OpenCloudOS-Kernel/kernel/trace/trace_osnoise.c

2379 lines
57 KiB
C
Raw Normal View History

trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* OS Noise Tracer: computes the OS Noise suffered by a running thread.
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
* Timerlat Tracer: measures the wakeup latency of a timer triggered IRQ and thread.
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
*
* Based on "hwlat_detector" tracer by:
* Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com>
* Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com>
* With feedback from Clark Williams <williams@redhat.com>
*
* And also based on the rtsl tracer presented on:
* DE OLIVEIRA, Daniel Bristot, et al. Demystifying the real-time linux
* scheduling latency. In: 32nd Euromicro Conference on Real-Time Systems
* (ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum fur Informatik, 2020.
*
* Copyright (C) 2021 Daniel Bristot de Oliveira, Red Hat, Inc. <bristot@redhat.com>
*/
#include <linux/kthread.h>
#include <linux/tracefs.h>
#include <linux/uaccess.h>
#include <linux/cpumask.h>
#include <linux/delay.h>
#include <linux/sched/clock.h>
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
#include <uapi/linux/sched/types.h>
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
#include <linux/sched.h>
#include "trace.h"
#ifdef CONFIG_X86_LOCAL_APIC
#include <asm/trace/irq_vectors.h>
#undef TRACE_INCLUDE_PATH
#undef TRACE_INCLUDE_FILE
#endif /* CONFIG_X86_LOCAL_APIC */
#include <trace/events/irq.h>
#include <trace/events/sched.h>
#define CREATE_TRACE_POINTS
#include <trace/events/osnoise.h>
/*
* Default values.
*/
#define BANNER "osnoise: "
#define DEFAULT_SAMPLE_PERIOD 1000000 /* 1s */
#define DEFAULT_SAMPLE_RUNTIME 1000000 /* 1s */
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
#define DEFAULT_TIMERLAT_PERIOD 1000 /* 1ms */
#define DEFAULT_TIMERLAT_PRIO 95 /* FIFO 95 */
2021-11-01 02:05:00 +08:00
/*
* trace_array of the enabled osnoise/timerlat instances.
*/
struct osnoise_instance {
struct list_head list;
struct trace_array *tr;
};
static struct list_head osnoise_instances;
2021-11-01 02:05:00 +08:00
static bool osnoise_has_registered_instances(void)
{
return !!list_first_or_null_rcu(&osnoise_instances,
struct osnoise_instance,
list);
}
tracing/osnoise: Allow multiple instances of the same tracer Currently, the user can start only one instance of timerlat/osnoise tracers and the tracers cannot run in parallel. As starting point to add more flexibility, let's allow the same tracer to run on different trace instances. The workload will start when the first trace_array (instance) is registered and stop when the last instance is unregistered. So, while this patch allows the same tracer to run in multiple instances (e.g., two instances running osnoise), it still does not allow instances of timerlat and osnoise in parallel (e.g., one timerlat and osnoise). That is because the osnoise: events have different behavior depending on which tracer is enabled (osnoise or timerlat). Enabling the parallel usage of these two tracers is in my TODO list. Link: https://lkml.kernel.org/r/38c8f14b613492a4f3f938d9d3bf0b063b72f0f0.1635702894.git.bristot@kernel.org Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <zanussi@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Clark Williams <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Daniel Bristot de Oliveira <bristot@kernel.org> Cc: linux-rt-users@vger.kernel.org Cc: linux-trace-devel@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-11-01 02:05:02 +08:00
/*
* osnoise_instance_registered - check if a tr is already registered
*/
static int osnoise_instance_registered(struct trace_array *tr)
{
struct osnoise_instance *inst;
int found = 0;
rcu_read_lock();
list_for_each_entry_rcu(inst, &osnoise_instances, list) {
if (inst->tr == tr)
found = 1;
}
rcu_read_unlock();
return found;
}
2021-11-01 02:05:00 +08:00
/*
* osnoise_register_instance - register a new trace instance
*
* Register a trace_array *tr in the list of instances running
* osnoise/timerlat tracers.
*/
static int osnoise_register_instance(struct trace_array *tr)
{
struct osnoise_instance *inst;
/*
* register/unregister serialization is provided by trace's
* trace_types_lock.
*/
lockdep_assert_held(&trace_types_lock);
inst = kmalloc(sizeof(*inst), GFP_KERNEL);
if (!inst)
return -ENOMEM;
INIT_LIST_HEAD_RCU(&inst->list);
inst->tr = tr;
list_add_tail_rcu(&inst->list, &osnoise_instances);
return 0;
}
/*
* osnoise_unregister_instance - unregister a registered trace instance
*
* Remove the trace_array *tr from the list of instances running
* osnoise/timerlat tracers.
*/
static void osnoise_unregister_instance(struct trace_array *tr)
{
struct osnoise_instance *inst;
int found = 0;
/*
* register/unregister serialization is provided by trace's
* trace_types_lock.
*/
lockdep_assert_held(&trace_types_lock);
list_for_each_entry_rcu(inst, &osnoise_instances, list) {
if (inst->tr == tr) {
list_del_rcu(&inst->list);
found = 1;
break;
}
}
if (!found)
return;
kvfree_rcu(inst);
2021-11-01 02:05:00 +08:00
}
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
/*
* NMI runtime info.
*/
struct osn_nmi {
u64 count;
u64 delta_start;
};
/*
* IRQ runtime info.
*/
struct osn_irq {
u64 count;
u64 arrival_time;
u64 delta_start;
};
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
#define IRQ_CONTEXT 0
#define THREAD_CONTEXT 1
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
/*
* sofirq runtime info.
*/
struct osn_softirq {
u64 count;
u64 arrival_time;
u64 delta_start;
};
/*
* thread runtime info.
*/
struct osn_thread {
u64 count;
u64 arrival_time;
u64 delta_start;
};
/*
* Runtime information: this structure saves the runtime information used by
* one sampling thread.
*/
struct osnoise_variables {
struct task_struct *kthread;
bool sampling;
pid_t pid;
struct osn_nmi nmi;
struct osn_irq irq;
struct osn_softirq softirq;
struct osn_thread thread;
local_t int_counter;
};
/*
* Per-cpu runtime information.
*/
DEFINE_PER_CPU(struct osnoise_variables, per_cpu_osnoise_var);
/*
* this_cpu_osn_var - Return the per-cpu osnoise_variables on its relative CPU
*/
static inline struct osnoise_variables *this_cpu_osn_var(void)
{
return this_cpu_ptr(&per_cpu_osnoise_var);
}
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
#ifdef CONFIG_TIMERLAT_TRACER
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
/*
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
* Runtime information for the timer mode.
*/
struct timerlat_variables {
struct task_struct *kthread;
struct hrtimer timer;
u64 rel_period;
u64 abs_period;
bool tracing_thread;
u64 count;
};
DEFINE_PER_CPU(struct timerlat_variables, per_cpu_timerlat_var);
/*
* this_cpu_tmr_var - Return the per-cpu timerlat_variables on its relative CPU
*/
static inline struct timerlat_variables *this_cpu_tmr_var(void)
{
return this_cpu_ptr(&per_cpu_timerlat_var);
}
/*
* tlat_var_reset - Reset the values of the given timerlat_variables
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
*/
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
static inline void tlat_var_reset(void)
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
{
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
struct timerlat_variables *tlat_var;
int cpu;
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
/*
* So far, all the values are initialized as 0, so
* zeroing the structure is perfect.
*/
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
for_each_cpu(cpu, cpu_online_mask) {
tlat_var = per_cpu_ptr(&per_cpu_timerlat_var, cpu);
memset(tlat_var, 0, sizeof(*tlat_var));
}
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
}
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
#else /* CONFIG_TIMERLAT_TRACER */
#define tlat_var_reset() do {} while (0)
#endif /* CONFIG_TIMERLAT_TRACER */
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
/*
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
* osn_var_reset - Reset the values of the given osnoise_variables
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
*/
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
static inline void osn_var_reset(void)
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
{
struct osnoise_variables *osn_var;
int cpu;
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
/*
* So far, all the values are initialized as 0, so
* zeroing the structure is perfect.
*/
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
for_each_cpu(cpu, cpu_online_mask) {
osn_var = per_cpu_ptr(&per_cpu_osnoise_var, cpu);
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
memset(osn_var, 0, sizeof(*osn_var));
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
}
}
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
/*
* osn_var_reset_all - Reset the value of all per-cpu osnoise_variables
*/
static inline void osn_var_reset_all(void)
{
osn_var_reset();
tlat_var_reset();
}
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
/*
* Tells NMIs to call back to the osnoise tracer to record timestamps.
*/
bool trace_osnoise_callback_enabled;
/*
* osnoise sample structure definition. Used to store the statistics of a
* sample run.
*/
struct osnoise_sample {
u64 runtime; /* runtime */
u64 noise; /* noise */
u64 max_sample; /* max single noise sample */
int hw_count; /* # HW (incl. hypervisor) interference */
int nmi_count; /* # NMIs during this sample */
int irq_count; /* # IRQs during this sample */
int softirq_count; /* # softirqs during this sample */
int thread_count; /* # threads during this sample */
};
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
#ifdef CONFIG_TIMERLAT_TRACER
/*
* timerlat sample structure definition. Used to store the statistics of
* a sample run.
*/
struct timerlat_sample {
u64 timer_latency; /* timer_latency */
unsigned int seqnum; /* unique sequence */
int context; /* timer context */
};
#endif
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
/*
* Protect the interface.
*/
struct mutex interface_lock;
/*
* Tracer data.
