with no real cost. Using aliases means user space can control the policy of which filesystem modules are auto-loaded by editing /etc/modprobe.d/*.conf with blacklist and alias directives. Allowing simple, safe, well understood work-arounds to known problematic software. This also addresses a rare but unfortunate problem where the filesystem name is not the same as it's module name and module auto-loading would not work. While writing this patch I saw a handful of such cases. The most significant being autofs that lives in the module autofs4. This is relevant to user namespaces because we can reach the request module in get_fs_type() without having any special permissions, and people get uncomfortable when a user specified string (in this case the filesystem type) goes all of the way to request_module. After having looked at this issue I don't think there is any particular reason to perform any filtering or permission checks beyond making it clear in the module request that we want a filesystem module. The common pattern in the kernel is to call request_module() without regards to the users permissions. In general all a filesystem module does once loaded is call register_filesystem() and go to sleep. Which means there is not much attack surface exposed by loading a filesytem module unless the filesystem is mounted. In a user namespace filesystems are not mounted unless .fs_flags = FS_USERNS_MOUNT, which most filesystems do not set today. Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Kees Cook <keescook@google.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2013-03-03 11:39:14 +08:00
MODULE_ALIAS_FS("efs");
static struct pt_types sgi_pt_types[] = {
{0x00, "SGI vh"},
{0x01, "SGI trkrepl"},
{0x02, "SGI secrepl"},
{0x03, "SGI raw"},
{0x04, "SGI bsd"},
{SGI_SYSV, "SGI sysv"},
{0x06, "SGI vol"},
{SGI_EFS, "SGI efs"},
{0x08, "SGI lv"},
{0x09, "SGI rlv"},
{0x0A, "SGI xfs"},
{0x0B, "SGI xfslog"},
{0x0C, "SGI xlv"},
{0x82, "Linux swap"},
{0x83, "Linux native"},
{0, NULL}
};
static struct kmem_cache * efs_inode_cachep;
static struct inode *efs_alloc_inode(struct super_block *sb)
{
struct efs_inode_info *ei;
ei = kmem_cache_alloc(efs_inode_cachep, GFP_KERNEL);
if (!ei)
return NULL;
return &ei->vfs_inode;
}
2011-01-07 14:49:49 +08:00
static void efs_i_callback(struct rcu_head *head)
{
2011-01-07 14:49:49 +08:00
struct inode *inode = container_of(head, struct inode, i_rcu);
kmem_cache_free(efs_inode_cachep, INODE_INFO(inode));
}
2011-01-07 14:49:49 +08:00
static void efs_destroy_inode(struct inode *inode)
{
call_rcu(&inode->i_rcu, efs_i_callback);
}
static void init_once(void *foo)
{
struct efs_inode_info *ei = (struct efs_inode_info *) foo;
inode_init_once(&ei->vfs_inode);
}
static int __init init_inodecache(void)
{
efs_inode_cachep = kmem_cache_create("efs_inode_cache",
2016-01-15 07:18:21 +08:00
sizeof(struct efs_inode_info), 0,
SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
SLAB_ACCOUNT, init_once);
if (efs_inode_cachep == NULL)
return -ENOMEM;
return 0;
}
static void destroy_inodecache(void)
{
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
kmem_cache_destroy(efs_inode_cachep);
}
static int efs_remount(struct super_block *sb, int *flags, char *data)
{