*/
static struct osnoise_data {
u64 sample_period; /* total sampling period */
u64 sample_runtime; /* active sampling portion of period */
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
u64 stop_tracing; /* stop trace in the internal operation (loop/irq) */
u64 stop_tracing_total; /* stop trace in the final operation (report/thread) */
#ifdef CONFIG_TIMERLAT_TRACER
u64 timerlat_period; /* timerlat period */
u64 print_stack; /* print IRQ stack if total > */
int timerlat_tracer; /* timerlat tracer */
#endif
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
bool tainted; /* infor users and developers about a problem */
} osnoise_data = {
.sample_period = DEFAULT_SAMPLE_PERIOD,
.sample_runtime = DEFAULT_SAMPLE_RUNTIME,
.stop_tracing = 0,
.stop_tracing_total = 0,
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
#ifdef CONFIG_TIMERLAT_TRACER
.print_stack = 0,
.timerlat_period = DEFAULT_TIMERLAT_PERIOD,
.timerlat_tracer = 0,
#endif
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
};
#ifdef CONFIG_TIMERLAT_TRACER
static inline bool timerlat_enabled(void)
{
return osnoise_data.timerlat_tracer;
}
static inline int timerlat_softirq_exit(struct osnoise_variables *osn_var)
{
struct timerlat_variables *tlat_var = this_cpu_tmr_var();
/*
* If the timerlat is enabled, but the irq handler did
* not run yet enabling timerlat_tracer, do not trace.
*/
if (!tlat_var->tracing_thread) {
osn_var->softirq.arrival_time = 0;
osn_var->softirq.delta_start = 0;
return 0;
}
return 1;
}
static inline int timerlat_thread_exit(struct osnoise_variables *osn_var)
{
struct timerlat_variables *tlat_var = this_cpu_tmr_var();
/*
* If the timerlat is enabled, but the irq handler did
* not run yet enabling timerlat_tracer, do not trace.
*/
if (!tlat_var->tracing_thread) {
osn_var->thread.delta_start = 0;
osn_var->thread.arrival_time = 0;
return 0;
}
return 1;
}
#else /* CONFIG_TIMERLAT_TRACER */
static inline bool timerlat_enabled(void)
{
return false;
}
static inline int timerlat_softirq_exit(struct osnoise_variables *osn_var)
{
return 1;
}
static inline int timerlat_thread_exit(struct osnoise_variables *osn_var)
{
return 1;
}
#endif
trace/osnoise: Add a header with PREEMPT_RT additional fields Some extra flags are printed to the trace header when using the PREEMPT_RT config. The extra flags are: need-resched-lazy, preempt-lazy-depth, and migrate-disable. Without printing these fields, the osnoise specific fields are shifted by three positions, for example: # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE %% OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-741 [000] ....... 1105.690909: 1000000 234 99.97660 36 21 0 1001 22 3 <...>-742 [001] ....... 1105.691923: 1000000 281 99.97190 197 7 0 1012 35 14 <...>-743 [002] ....... 1105.691958: 1000000 1324 99.86760 118 11 0 1016 155 143 <...>-744 [003] ....... 1105.691998: 1000000 109 99.98910 21 4 0 1004 33 7 <...>-745 [004] ....... 1105.692015: 1000000 2023 99.79770 97 37 0 1023 52 18 Add a new header for osnoise with the missing fields, to be used when the PREEMPT_RT is enabled. Link: https://lkml.kernel.org/r/1f03289d2a51fde5a58c2e7def063dc630820ad1.1626598844.git.bristot@kernel.org Cc: Tom Zanussi <zanussi@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-07-18 17:07:53 +08:00
#ifdef CONFIG_PREEMPT_RT
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
/*
* Print the osnoise header info.
*/
static void print_osnoise_headers(struct seq_file *s)
trace/osnoise: Add a header with PREEMPT_RT additional fields Some extra flags are printed to the trace header when using the PREEMPT_RT config. The extra flags are: need-resched-lazy, preempt-lazy-depth, and migrate-disable. Without printing these fields, the osnoise specific fields are shifted by three positions, for example: # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE %% OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-741 [000] ....... 1105.690909: 1000000 234 99.97660 36 21 0 1001 22 3 <...>-742 [001] ....... 1105.691923: 1000000 281 99.97190 197 7 0 1012 35 14 <...>-743 [002] ....... 1105.691958: 1000000 1324 99.86760 118 11 0 1016 155 143 <...>-744 [003] ....... 1105.691998: 1000000 109 99.98910 21 4 0 1004 33 7 <...>-745 [004] ....... 1105.692015: 1000000 2023 99.79770 97 37 0 1023 52 18 Add a new header for osnoise with the missing fields, to be used when the PREEMPT_RT is enabled. Link: https://lkml.kernel.org/r/1f03289d2a51fde5a58c2e7def063dc630820ad1.1626598844.git.bristot@kernel.org Cc: Tom Zanussi <zanussi@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-07-18 17:07:53 +08:00
{
if (osnoise_data.tainted)
seq_puts(s, "# osnoise is tainted!\n");
seq_puts(s, "# _-------=> irqs-off\n");
seq_puts(s, "# / _------=> need-resched\n");
seq_puts(s, "# | / _-----=> need-resched-lazy\n");
seq_puts(s, "# || / _----=> hardirq/softirq\n");
seq_puts(s, "# ||| / _---=> preempt-depth\n");
seq_puts(s, "# |||| / _--=> preempt-lazy-depth\n");
seq_puts(s, "# ||||| / _-=> migrate-disable\n");
seq_puts(s, "# |||||| / ");
seq_puts(s, " MAX\n");
seq_puts(s, "# ||||| / ");
seq_puts(s, " SINGLE Interference counters:\n");
seq_puts(s, "# ||||||| RUNTIME ");
seq_puts(s, " NOISE %% OF CPU NOISE +-----------------------------+\n");
seq_puts(s, "# TASK-PID CPU# ||||||| TIMESTAMP IN US ");
seq_puts(s, " IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD\n");
seq_puts(s, "# | | | ||||||| | | ");
seq_puts(s, " | | | | | | | |\n");
}
#else /* CONFIG_PREEMPT_RT */
static void print_osnoise_headers(struct seq_file *s)
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
{
if (osnoise_data.tainted)
seq_puts(s, "# osnoise is tainted!\n");
seq_puts(s, "# _-----=> irqs-off\n");
seq_puts(s, "# / _----=> need-resched\n");
seq_puts(s, "# | / _---=> hardirq/softirq\n");
seq_puts(s, "# || / _--=> preempt-depth\n");
seq_puts(s, "# ||| / _-=> migrate-disable ");
seq_puts(s, " MAX\n");
seq_puts(s, "# |||| / delay ");
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
seq_puts(s, " SINGLE Interference counters:\n");
seq_puts(s, "# ||||| RUNTIME ");
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
seq_puts(s, " NOISE %% OF CPU NOISE +-----------------------------+\n");
seq_puts(s, "# TASK-PID CPU# ||||| TIMESTAMP IN US ");
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
seq_puts(s, " IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD\n");
seq_puts(s, "# | | | ||||| | | ");
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
seq_puts(s, " | | | | | | | |\n");
}
trace/osnoise: Add a header with PREEMPT_RT additional fields Some extra flags are printed to the trace header when using the PREEMPT_RT config. The extra flags are: need-resched-lazy, preempt-lazy-depth, and migrate-disable. Without printing these fields, the osnoise specific fields are shifted by three positions, for example: # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE %% OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-741 [000] ....... 1105.690909: 1000000 234 99.97660 36 21 0 1001 22 3 <...>-742 [001] ....... 1105.691923: 1000000 281 99.97190 197 7 0 1012 35 14 <...>-743 [002] ....... 1105.691958: 1000000 1324 99.86760 118 11 0 1016 155 143 <...>-744 [003] ....... 1105.691998: 1000000 109 99.98910 21 4 0 1004 33 7 <...>-745 [004] ....... 1105.692015: 1000000 2023 99.79770 97 37 0 1023 52 18 Add a new header for osnoise with the missing fields, to be used when the PREEMPT_RT is enabled. Link: https://lkml.kernel.org/r/1f03289d2a51fde5a58c2e7def063dc630820ad1.1626598844.git.bristot@kernel.org Cc: Tom Zanussi <zanussi@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-07-18 17:07:53 +08:00
#endif /* CONFIG_PREEMPT_RT */
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
/*
* osnoise_taint - report an osnoise error.
*/
#define osnoise_taint(msg) ({ \
2021-11-01 02:05:00 +08:00
struct osnoise_instance *inst; \
struct trace_buffer *buffer; \
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
\
2021-11-01 02:05:00 +08:00
rcu_read_lock(); \
list_for_each_entry_rcu(inst, &osnoise_instances, list) { \
buffer = inst->tr->array_buffer.buffer; \
trace_array_printk_buf(buffer, _THIS_IP_, msg); \
} \
rcu_read_unlock(); \
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
osnoise_data.tainted = true; \
})
/*
* Record an osnoise_sample into the tracer buffer.
*/
2021-11-01 02:05:00 +08:00
static void
__trace_osnoise_sample(struct osnoise_sample *sample, struct trace_buffer *buffer)
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
{
struct trace_event_call *call = &event_osnoise;
struct ring_buffer_event *event;
struct osnoise_entry *entry;
event = trace_buffer_lock_reserve(buffer, TRACE_OSNOISE, sizeof(*entry),
tracing_gen_ctx());
if (!event)
return;
entry = ring_buffer_event_data(event);
entry->runtime = sample->runtime;
entry->noise = sample->noise;
entry->max_sample = sample->max_sample;
entry->hw_count = sample->hw_count;
entry->nmi_count = sample->nmi_count;
entry->irq_count = sample->irq_count;
entry->softirq_count = sample->softirq_count;
entry->thread_count = sample->thread_count;
if (!call_filter_check_discard(call, entry, buffer, event))
trace_buffer_unlock_commit_nostack(buffer, event);
}
2021-11-01 02:05:00 +08:00
/*
* Record an osnoise_sample on all osnoise instances.
*/
static void trace_osnoise_sample(struct osnoise_sample *sample)
{
struct osnoise_instance *inst;
struct trace_buffer *buffer;
rcu_read_lock();
list_for_each_entry_rcu(inst, &osnoise_instances, list) {
buffer = inst->tr->array_buffer.buffer;
__trace_osnoise_sample(sample, buffer);
}
rcu_read_unlock();
}
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
#ifdef CONFIG_TIMERLAT_TRACER
/*
* Print the timerlat header info.
*/
#ifdef CONFIG_PREEMPT_RT
static void print_timerlat_headers(struct seq_file *s)
{
seq_puts(s, "# _-------=> irqs-off\n");
seq_puts(s, "# / _------=> need-resched\n");
seq_puts(s, "# | / _-----=> need-resched-lazy\n");
seq_puts(s, "# || / _----=> hardirq/softirq\n");
seq_puts(s, "# ||| / _---=> preempt-depth\n");
seq_puts(s, "# |||| / _--=> preempt-lazy-depth\n");
seq_puts(s, "# ||||| / _-=> migrate-disable\n");
seq_puts(s, "# |||||| /\n");
seq_puts(s, "# ||||||| ACTIVATION\n");
seq_puts(s, "# TASK-PID CPU# ||||||| TIMESTAMP ID ");
seq_puts(s, " CONTEXT LATENCY\n");
seq_puts(s, "# | | | ||||||| | | ");
seq_puts(s, " | |\n");
}
#else /* CONFIG_PREEMPT_RT */
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
static void print_timerlat_headers(struct seq_file *s)
{
seq_puts(s, "# _-----=> irqs-off\n");
seq_puts(s, "# / _----=> need-resched\n");
seq_puts(s, "# | / _---=> hardirq/softirq\n");
seq_puts(s, "# || / _--=> preempt-depth\n");
seq_puts(s, "# ||| / _-=> migrate-disable\n");
seq_puts(s, "# |||| / delay\n");
seq_puts(s, "# ||||| ACTIVATION\n");
seq_puts(s, "# TASK-PID CPU# ||||| TIMESTAMP ID ");
seq_puts(s, " CONTEXT LATENCY\n");
seq_puts(s, "# | | | ||||| | | ");
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
seq_puts(s, " | |\n");
}
#endif /* CONFIG_PREEMPT_RT */
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
2021-11-01 02:05:00 +08:00
static void
__trace_timerlat_sample(struct timerlat_sample *sample, struct trace_buffer *buffer)
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
{
struct trace_event_call *call = &event_osnoise;
struct ring_buffer_event *event;
struct timerlat_entry *entry;
event = trace_buffer_lock_reserve(buffer, TRACE_TIMERLAT, sizeof(*entry),
tracing_gen_ctx());
if (!event)
return;
entry = ring_buffer_event_data(event);
entry->seqnum = sample->seqnum;
entry->context = sample->context;
entry->timer_latency = sample->timer_latency;
if (!call_filter_check_discard(call, entry, buffer, event))
trace_buffer_unlock_commit_nostack(buffer, event);
}
2021-11-01 02:05:00 +08:00
/*
* Record an timerlat_sample into the tracer buffer.
*/
static void trace_timerlat_sample(struct timerlat_sample *sample)
{
struct osnoise_instance *inst;
struct trace_buffer *buffer;
rcu_read_lock();
list_for_each_entry_rcu(inst, &osnoise_instances, list) {
buffer = inst->tr->array_buffer.buffer;
__trace_timerlat_sample(sample, buffer);
}
rcu_read_unlock();
}
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
#ifdef CONFIG_STACKTRACE
#define MAX_CALLS 256
/*
* Stack trace will take place only at IRQ level, so, no need
* to control nesting here.
*/
struct trace_stack {
int stack_size;
int nr_entries;
unsigned long calls[MAX_CALLS];
};
static DEFINE_PER_CPU(struct trace_stack, trace_stack);
/*
* timerlat_save_stack - save a stack trace without printing
*
* Save the current stack trace without printing. The
* stack will be printed later, after the end of the measurement.
*/
static void timerlat_save_stack(int skip)
{
unsigned int size, nr_entries;
struct trace_stack *fstack;
fstack = this_cpu_ptr(&trace_stack);
size = ARRAY_SIZE(fstack->calls);
nr_entries = stack_trace_save(fstack->calls, size, skip);
fstack->stack_size = nr_entries * sizeof(unsigned long);
fstack->nr_entries = nr_entries;
return;
}
2021-11-01 02:05:00 +08:00
static void
__timerlat_dump_stack(struct trace_buffer *buffer, struct trace_stack *fstack, unsigned int size)
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
{
struct trace_event_call *call = &event_osnoise;
struct ring_buffer_event *event;
struct stack_entry *entry;
event = trace_buffer_lock_reserve(buffer, TRACE_STACK, sizeof(*entry) + size,
tracing_gen_ctx());
if (!event)
2021-11-01 02:05:00 +08:00
return;
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
entry = ring_buffer_event_data(event);
memcpy(&entry->caller, fstack->calls, size);
entry->size = fstack->nr_entries;
if (!call_filter_check_discard(call, entry, buffer, event))
trace_buffer_unlock_commit_nostack(buffer, event);
2021-11-01 02:05:00 +08:00
}
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
2021-11-01 02:05:00 +08:00
/*
* timerlat_dump_stack - dump a stack trace previously saved
*/
static void timerlat_dump_stack(u64 latency)
2021-11-01 02:05:00 +08:00
{
struct osnoise_instance *inst;
struct trace_buffer *buffer;
struct trace_stack *fstack;
unsigned int size;
/*
* trace only if latency > print_stack config, if enabled.
*/
if (!osnoise_data.print_stack || osnoise_data.print_stack > latency)
return;
2021-11-01 02:05:00 +08:00
preempt_disable_notrace();
fstack = this_cpu_ptr(&trace_stack);
size = fstack->stack_size;
rcu_read_lock();
list_for_each_entry_rcu(inst, &osnoise_instances, list) {
buffer = inst->tr->array_buffer.buffer;
__timerlat_dump_stack(buffer, fstack, size);
}
rcu_read_unlock();
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
preempt_enable_notrace();
}
#else /* CONFIG_STACKTRACE */
#define timerlat_dump_stack(u64 latency) do {} while (0)
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
#define timerlat_save_stack(a) do {} while (0)
#endif /* CONFIG_STACKTRACE */
#endif /* CONFIG_TIMERLAT_TRACER */
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
/*
* Macros to encapsulate the time capturing infrastructure.
*/
#define time_get() trace_clock_local()
#define time_to_us(x) div_u64(x, 1000)
#define time_sub(a, b) ((a) - (b))
/*
* cond_move_irq_delta_start - Forward the delta_start of a running IRQ
*
* If an IRQ is preempted by an NMI, its delta_start is pushed forward
* to discount the NMI interference.
*
* See get_int_safe_duration().
*/
static inline void
cond_move_irq_delta_start(struct osnoise_variables *osn_var, u64 duration)
{
if (osn_var->irq.delta_start)
osn_var->irq.delta_start += duration;
}
#ifndef CONFIG_PREEMPT_RT
/*
* cond_move_softirq_delta_start - Forward the delta_start of a running softirq.
*
* If a softirq is preempted by an IRQ or NMI, its delta_start is pushed
* forward to discount the interference.
*
* See get_int_safe_duration().
*/
static inline void
cond_move_softirq_delta_start(struct osnoise_variables *osn_var, u64 duration)
{
if (osn_var->softirq.delta_start)
osn_var->softirq.delta_start += duration;
}
#else /* CONFIG_PREEMPT_RT */
#define cond_move_softirq_delta_start(osn_var, duration) do {} while (0)
#endif
/*
* cond_move_thread_delta_start - Forward the delta_start of a running thread
*
* If a noisy thread is preempted by an softirq, IRQ or NMI, its delta_start
* is pushed forward to discount the interference.
*
* See get_int_safe_duration().
*/
static inline void
cond_move_thread_delta_start(struct osnoise_variables *osn_var, u64 duration)
{
if (osn_var->thread.delta_start)
osn_var->thread.delta_start += duration;
}
/*
* get_int_safe_duration - Get the duration of a window
*
* The irq, softirq and thread varaibles need to have its duration without
* the interference from higher priority interrupts. Instead of keeping a
* variable to discount the interrupt interference from these variables, the
* starting time of these variables are pushed forward with the interrupt's
* duration. In this way, a single variable is used to:
*
* - Know if a given window is being measured.
* - Account its duration.
* - Discount the interference.
*
* To avoid getting inconsistent values, e.g.,:
*
* now = time_get()
* ---> interrupt!
* delta_start -= int duration;
* <---
* duration = now - delta_start;
*
* result: negative duration if the variable duration before the
* interrupt was smaller than the interrupt execution.
*
* A counter of interrupts is used. If the counter increased, try
* to capture an interference safe duration.
*/
static inline s64
get_int_safe_duration(struct osnoise_variables *osn_var, u64 *delta_start)
{
u64 int_counter, now;
s64 duration;
do {
int_counter = local_read(&osn_var->int_counter);
/* synchronize with interrupts */
barrier();
now = time_get();
duration = (now - *delta_start);
/* synchronize with interrupts */
barrier();
} while (int_counter != local_read(&osn_var->int_counter));
/*
* This is an evidence of race conditions that cause
* a value to be "discounted" too much.
*/
if (duration < 0)
osnoise_taint("Negative duration!\n");
*delta_start = 0;
return duration;
}
/*
*
* set_int_safe_time - Save the current time on *time, aware of interference
*
* Get the time, taking into consideration a possible interference from
* higher priority interrupts.
*
* See get_int_safe_duration() for an explanation.
*/
static u64
set_int_safe_time(struct osnoise_variables *osn_var, u64 *time)
{
u64 int_counter;
do {
int_counter = local_read(&osn_var->int_counter);
/* synchronize with interrupts */
barrier();
*time = time_get();
/* synchronize with interrupts */
barrier();
} while (int_counter != local_read(&osn_var->int_counter));
return int_counter;
}
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
#ifdef CONFIG_TIMERLAT_TRACER
/*
* copy_int_safe_time - Copy *src into *desc aware of interference
*/
static u64
copy_int_safe_time(struct osnoise_variables *osn_var, u64 *dst, u64 *src)
{
u64 int_counter;
do {
int_counter = local_read(&osn_var->int_counter);
/* synchronize with interrupts */
barrier();
*dst = *src;
/* synchronize with interrupts */
barrier();
} while (int_counter != local_read(&osn_var->int_counter));
return int_counter;
}
#endif /* CONFIG_TIMERLAT_TRACER */
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
/*
* trace_osnoise_callback - NMI entry/exit callback
*
* This function is called at the entry and exit NMI code. The bool enter
* distinguishes between either case. This function is used to note a NMI
* occurrence, compute the noise caused by the NMI, and to remove the noise
* it is potentially causing on other interference variables.