fs: push sync_filesystem() down to the file system's remount_fs() Previously, the no-op "mount -o mount /dev/xxx" operation when the file system is already mounted read-write causes an implied, unconditional syncfs(). This seems pretty stupid, and it's certainly documented or guaraunteed to do this, nor is it particularly useful, except in the case where the file system was mounted rw and is getting remounted read-only. However, it's possible that there might be some file systems that are actually depending on this behavior. In most file systems, it's probably fine to only call sync_filesystem() when transitioning from read-write to read-only, and there are some file systems where this is not needed at all (for example, for a pseudo-filesystem or something like romfs). Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Cc: linux-fsdevel@vger.kernel.org Cc: Christoph Hellwig <hch@infradead.org> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Evgeniy Dushistov <dushistov@mail.ru> Cc: Jan Kara <jack@suse.cz> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Cc: Anders Larsen <al@alarsen.net> Cc: Phillip Lougher <phillip@squashfs.org.uk> Cc: Kees Cook <keescook@chromium.org> Cc: Mikulas Patocka <mikulas@artax.karlin.mff.cuni.cz> Cc: Petr Vandrovec <petr@vandrovec.name> Cc: xfs@oss.sgi.com Cc: linux-btrfs@vger.kernel.org Cc: linux-cifs@vger.kernel.org Cc: samba-technical@lists.samba.org Cc: codalist@coda.cs.cmu.edu Cc: linux-ext4@vger.kernel.org Cc: linux-f2fs-devel@lists.sourceforge.net Cc: fuse-devel@lists.sourceforge.net Cc: cluster-devel@redhat.com Cc: linux-mtd@lists.infradead.org Cc: jfs-discussion@lists.sourceforge.net Cc: linux-nfs@vger.kernel.org Cc: linux-nilfs@vger.kernel.org Cc: linux-ntfs-dev@lists.sourceforge.net Cc: ocfs2-devel@oss.oracle.com Cc: reiserfs-devel@vger.kernel.org
2014-03-13 22:14:33 +08:00
sync_filesystem(sb);
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-28 05:05:09 +08:00
*flags |= SB_RDONLY;
return 0;
}
static const struct super_operations efs_superblock_operations = {
.alloc_inode = efs_alloc_inode,
.destroy_inode = efs_destroy_inode,
.statfs = efs_statfs,
.remount_fs = efs_remount,
};
static const struct export_operations efs_export_ops = {
.fh_to_dentry = efs_fh_to_dentry,
.fh_to_parent = efs_fh_to_parent,
.get_parent = efs_get_parent,
};
static int __init init_efs_fs(void) {
int err;
pr_info(EFS_VERSION" - http://aeschi.ch.eu.org/efs/\n");
err = init_inodecache();
if (err)
goto out1;
err = register_filesystem(&efs_fs_type);
if (err)
goto out;
return 0;
out:
destroy_inodecache();
out1:
return err;
}
static void __exit exit_efs_fs(void) {
unregister_filesystem(&efs_fs_type);
destroy_inodecache();
}
module_init(init_efs_fs)
module_exit(exit_efs_fs)
static efs_block_t efs_validate_vh(struct volume_header *vh) {
int i;
__be32 cs, *ui;
int csum;
efs_block_t sblock = 0; /* shuts up gcc */
struct pt_types *pt_entry;
int pt_type, slice = -1;
if (be32_to_cpu(vh->vh_magic) != VHMAGIC) {
/*
* assume that we're dealing with a partition and allow
* read_super() to try and detect a valid superblock
* on the next block.
*/
return 0;
}
ui = ((__be32 *) (vh + 1)) - 1;
for(csum = 0; ui >= ((__be32 *) vh);) {
cs = *ui--;
csum += be32_to_cpu(cs);
}
if (csum) {
pr_warn("SGI disklabel: checksum bad, label corrupted\n");
return 0;
}
#ifdef DEBUG
pr_debug("bf: \"%16s\"\n", vh->vh_bootfile);
for(i = 0; i < NVDIR; i++) {
int j;
char name[VDNAMESIZE+1];
for(j = 0; j < VDNAMESIZE; j++) {
name[j] = vh->vh_vd[i].vd_name[j];
}
name[j] = (char) 0;
if (name[0]) {
pr_debug("vh: %8s block: 0x%08x size: 0x%08x\n",
name, (int) be32_to_cpu(vh->vh_vd[i].vd_lbn),
(int) be32_to_cpu(vh->vh_vd[i].vd_nbytes));
}
}
#endif
for(i = 0; i < NPARTAB; i++) {
pt_type = (int) be32_to_cpu(vh->vh_pt[i].pt_type);
for(pt_entry = sgi_pt_types; pt_entry->pt_name; pt_entry++) {
if (pt_type == pt_entry->pt_type) break;
}
#ifdef DEBUG
if (be32_to_cpu(vh->vh_pt[i].pt_nblks)) {
pr_debug("pt %2d: start: %08d size: %08d type: 0x%02x (%s)\n",
i, (int)be32_to_cpu(vh->vh_pt[i].pt_firstlbn),
(int)be32_to_cpu(vh->vh_pt[i].pt_nblks),
pt_type, (pt_entry->pt_name) ?