*/
void trace_osnoise_callback(bool enter)
{
struct osnoise_variables *osn_var = this_cpu_osn_var();
u64 duration;
if (!osn_var->sampling)
return;
/*
* Currently trace_clock_local() calls sched_clock() and the
* generic version is not NMI safe.
*/
if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) {
if (enter) {
osn_var->nmi.delta_start = time_get();
local_inc(&osn_var->int_counter);
} else {
duration = time_get() - osn_var->nmi.delta_start;
trace_nmi_noise(osn_var->nmi.delta_start, duration);
cond_move_irq_delta_start(osn_var, duration);
cond_move_softirq_delta_start(osn_var, duration);
cond_move_thread_delta_start(osn_var, duration);
}
}
if (enter)
osn_var->nmi.count++;
}
/*
* osnoise_trace_irq_entry - Note the starting of an IRQ
*
* Save the starting time of an IRQ. As IRQs are non-preemptive to other IRQs,
* it is safe to use a single variable (ons_var->irq) to save the statistics.
* The arrival_time is used to report... the arrival time. The delta_start
* is used to compute the duration at the IRQ exit handler. See
* cond_move_irq_delta_start().
*/
void osnoise_trace_irq_entry(int id)
{
struct osnoise_variables *osn_var = this_cpu_osn_var();
if (!osn_var->sampling)
return;
/*
* This value will be used in the report, but not to compute
* the execution time, so it is safe to get it unsafe.
*/
osn_var->irq.arrival_time = time_get();
set_int_safe_time(osn_var, &osn_var->irq.delta_start);
osn_var->irq.count++;
local_inc(&osn_var->int_counter);
}
/*
* osnoise_irq_exit - Note the end of an IRQ, sava data and trace
*
* Computes the duration of the IRQ noise, and trace it. Also discounts the
* interference from other sources of noise could be currently being accounted.
*/
void osnoise_trace_irq_exit(int id, const char *desc)
{
struct osnoise_variables *osn_var = this_cpu_osn_var();
int duration;
if (!osn_var->sampling)
return;
duration = get_int_safe_duration(osn_var, &osn_var->irq.delta_start);
trace_irq_noise(id, desc, osn_var->irq.arrival_time, duration);
osn_var->irq.arrival_time = 0;
cond_move_softirq_delta_start(osn_var, duration);
cond_move_thread_delta_start(osn_var, duration);
}
/*
* trace_irqentry_callback - Callback to the irq:irq_entry traceevent
*
* Used to note the starting of an IRQ occurece.
*/
static void trace_irqentry_callback(void *data, int irq,
struct irqaction *action)
{
osnoise_trace_irq_entry(irq);
}
/*
* trace_irqexit_callback - Callback to the irq:irq_exit traceevent
*
* Used to note the end of an IRQ occurece.
*/
static void trace_irqexit_callback(void *data, int irq,
struct irqaction *action, int ret)
{
osnoise_trace_irq_exit(irq, action->name);
}
/*
* arch specific register function.
*/
int __weak osnoise_arch_register(void)
{
return 0;
}
/*
* arch specific unregister function.
*/
void __weak osnoise_arch_unregister(void)
{
return;
}
/*
* hook_irq_events - Hook IRQ handling events
*
* This function hooks the IRQ related callbacks to the respective trace
* events.
*/
static int hook_irq_events(void)
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
{
int ret;
ret = register_trace_irq_handler_entry(trace_irqentry_callback, NULL);
if (ret)
goto out_err;
ret = register_trace_irq_handler_exit(trace_irqexit_callback, NULL);
if (ret)
goto out_unregister_entry;
ret = osnoise_arch_register();
if (ret)
goto out_irq_exit;
return 0;
out_irq_exit:
unregister_trace_irq_handler_exit(trace_irqexit_callback, NULL);
out_unregister_entry:
unregister_trace_irq_handler_entry(trace_irqentry_callback, NULL);
out_err:
return -EINVAL;
}
/*
* unhook_irq_events - Unhook IRQ handling events
*
* This function unhooks the IRQ related callbacks to the respective trace
* events.
*/
static void unhook_irq_events(void)
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
{
osnoise_arch_unregister();
unregister_trace_irq_handler_exit(trace_irqexit_callback, NULL);
unregister_trace_irq_handler_entry(trace_irqentry_callback, NULL);
}
#ifndef CONFIG_PREEMPT_RT
/*
* trace_softirq_entry_callback - Note the starting of a softirq
*
* Save the starting time of a softirq. As softirqs are non-preemptive to
* other softirqs, it is safe to use a single variable (ons_var->softirq)
* to save the statistics. The arrival_time is used to report... the
* arrival time. The delta_start is used to compute the duration at the
* softirq exit handler. See cond_move_softirq_delta_start().
*/
static void trace_softirq_entry_callback(void *data, unsigned int vec_nr)
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
{
struct osnoise_variables *osn_var = this_cpu_osn_var();
if (!osn_var->sampling)
return;
/*
* This value will be used in the report, but not to compute
* the execution time, so it is safe to get it unsafe.
*/
osn_var->softirq.arrival_time = time_get();
set_int_safe_time(osn_var, &osn_var->softirq.delta_start);
osn_var->softirq.count++;
local_inc(&osn_var->int_counter);
}
/*
* trace_softirq_exit_callback - Note the end of an softirq
*
* Computes the duration of the softirq noise, and trace it. Also discounts the
* interference from other sources of noise could be currently being accounted.
*/
static void trace_softirq_exit_callback(void *data, unsigned int vec_nr)
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
{
struct osnoise_variables *osn_var = this_cpu_osn_var();
int duration;
if (!osn_var->sampling)
return;
if (unlikely(timerlat_enabled()))
if (!timerlat_softirq_exit(osn_var))
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
return;
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
duration = get_int_safe_duration(osn_var, &osn_var->softirq.delta_start);
trace_softirq_noise(vec_nr, osn_var->softirq.arrival_time, duration);
cond_move_thread_delta_start(osn_var, duration);
osn_var->softirq.arrival_time = 0;
}
/*
* hook_softirq_events - Hook softirq handling events
*
* This function hooks the softirq related callbacks to the respective trace
* events.
*/
static int hook_softirq_events(void)
{
int ret;
ret = register_trace_softirq_entry(trace_softirq_entry_callback, NULL);
if (ret)
goto out_err;
ret = register_trace_softirq_exit(trace_softirq_exit_callback, NULL);
if (ret)
goto out_unreg_entry;
return 0;
out_unreg_entry:
unregister_trace_softirq_entry(trace_softirq_entry_callback, NULL);
out_err:
return -EINVAL;
}
/*
* unhook_softirq_events - Unhook softirq handling events
*
* This function hooks the softirq related callbacks to the respective trace
* events.
*/
static void unhook_softirq_events(void)
{
unregister_trace_softirq_entry(trace_softirq_entry_callback, NULL);
unregister_trace_softirq_exit(trace_softirq_exit_callback, NULL);
}
#else /* CONFIG_PREEMPT_RT */
/*
* softirq are threads on the PREEMPT_RT mode.
*/
static int hook_softirq_events(void)
{
return 0;
}
static void unhook_softirq_events(void)
{
}
#endif
/*
* thread_entry - Record the starting of a thread noise window
*
* It saves the context switch time for a noisy thread, and increments
* the interference counters.
*/
static void
thread_entry(struct osnoise_variables *osn_var, struct task_struct *t)
{
if (!osn_var->sampling)
return;
/*
* The arrival time will be used in the report, but not to compute
* the execution time, so it is safe to get it unsafe.
*/
osn_var->thread.arrival_time = time_get();
set_int_safe_time(osn_var, &osn_var->thread.delta_start);
osn_var->thread.count++;
local_inc(&osn_var->int_counter);
}
/*
* thread_exit - Report the end of a thread noise window
*
* It computes the total noise from a thread, tracing if needed.
*/
static void
thread_exit(struct osnoise_variables *osn_var, struct task_struct *t)
{
int duration;
if (!osn_var->sampling)
return;
if (unlikely(timerlat_enabled()))
if (!timerlat_thread_exit(osn_var))
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
return;
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
duration = get_int_safe_duration(osn_var, &osn_var->thread.delta_start);
trace_thread_noise(t, osn_var->thread.arrival_time, duration);
osn_var->thread.arrival_time = 0;
}
/*
* trace_sched_switch - sched:sched_switch trace event handler
*
* This function is hooked to the sched:sched_switch trace event, and it is
* used to record the beginning and to report the end of a thread noise window.
*/
static void
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
trace_sched_switch_callback(void *data, bool preempt, struct task_struct *p,
struct task_struct *n)
{
struct osnoise_variables *osn_var = this_cpu_osn_var();
if (p->pid != osn_var->pid)
thread_exit(osn_var, p);
if (n->pid != osn_var->pid)
thread_entry(osn_var, n);
}
/*
* hook_thread_events - Hook the insturmentation for thread noise
*
* Hook the osnoise tracer callbacks to handle the noise from other
* threads on the necessary kernel events.
*/
static int hook_thread_events(void)
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
{
int ret;
ret = register_trace_sched_switch(trace_sched_switch_callback, NULL);
if (ret)
return -EINVAL;
return 0;
}
/*
* unhook_thread_events - *nhook the insturmentation for thread noise
*
* Unook the osnoise tracer callbacks to handle the noise from other
* threads on the necessary kernel events.
*/
static void unhook_thread_events(void)
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
{
unregister_trace_sched_switch(trace_sched_switch_callback, NULL);
}
/*
* save_osn_sample_stats - Save the osnoise_sample statistics
*
* Save the osnoise_sample statistics before the sampling phase. These
* values will be used later to compute the diff betwneen the statistics
* before and after the osnoise sampling.
*/
static void
save_osn_sample_stats(struct osnoise_variables *osn_var, struct osnoise_sample *s)
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
{
s->nmi_count = osn_var->nmi.count;
s->irq_count = osn_var->irq.count;
s->softirq_count = osn_var->softirq.count;
s->thread_count = osn_var->thread.count;
}
/*
* diff_osn_sample_stats - Compute the osnoise_sample statistics
*
* After a sample period, compute the difference on the osnoise_sample
* statistics. The struct osnoise_sample *s contains the statistics saved via
* save_osn_sample_stats() before the osnoise sampling.
*/
static void
diff_osn_sample_stats(struct osnoise_variables *osn_var, struct osnoise_sample *s)
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
{
s->nmi_count = osn_var->nmi.count - s->nmi_count;
s->irq_count = osn_var->irq.count - s->irq_count;
s->softirq_count = osn_var->softirq.count - s->softirq_count;
s->thread_count = osn_var->thread.count - s->thread_count;
}
/*
* osnoise_stop_tracing - Stop tracing and the tracer.
*/
trace/osnoise: Print a stop tracing message When using osnoise/timerlat with stop tracing, sometimes it is not clear in which CPU the stop condition was hit, mainly when using some extra events. Print a message informing in which CPU the trace stopped, like in the example below: <idle>-0 [006] d.h. 2932.676616: #1672599 context irq timer_latency 34689 ns <idle>-0 [006] dNh. 2932.676618: irq_noise: local_timer:236 start 2932.676615639 duration 2391 ns <idle>-0 [006] dNh. 2932.676620: irq_noise: virtio0-output.0:47 start 2932.676620180 duration 86 ns <idle>-0 [003] d.h. 2932.676621: #1673374 context irq timer_latency 1200 ns <idle>-0 [006] d... 2932.676623: thread_noise: swapper/6:0 start 2932.676615964 duration 4339 ns <idle>-0 [003] dNh. 2932.676623: irq_noise: local_timer:236 start 2932.676620597 duration 1881 ns <idle>-0 [006] d... 2932.676623: sched_switch: prev_comm=swapper/6 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=timerlat/6 next_pid=852 next_prio=4 timerlat/6-852 [006] .... 2932.676623: #1672599 context thread timer_latency 41931 ns <idle>-0 [003] d... 2932.676623: thread_noise: swapper/3:0 start 2932.676620854 duration 880 ns <idle>-0 [003] d... 2932.676624: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=timerlat/3 next_pid=849 next_prio=4 timerlat/6-852 [006] .... 2932.676624: timerlat_main: stop tracing hit on cpu 6 timerlat/3-849 [003] .... 2932.676624: #1673374 context thread timer_latency 4310 ns Link: https://lkml.kernel.org/r/b30a0d7542adba019185f44ee648e60e14923b11.1626598844.git.bristot@kernel.org Cc: Tom Zanussi <zanussi@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-07-18 17:07:55 +08:00
static __always_inline void osnoise_stop_tracing(void)
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
{
2021-11-01 02:05:00 +08:00
struct osnoise_instance *inst;
struct trace_array *tr;
rcu_read_lock();
list_for_each_entry_rcu(inst, &osnoise_instances, list) {
tr = inst->tr;
trace_array_printk_buf(tr->array_buffer.buffer, _THIS_IP_,
"stop tracing hit on cpu %d\n", smp_processor_id());
tracer_tracing_off(tr);
}
rcu_read_unlock();
}
trace/osnoise: Print a stop tracing message When using osnoise/timerlat with stop tracing, sometimes it is not clear in which CPU the stop condition was hit, mainly when using some extra events. Print a message informing in which CPU the trace stopped, like in the example below: <idle>-0 [006] d.h. 2932.676616: #1672599 context irq timer_latency 34689 ns <idle>-0 [006] dNh. 2932.676618: irq_noise: local_timer:236 start 2932.676615639 duration 2391 ns <idle>-0 [006] dNh. 2932.676620: irq_noise: virtio0-output.0:47 start 2932.676620180 duration 86 ns <idle>-0 [003] d.h. 2932.676621: #1673374 context irq timer_latency 1200 ns <idle>-0 [006] d... 2932.676623: thread_noise: swapper/6:0 start 2932.676615964 duration 4339 ns <idle>-0 [003] dNh. 2932.676623: irq_noise: local_timer:236 start 2932.676620597 duration 1881 ns <idle>-0 [006] d... 2932.676623: sched_switch: prev_comm=swapper/6 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=timerlat/6 next_pid=852 next_prio=4 timerlat/6-852 [006] .... 2932.676623: #1672599 context thread timer_latency 41931 ns <idle>-0 [003] d... 2932.676623: thread_noise: swapper/3:0 start 2932.676620854 duration 880 ns <idle>-0 [003] d... 2932.676624: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=timerlat/3 next_pid=849 next_prio=4 timerlat/6-852 [006] .... 2932.676624: timerlat_main: stop tracing hit on cpu 6 timerlat/3-849 [003] .... 2932.676624: #1673374 context thread timer_latency 4310 ns Link: https://lkml.kernel.org/r/b30a0d7542adba019185f44ee648e60e14923b11.1626598844.git.bristot@kernel.org Cc: Tom Zanussi <zanussi@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-07-18 17:07:55 +08:00
2021-11-01 02:05:00 +08:00
/*
* notify_new_max_latency - Notify a new max latency via fsnotify interface.
*/
static void notify_new_max_latency(u64 latency)
{
struct osnoise_instance *inst;
struct trace_array *tr;
trace/osnoise: Print a stop tracing message When using osnoise/timerlat with stop tracing, sometimes it is not clear in which CPU the stop condition was hit, mainly when using some extra events. Print a message informing in which CPU the trace stopped, like in the example below: <idle>-0 [006] d.h. 2932.676616: #1672599 context irq timer_latency 34689 ns <idle>-0 [006] dNh. 2932.676618: irq_noise: local_timer:236 start 2932.676615639 duration 2391 ns <idle>-0 [006] dNh. 2932.676620: irq_noise: virtio0-output.0:47 start 2932.676620180 duration 86 ns <idle>-0 [003] d.h. 2932.676621: #1673374 context irq timer_latency 1200 ns <idle>-0 [006] d... 2932.676623: thread_noise: swapper/6:0 start 2932.676615964 duration 4339 ns <idle>-0 [003] dNh. 2932.676623: irq_noise: local_timer:236 start 2932.676620597 duration 1881 ns <idle>-0 [006] d... 2932.676623: sched_switch: prev_comm=swapper/6 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=timerlat/6 next_pid=852 next_prio=4 timerlat/6-852 [006] .... 2932.676623: #1672599 context thread timer_latency 41931 ns <idle>-0 [003] d... 2932.676623: thread_noise: swapper/3:0 start 2932.676620854 duration 880 ns <idle>-0 [003] d... 2932.676624: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=timerlat/3 next_pid=849 next_prio=4 timerlat/6-852 [006] .... 2932.676624: timerlat_main: stop tracing hit on cpu 6 timerlat/3-849 [003] .... 2932.676624: #1673374 context thread timer_latency 4310 ns Link: https://lkml.kernel.org/r/b30a0d7542adba019185f44ee648e60e14923b11.1626598844.git.bristot@kernel.org Cc: Tom Zanussi <zanussi@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-07-18 17:07:55 +08:00
2021-11-01 02:05:00 +08:00
rcu_read_lock();
list_for_each_entry_rcu(inst, &osnoise_instances, list) {
tr = inst->tr;
if (tr->max_latency < latency) {
tr->max_latency = latency;
latency_fsnotify(tr);
}
}
rcu_read_unlock();
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
}
/*
* run_osnoise - Sample the time and look for osnoise
*
* Used to capture the time, looking for potential osnoise latency repeatedly.
* Different from hwlat_detector, it is called with preemption and interrupts
* enabled. This allows irqs, softirqs and threads to run, interfering on the
* osnoise sampling thread, as they would do with a regular thread.
*/
static int run_osnoise(void)
{
struct osnoise_variables *osn_var = this_cpu_osn_var();
u64 start, sample, last_sample;
u64 last_int_count, int_count;
s64 noise = 0, max_noise = 0;
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
s64 total, last_total = 0;
struct osnoise_sample s;
unsigned int threshold;
u64 runtime, stop_in;
u64 sum_noise = 0;
int hw_count = 0;
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
int ret = -1;
/*
* Considers the current thread as the workload.
*/
osn_var->pid = current->pid;
/*
* Save the current stats for the diff
*/
save_osn_sample_stats(osn_var, &s);
/*
* if threshold is 0, use the default value of 5 us.
*/
threshold = tracing_thresh ? : 5000;
/*
* Make sure NMIs see sampling first
*/
osn_var->sampling = true;
barrier();
/*
* Transform the *_us config to nanoseconds to avoid the
* division on the main loop.
*/
runtime = osnoise_data.sample_runtime * NSEC_PER_USEC;
stop_in = osnoise_data.stop_tracing * NSEC_PER_USEC;
/*
* Start timestemp
*/
start = time_get();
/*
* "previous" loop.
*/
last_int_count = set_int_safe_time(osn_var, &last_sample);
do {
/*
* Get sample!
*/
int_count = set_int_safe_time(osn_var, &sample);
noise = time_sub(sample, last_sample);
/*
* This shouldn't happen.
*/
if (noise < 0) {
osnoise_taint("negative noise!");
goto out;
}
/*
* Sample runtime.
*/
total = time_sub(sample, start);
/*
* Check for possible overflows.