pt_entry->pt_name : "unknown");
}
#endif
if (IS_EFS(pt_type)) {
sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn);
slice = i;
}
}
if (slice == -1) {
pr_notice("partition table contained no EFS partitions\n");
#ifdef DEBUG
} else {
pr_info("using slice %d (type %s, offset 0x%x)\n", slice,
(pt_entry->pt_name) ? pt_entry->pt_name : "unknown",
sblock);
#endif
}
return sblock;
}
static int efs_validate_super(struct efs_sb_info *sb, struct efs_super *super) {
if (!IS_EFS_MAGIC(be32_to_cpu(super->fs_magic)))
return -1;
sb->fs_magic = be32_to_cpu(super->fs_magic);
sb->total_blocks = be32_to_cpu(super->fs_size);
sb->first_block = be32_to_cpu(super->fs_firstcg);
sb->group_size = be32_to_cpu(super->fs_cgfsize);
sb->data_free = be32_to_cpu(super->fs_tfree);
sb->inode_free = be32_to_cpu(super->fs_tinode);
sb->inode_blocks = be16_to_cpu(super->fs_cgisize);
sb->total_groups = be16_to_cpu(super->fs_ncg);
return 0;
}
static int efs_fill_super(struct super_block *s, void *d, int silent)
{
struct efs_sb_info *sb;
struct buffer_head *bh;
struct inode *root;
sb = kzalloc(sizeof(struct efs_sb_info), GFP_KERNEL);
if (!sb)
return -ENOMEM;
s->s_fs_info = sb;
s->s_magic = EFS_SUPER_MAGIC;
if (!sb_set_blocksize(s, EFS_BLOCKSIZE)) {
pr_err("device does not support %d byte blocks\n",
EFS_BLOCKSIZE);
return -EINVAL;
}
/* read the vh (volume header) block */
bh = sb_bread(s, 0);
if (!bh) {
pr_err("cannot read volume header\n");
return -EIO;
}
/*
* if this returns zero then we didn't find any partition table.
* this isn't (yet) an error - just assume for the moment that
* the device is valid and go on to search for a superblock.
*/
sb->fs_start = efs_validate_vh((struct volume_header *) bh->b_data);
brelse(bh);
if (sb->fs_start == -1) {
return -EINVAL;
}
bh = sb_bread(s, sb->fs_start + EFS_SUPER);
if (!bh) {
pr_err("cannot read superblock\n");
return -EIO;
}
if (efs_validate_super(sb, (struct efs_super *) bh->b_data)) {
#ifdef DEBUG
pr_warn("invalid superblock at block %u\n",
sb->fs_start + EFS_SUPER);
#endif
brelse(bh);
return -EINVAL;
}
brelse(bh);
if (!sb_rdonly(s)) {
#ifdef DEBUG
pr_info("forcing read-only mode\n");
#endif
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-28 05:05:09 +08:00
s->s_flags |= SB_RDONLY;
}
s->s_op = &efs_superblock_operations;
s->s_export_op = &efs_export_ops;
root = efs_iget(s, EFS_ROOTINODE);
if (IS_ERR(root)) {
pr_err("get root inode failed\n");
return PTR_ERR(root);
}
s->s_root = d_make_root(root);
if (!(s->s_root)) {
pr_err("get root dentry failed\n");
return -ENOMEM;
}
return 0;
}
static int efs_statfs(struct dentry *dentry, struct kstatfs *buf) {
struct super_block *sb = dentry->d_sb;
struct efs_sb_info *sbi = SUPER_INFO(sb);
u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
buf->f_type = EFS_SUPER_MAGIC; /* efs magic number */
buf->f_bsize = EFS_BLOCKSIZE; /* blocksize */
buf->f_blocks = sbi->total_groups * /* total data blocks */
(sbi->group_size - sbi->inode_blocks);
buf->f_bfree = sbi->data_free; /* free data blocks */
buf->f_bavail = sbi->data_free; /* free blocks for non-root */
buf->f_files = sbi->total_groups * /* total inodes */
sbi->inode_blocks *
(EFS_BLOCKSIZE / sizeof(struct efs_dinode));
buf->f_ffree = sbi->inode_free; /* free inodes */
buf->f_fsid.val[0] = (u32)id;
buf->f_fsid.val[1] = (u32)(id >> 32);
buf->f_namelen = EFS_MAXNAMELEN; /* max filename length */
return 0;
}