*/
if (total < last_total) {
osnoise_taint("total overflow!");
break;
}
last_total = total;
if (noise >= threshold) {
int interference = int_count - last_int_count;
if (noise > max_noise)
max_noise = noise;
if (!interference)
hw_count++;
sum_noise += noise;
trace_sample_threshold(last_sample, noise, interference);
if (osnoise_data.stop_tracing)
if (noise > stop_in)
osnoise_stop_tracing();
}
/*
* For the non-preemptive kernel config: let threads runs, if
* they so wish.
*/
cond_resched();
last_sample = sample;
last_int_count = int_count;
} while (total < runtime && !kthread_should_stop());
/*
* Finish the above in the view for interrupts.
*/
barrier();
osn_var->sampling = false;
/*
* Make sure sampling data is no longer updated.
*/
barrier();
/*
* Save noise info.
*/
s.noise = time_to_us(sum_noise);
s.runtime = time_to_us(total);
s.max_sample = time_to_us(max_noise);
s.hw_count = hw_count;
/* Save interference stats info */
diff_osn_sample_stats(osn_var, &s);
trace_osnoise_sample(&s);
2021-11-01 02:05:00 +08:00
notify_new_max_latency(max_noise);
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
if (osnoise_data.stop_tracing_total)
if (s.noise > osnoise_data.stop_tracing_total)
osnoise_stop_tracing();
return 0;
out:
return ret;
}
static struct cpumask osnoise_cpumask;
static struct cpumask save_cpumask;
/*
* osnoise_main - The osnoise detection kernel thread
*
* Calls run_osnoise() function to measure the osnoise for the configured runtime,
* every period.
*/
static int osnoise_main(void *data)
{
u64 interval;
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
while (!kthread_should_stop()) {
run_osnoise();
mutex_lock(&interface_lock);
interval = osnoise_data.sample_period - osnoise_data.sample_runtime;
mutex_unlock(&interface_lock);
do_div(interval, USEC_PER_MSEC);
/*
* differently from hwlat_detector, the osnoise tracer can run
* without a pause because preemption is on.
*/
if (interval < 1) {
/* Let synchronize_rcu_tasks() make progress */
cond_resched_tasks_rcu_qs();
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
continue;
}
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
if (msleep_interruptible(interval))
break;
}
return 0;
}
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
#ifdef CONFIG_TIMERLAT_TRACER
/*
* timerlat_irq - hrtimer handler for timerlat.
*/
static enum hrtimer_restart timerlat_irq(struct hrtimer *timer)
{
struct osnoise_variables *osn_var = this_cpu_osn_var();
struct timerlat_variables *tlat;
struct timerlat_sample s;
u64 now;
u64 diff;
/*
* I am not sure if the timer was armed for this CPU. So, get
* the timerlat struct from the timer itself, not from this
* CPU.
*/
tlat = container_of(timer, struct timerlat_variables, timer);
now = ktime_to_ns(hrtimer_cb_get_time(&tlat->timer));
/*
* Enable the osnoise: events for thread an softirq.
*/
tlat->tracing_thread = true;
osn_var->thread.arrival_time = time_get();
/*
* A hardirq is running: the timer IRQ. It is for sure preempting
* a thread, and potentially preempting a softirq.
*
* At this point, it is not interesting to know the duration of the
* preempted thread (and maybe softirq), but how much time they will
* delay the beginning of the execution of the timer thread.
*
* To get the correct (net) delay added by the softirq, its delta_start
* is set as the IRQ one. In this way, at the return of the IRQ, the delta
* start of the sofitrq will be zeroed, accounting then only the time
* after that.
*
* The thread follows the same principle. However, if a softirq is
* running, the thread needs to receive the softirq delta_start. The
* reason being is that the softirq will be the last to be unfolded,
* resseting the thread delay to zero.
*
* The PREEMPT_RT is a special case, though. As softirqs run as threads
* on RT, moving the thread is enough.
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
*/
if (!IS_ENABLED(CONFIG_PREEMPT_RT) && osn_var->softirq.delta_start) {
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
copy_int_safe_time(osn_var, &osn_var->thread.delta_start,
&osn_var->softirq.delta_start);
copy_int_safe_time(osn_var, &osn_var->softirq.delta_start,
&osn_var->irq.delta_start);
} else {
copy_int_safe_time(osn_var, &osn_var->thread.delta_start,
&osn_var->irq.delta_start);
}
/*
* Compute the current time with the expected time.
*/
diff = now - tlat->abs_period;
tlat->count++;
s.seqnum = tlat->count;
s.timer_latency = diff;
s.context = IRQ_CONTEXT;
trace_timerlat_sample(&s);
2021-11-01 02:05:00 +08:00
notify_new_max_latency(diff);
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
if (osnoise_data.stop_tracing)
if (time_to_us(diff) >= osnoise_data.stop_tracing)
osnoise_stop_tracing();
wake_up_process(tlat->kthread);
if (osnoise_data.print_stack)
timerlat_save_stack(0);
return HRTIMER_NORESTART;
}
/*
* wait_next_period - Wait for the next period for timerlat
*/
static int wait_next_period(struct timerlat_variables *tlat)
{
ktime_t next_abs_period, now;
u64 rel_period = osnoise_data.timerlat_period * 1000;
now = hrtimer_cb_get_time(&tlat->timer);
next_abs_period = ns_to_ktime(tlat->abs_period + rel_period);
/*
* Save the next abs_period.
*/
tlat->abs_period = (u64) ktime_to_ns(next_abs_period);
/*
* If the new abs_period is in the past, skip the activation.
*/
while (ktime_compare(now, next_abs_period) > 0) {
next_abs_period = ns_to_ktime(tlat->abs_period + rel_period);
tlat->abs_period = (u64) ktime_to_ns(next_abs_period);
}
set_current_state(TASK_INTERRUPTIBLE);
hrtimer_start(&tlat->timer, next_abs_period, HRTIMER_MODE_ABS_PINNED_HARD);
schedule();
return 1;
}
/*
* timerlat_main- Timerlat main
*/
static int timerlat_main(void *data)
{
struct osnoise_variables *osn_var = this_cpu_osn_var();
struct timerlat_variables *tlat = this_cpu_tmr_var();
struct timerlat_sample s;
struct sched_param sp;
u64 now, diff;
/*
* Make the thread RT, that is how cyclictest is usually used.
*/
sp.sched_priority = DEFAULT_TIMERLAT_PRIO;
sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
tlat->count = 0;
tlat->tracing_thread = false;
hrtimer_init(&tlat->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
tlat->timer.function = timerlat_irq;
tlat->kthread = current;
osn_var->pid = current->pid;
/*
* Anotate the arrival time.
*/
tlat->abs_period = hrtimer_cb_get_time(&tlat->timer);
wait_next_period(tlat);
osn_var->sampling = 1;
while (!kthread_should_stop()) {
now = ktime_to_ns(hrtimer_cb_get_time(&tlat->timer));
diff = now - tlat->abs_period;
s.seqnum = tlat->count;
s.timer_latency = diff;
s.context = THREAD_CONTEXT;
trace_timerlat_sample(&s);
timerlat_dump_stack(time_to_us(diff));
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
tlat->tracing_thread = false;
if (osnoise_data.stop_tracing_total)
if (time_to_us(diff) >= osnoise_data.stop_tracing_total)
osnoise_stop_tracing();
wait_next_period(tlat);
}
hrtimer_cancel(&tlat->timer);
return 0;
}
#else /* CONFIG_TIMERLAT_TRACER */
static int timerlat_main(void *data)
{
return 0;
}
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
#endif /* CONFIG_TIMERLAT_TRACER */
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
/*
* stop_kthread - stop a workload thread
*/
static void stop_kthread(unsigned int cpu)
{
struct task_struct *kthread;
kthread = per_cpu(per_cpu_osnoise_var, cpu).kthread;
if (kthread)
kthread_stop(kthread);
per_cpu(per_cpu_osnoise_var, cpu).kthread = NULL;
}
/*
* stop_per_cpu_kthread - Stop per-cpu threads
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
*
* Stop the osnoise sampling htread. Use this on unload and at system
* shutdown.
*/
static void stop_per_cpu_kthreads(void)
{
int cpu;
cpus_read_lock();
for_each_online_cpu(cpu)
stop_kthread(cpu);
cpus_read_unlock();
}
/*
* start_kthread - Start a workload tread
*/
static int start_kthread(unsigned int cpu)
{
struct task_struct *kthread;
void *main = osnoise_main;
char comm[24];
if (timerlat_enabled()) {
snprintf(comm, 24, "timerlat/%d", cpu);
main = timerlat_main;
} else {
snprintf(comm, 24, "osnoise/%d", cpu);
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
}
kthread = kthread_run_on_cpu(main, NULL, cpu, comm);
if (IS_ERR(kthread)) {
pr_err(BANNER "could not start sampling thread\n");
stop_per_cpu_kthreads();
return -ENOMEM;
}
per_cpu(per_cpu_osnoise_var, cpu).kthread = kthread;
return 0;
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
}
/*
* start_per_cpu_kthread - Kick off per-cpu osnoise sampling kthreads
*
* This starts the kernel thread that will look for osnoise on many
* cpus.
*/
static int start_per_cpu_kthreads(void)
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
{
struct cpumask *current_mask = &save_cpumask;
int retval = 0;
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
int cpu;
cpus_read_lock();
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
/*
* Run only on online CPUs in which osnoise is allowed to run.
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
*/
cpumask_and(current_mask, cpu_online_mask, &osnoise_cpumask);
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
for_each_possible_cpu(cpu)
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
per_cpu(per_cpu_osnoise_var, cpu).kthread = NULL;
for_each_cpu(cpu, current_mask) {
retval = start_kthread(cpu);
if (retval) {
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
stop_per_cpu_kthreads();
break;
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
}
}
cpus_read_unlock();
return retval;
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
}
#ifdef CONFIG_HOTPLUG_CPU
static void osnoise_hotplug_workfn(struct work_struct *dummy)
{
unsigned int cpu = smp_processor_id();
mutex_lock(&trace_types_lock);
2021-11-01 02:05:00 +08:00
if (!osnoise_has_registered_instances())
goto out_unlock_trace;
mutex_lock(&interface_lock);
cpus_read_lock();
if (!cpumask_test_cpu(cpu, &osnoise_cpumask))
goto out_unlock;
start_kthread(cpu);
out_unlock:
cpus_read_unlock();
mutex_unlock(&interface_lock);
out_unlock_trace:
mutex_unlock(&trace_types_lock);
}
static DECLARE_WORK(osnoise_hotplug_work, osnoise_hotplug_workfn);
/*
* osnoise_cpu_init - CPU hotplug online callback function
*/
static int osnoise_cpu_init(unsigned int cpu)
{
schedule_work_on(cpu, &osnoise_hotplug_work);
return 0;
}
/*
* osnoise_cpu_die - CPU hotplug offline callback function
*/
static int osnoise_cpu_die(unsigned int cpu)
{
stop_kthread(cpu);
return 0;
}
static void osnoise_init_hotplug_support(void)
{
int ret;
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "trace/osnoise:online",
osnoise_cpu_init, osnoise_cpu_die);
if (ret < 0)
pr_warn(BANNER "Error to init cpu hotplug support\n");
return;
}
#else /* CONFIG_HOTPLUG_CPU */
static void osnoise_init_hotplug_support(void)
{
return;
}
#endif /* CONFIG_HOTPLUG_CPU */
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
/*
* osnoise_cpus_read - Read function for reading the "cpus" file
* @filp: The active open file structure
* @ubuf: The userspace provided buffer to read value into
* @cnt: The maximum number of bytes to read
* @ppos: The current "file" position
*
* Prints the "cpus" output into the user-provided buffer.
*/
static ssize_t
osnoise_cpus_read(struct file *filp, char __user *ubuf, size_t count,
loff_t *ppos)
{
char *mask_str;
int len;
mutex_lock(&interface_lock);
len = snprintf(NULL, 0, "%*pbl\n", cpumask_pr_args(&osnoise_cpumask)) + 1;
mask_str = kmalloc(len, GFP_KERNEL);
if (!mask_str) {
count = -ENOMEM;
goto out_unlock;
}
len = snprintf(mask_str, len, "%*pbl\n", cpumask_pr_args(&osnoise_cpumask));
if (len >= count) {
count = -EINVAL;
goto out_free;
}
count = simple_read_from_buffer(ubuf, count, ppos, mask_str, len);
out_free:
kfree(mask_str);
out_unlock:
mutex_unlock(&interface_lock);
return count;
}
/*
* osnoise_cpus_write - Write function for "cpus" entry
* @filp: The active open file structure
* @ubuf: The user buffer that contains the value to write
* @cnt: The maximum number of bytes to write to "file"
* @ppos: The current position in @file
*
* This function provides a write implementation for the "cpus"
* interface to the osnoise trace. By default, it lists all CPUs,
* in this way, allowing osnoise threads to run on any online CPU
* of the system. It serves to restrict the execution of osnoise to the
* set of CPUs writing via this interface. Why not use "tracing_cpumask"?
* Because the user might be interested in tracing what is running on
* other CPUs. For instance, one might run osnoise in one HT CPU
* while observing what is running on the sibling HT CPU.
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
*/
static ssize_t
osnoise_cpus_write(struct file *filp, const char __user *ubuf, size_t count,
loff_t *ppos)
{
cpumask_var_t osnoise_cpumask_new;
int running, err;
char buf[256];
if (count >= 256)
return -EINVAL;
if (copy_from_user(buf, ubuf, count))
return -EFAULT;
if (!zalloc_cpumask_var(&osnoise_cpumask_new, GFP_KERNEL))
return -ENOMEM;
err = cpulist_parse(buf, osnoise_cpumask_new);
if (err)
goto err_free;
/*
2021-11-01 02:05:00 +08:00
* trace_types_lock is taken to avoid concurrency on start/stop.
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
*/
mutex_lock(&trace_types_lock);
2021-11-01 02:05:00 +08:00
running = osnoise_has_registered_instances();
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
if (running)
stop_per_cpu_kthreads();
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
mutex_lock(&interface_lock);
/*
* osnoise_cpumask is read by CPU hotplug operations.
*/
cpus_read_lock();
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
cpumask_copy(&osnoise_cpumask, osnoise_cpumask_new);
cpus_read_unlock();
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
mutex_unlock(&interface_lock);
if (running)
start_per_cpu_kthreads();
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
mutex_unlock(&trace_types_lock);
free_cpumask_var(osnoise_cpumask_new);
return count;
err_free:
free_cpumask_var(osnoise_cpumask_new);
return err;
}
/*
* osnoise/runtime_us: cannot be greater than the period.
*/
static struct trace_min_max_param osnoise_runtime = {
.lock = &interface_lock,
.val = &osnoise_data.sample_runtime,
.max = &osnoise_data.sample_period,
.min = NULL,
};
/*
* osnoise/period_us: cannot be smaller than the runtime.
*/
static struct trace_min_max_param osnoise_period = {
.lock = &interface_lock,
.val = &osnoise_data.sample_period,
.max = NULL,
.min = &osnoise_data.sample_runtime,
};
/*
* osnoise/stop_tracing_us: no limit.
*/
static struct trace_min_max_param osnoise_stop_tracing_in = {
.lock = &interface_lock,
.val = &osnoise_data.stop_tracing,
.max = NULL,
.min = NULL,
};
/*
* osnoise/stop_tracing_total_us: no limit.
*/
static struct trace_min_max_param osnoise_stop_tracing_total = {
.lock = &interface_lock,
.val = &osnoise_data.stop_tracing_total,
.max = NULL,
.min = NULL,
};
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
#ifdef CONFIG_TIMERLAT_TRACER
/*
* osnoise/print_stack: print the stacktrace of the IRQ handler if the total
* latency is higher than val.
*/
static struct trace_min_max_param osnoise_print_stack = {
.lock = &interface_lock,
.val = &osnoise_data.print_stack,
.max = NULL,
.min = NULL,
};
/*
* osnoise/timerlat_period: min 100 us, max 1 s
*/
u64 timerlat_min_period = 100;
u64 timerlat_max_period = 1000000;
static struct trace_min_max_param timerlat_period = {
.lock = &interface_lock,
.val = &osnoise_data.timerlat_period,
.max = &timerlat_max_period,
.min = &timerlat_min_period,
};
#endif
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
static const struct file_operations cpus_fops = {
.open = tracing_open_generic,
.read = osnoise_cpus_read,
.write = osnoise_cpus_write,
.llseek = generic_file_llseek,
};
#ifdef CONFIG_TIMERLAT_TRACER
#ifdef CONFIG_STACKTRACE
static int init_timerlat_stack_tracefs(struct dentry *top_dir)
{
struct dentry *tmp;
tmp = tracefs_create_file("print_stack", TRACE_MODE_WRITE, top_dir,
&osnoise_print_stack, &trace_min_max_fops);
if (!tmp)
return -ENOMEM;
return 0;
}
#else /* CONFIG_STACKTRACE */
static int init_timerlat_stack_tracefs(struct dentry *top_dir)
{
return 0;
}
#endif /* CONFIG_STACKTRACE */
/*
* init_timerlat_tracefs - A function to initialize the timerlat interface files
*/
static int init_timerlat_tracefs(struct dentry *top_dir)
{
struct dentry *tmp;
tmp = tracefs_create_file("timerlat_period_us", TRACE_MODE_WRITE, top_dir,
&timerlat_period, &trace_min_max_fops);
if (!tmp)
return -ENOMEM;
return init_timerlat_stack_tracefs(top_dir);
}
#else /* CONFIG_TIMERLAT_TRACER */
static int init_timerlat_tracefs(struct dentry *top_dir)
{
return 0;
}
#endif /* CONFIG_TIMERLAT_TRACER */
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
/*
* init_tracefs - A function to initialize the tracefs interface files
*
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
* This function creates entries in tracefs for "osnoise" and "timerlat".
* It creates these directories in the tracing directory, and within that
* directory the use can change and view the configs.
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
*/
static int init_tracefs(void)
{
struct dentry *top_dir;
struct dentry *tmp;
int ret;
ret = tracing_init_dentry();
if (ret)
return -ENOMEM;
top_dir = tracefs_create_dir("osnoise", NULL);
if (!top_dir)
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
return 0;
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
tmp = tracefs_create_file("period_us", TRACE_MODE_WRITE, top_dir,
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
&osnoise_period, &trace_min_max_fops);
if (!tmp)
goto err;
tmp = tracefs_create_file("runtime_us", TRACE_MODE_WRITE, top_dir,
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
&osnoise_runtime, &trace_min_max_fops);
if (!tmp)
goto err;
tmp = tracefs_create_file("stop_tracing_us", TRACE_MODE_WRITE, top_dir,
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
&osnoise_stop_tracing_in, &trace_min_max_fops);
if (!tmp)
goto err;
tmp = tracefs_create_file("stop_tracing_total_us", TRACE_MODE_WRITE, top_dir,
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
&osnoise_stop_tracing_total, &trace_min_max_fops);
if (!tmp)
goto err;
tmp = trace_create_file("cpus", TRACE_MODE_WRITE, top_dir, NULL, &cpus_fops);
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
if (!tmp)
goto err;
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
ret = init_timerlat_tracefs(top_dir);
if (ret)
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
goto err;
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
return 0;
err:
tracefs_remove(top_dir);
return -ENOMEM;
}
static int osnoise_hook_events(void)
{
int retval;
/*
* Trace is already hooked, we are re-enabling from
* a stop_tracing_*.
*/
if (trace_osnoise_callback_enabled)
return 0;
retval = hook_irq_events();
if (retval)
return -EINVAL;
retval = hook_softirq_events();
if (retval)
goto out_unhook_irq;
retval = hook_thread_events();
/*
* All fine!
*/
if (!retval)
return 0;
unhook_softirq_events();
out_unhook_irq:
unhook_irq_events();
return -EINVAL;
}
static void osnoise_unhook_events(void)
{
unhook_thread_events();
unhook_softirq_events();
unhook_irq_events();
}
/*
* osnoise_workload_start - start the workload and hook to events
*/
static int osnoise_workload_start(void)
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
{
int retval;
tracing/osnoise: Allow multiple instances of the same tracer Currently, the user can start only one instance of timerlat/osnoise tracers and the tracers cannot run in parallel. As starting point to add more flexibility, let's allow the same tracer to run on different trace instances. The workload will start when the first trace_array (instance) is registered and stop when the last instance is unregistered. So, while this patch allows the same tracer to run in multiple instances (e.g., two instances running osnoise), it still does not allow instances of timerlat and osnoise in parallel (e.g., one timerlat and osnoise). That is because the osnoise: events have different behavior depending on which tracer is enabled (osnoise or timerlat). Enabling the parallel usage of these two tracers is in my TODO list. Link: https://lkml.kernel.org/r/38c8f14b613492a4f3f938d9d3bf0b063b72f0f0.1635702894.git.bristot@kernel.org Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <zanussi@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Clark Williams <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Daniel Bristot de Oliveira <bristot@kernel.org> Cc: linux-rt-users@vger.kernel.org Cc: linux-trace-devel@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-11-01 02:05:02 +08:00
/*
* Instances need to be registered after calling workload
* start. Hence, if there is already an instance, the
* workload was already registered. Otherwise, this
* code is on the way to register the first instance,
* and the workload will start.
*/
if (osnoise_has_registered_instances())
return 0;
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
osn_var_reset_all();
retval = osnoise_hook_events();
if (retval)
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
return retval;
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
/*
* Make sure that ftrace_nmi_enter/exit() see reset values
* before enabling trace_osnoise_callback_enabled.
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
*/
barrier();
trace_osnoise_callback_enabled = true;
retval = start_per_cpu_kthreads();
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
if (retval) {
trace_osnoise_callback_enabled = false;
/*
* Make sure that ftrace_nmi_enter/exit() see
* trace_osnoise_callback_enabled as false before continuing.
*/
barrier();
osnoise_unhook_events();
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
return retval;
}
return 0;
}
/*
* osnoise_workload_stop - stop the workload and unhook the events
*/
static void osnoise_workload_stop(void)
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
{
tracing/osnoise: Allow multiple instances of the same tracer Currently, the user can start only one instance of timerlat/osnoise tracers and the tracers cannot run in parallel. As starting point to add more flexibility, let's allow the same tracer to run on different trace instances. The workload will start when the first trace_array (instance) is registered and stop when the last instance is unregistered. So, while this patch allows the same tracer to run in multiple instances (e.g., two instances running osnoise), it still does not allow instances of timerlat and osnoise in parallel (e.g., one timerlat and osnoise). That is because the osnoise: events have different behavior depending on which tracer is enabled (osnoise or timerlat). Enabling the parallel usage of these two tracers is in my TODO list. Link: https://lkml.kernel.org/r/38c8f14b613492a4f3f938d9d3bf0b063b72f0f0.1635702894.git.bristot@kernel.org Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <zanussi@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Clark Williams <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Daniel Bristot de Oliveira <bristot@kernel.org> Cc: linux-rt-users@vger.kernel.org Cc: linux-trace-devel@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-11-01 02:05:02 +08:00
/*
* Instances need to be unregistered before calling
* stop. Hence, if there is a registered instance, more
* than one instance is running, and the workload will not
* yet stop. Otherwise, this code is on the way to disable
* the last instance, and the workload can stop.
*/
2021-11-01 02:05:00 +08:00
if (osnoise_has_registered_instances())
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
return;
trace_osnoise_callback_enabled = false;
/*
* Make sure that ftrace_nmi_enter/exit() see
* trace_osnoise_callback_enabled as false before continuing.
*/
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
barrier();
stop_per_cpu_kthreads();
osnoise_unhook_events();
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
}
static void osnoise_tracer_start(struct trace_array *tr)
{
int retval;
tracing/osnoise: Allow multiple instances of the same tracer Currently, the user can start only one instance of timerlat/osnoise tracers and the tracers cannot run in parallel. As starting point to add more flexibility, let's allow the same tracer to run on different trace instances. The workload will start when the first trace_array (instance) is registered and stop when the last instance is unregistered. So, while this patch allows the same tracer to run in multiple instances (e.g., two instances running osnoise), it still does not allow instances of timerlat and osnoise in parallel (e.g., one timerlat and osnoise). That is because the osnoise: events have different behavior depending on which tracer is enabled (osnoise or timerlat). Enabling the parallel usage of these two tracers is in my TODO list. Link: https://lkml.kernel.org/r/38c8f14b613492a4f3f938d9d3bf0b063b72f0f0.1635702894.git.bristot@kernel.org Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <zanussi@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Clark Williams <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Daniel Bristot de Oliveira <bristot@kernel.org> Cc: linux-rt-users@vger.kernel.org Cc: linux-trace-devel@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-11-01 02:05:02 +08:00
/*
* If the instance is already registered, there is no need to
* register it again.
*/
if (osnoise_instance_registered(tr))
return;
retval = osnoise_workload_start();
if (retval)
pr_err(BANNER "Error starting osnoise tracer\n");
2021-11-01 02:05:00 +08:00
osnoise_register_instance(tr);
}
static void osnoise_tracer_stop(struct trace_array *tr)
{
2021-11-01 02:05:00 +08:00
osnoise_unregister_instance(tr);
osnoise_workload_stop();
}
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
static int osnoise_tracer_init(struct trace_array *tr)
{
tracing/osnoise: Allow multiple instances of the same tracer Currently, the user can start only one instance of timerlat/osnoise tracers and the tracers cannot run in parallel. As starting point to add more flexibility, let's allow the same tracer to run on different trace instances. The workload will start when the first trace_array (instance) is registered and stop when the last instance is unregistered. So, while this patch allows the same tracer to run in multiple instances (e.g., two instances running osnoise), it still does not allow instances of timerlat and osnoise in parallel (e.g., one timerlat and osnoise). That is because the osnoise: events have different behavior depending on which tracer is enabled (osnoise or timerlat). Enabling the parallel usage of these two tracers is in my TODO list. Link: https://lkml.kernel.org/r/38c8f14b613492a4f3f938d9d3bf0b063b72f0f0.1635702894.git.bristot@kernel.org Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <zanussi@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Clark Williams <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Daniel Bristot de Oliveira <bristot@kernel.org> Cc: linux-rt-users@vger.kernel.org Cc: linux-trace-devel@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-11-01 02:05:02 +08:00
/*
* Only allow osnoise tracer if timerlat tracer is not running
* already.
*/
if (timerlat_enabled())
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
return -EBUSY;
tr->max_latency = 0;
osnoise_tracer_start(tr);
return 0;
}
static void osnoise_tracer_reset(struct trace_array *tr)
{
osnoise_tracer_stop(tr);
}
static struct tracer osnoise_tracer __read_mostly = {
.name = "osnoise",
.init = osnoise_tracer_init,
.reset = osnoise_tracer_reset,
.start = osnoise_tracer_start,
.stop = osnoise_tracer_stop,
.print_header = print_osnoise_headers,
.allow_instances = true,
};
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
#ifdef CONFIG_TIMERLAT_TRACER
static void timerlat_tracer_start(struct trace_array *tr)
{
int retval;
tracing/osnoise: Allow multiple instances of the same tracer Currently, the user can start only one instance of timerlat/osnoise tracers and the tracers cannot run in parallel. As starting point to add more flexibility, let's allow the same tracer to run on different trace instances. The workload will start when the first trace_array (instance) is registered and stop when the last instance is unregistered. So, while this patch allows the same tracer to run in multiple instances (e.g., two instances running osnoise), it still does not allow instances of timerlat and osnoise in parallel (e.g., one timerlat and osnoise). That is because the osnoise: events have different behavior depending on which tracer is enabled (osnoise or timerlat). Enabling the parallel usage of these two tracers is in my TODO list. Link: https://lkml.kernel.org/r/38c8f14b613492a4f3f938d9d3bf0b063b72f0f0.1635702894.git.bristot@kernel.org Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <zanussi@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Clark Williams <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Daniel Bristot de Oliveira <bristot@kernel.org> Cc: linux-rt-users@vger.kernel.org Cc: linux-trace-devel@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-11-01 02:05:02 +08:00
/*
* If the instance is already registered, there is no need to
* register it again.
*/
if (osnoise_instance_registered(tr))
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
return;
retval = osnoise_workload_start();
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
if (retval)
tracing/osnoise: Allow multiple instances of the same tracer Currently, the user can start only one instance of timerlat/osnoise tracers and the tracers cannot run in parallel. As starting point to add more flexibility, let's allow the same tracer to run on different trace instances. The workload will start when the first trace_array (instance) is registered and stop when the last instance is unregistered. So, while this patch allows the same tracer to run in multiple instances (e.g., two instances running osnoise), it still does not allow instances of timerlat and osnoise in parallel (e.g., one timerlat and osnoise). That is because the osnoise: events have different behavior depending on which tracer is enabled (osnoise or timerlat). Enabling the parallel usage of these two tracers is in my TODO list. Link: https://lkml.kernel.org/r/38c8f14b613492a4f3f938d9d3bf0b063b72f0f0.1635702894.git.bristot@kernel.org Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <zanussi@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Clark Williams <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Daniel Bristot de Oliveira <bristot@kernel.org> Cc: linux-rt-users@vger.kernel.org Cc: linux-trace-devel@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-11-01 02:05:02 +08:00
pr_err(BANNER "Error starting timerlat tracer\n");
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
2021-11-01 02:05:00 +08:00
osnoise_register_instance(tr);
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
return;
}
static void timerlat_tracer_stop(struct trace_array *tr)
{
int cpu;
tracing/osnoise: Allow multiple instances of the same tracer Currently, the user can start only one instance of timerlat/osnoise tracers and the tracers cannot run in parallel. As starting point to add more flexibility, let's allow the same tracer to run on different trace instances. The workload will start when the first trace_array (instance) is registered and stop when the last instance is unregistered. So, while this patch allows the same tracer to run in multiple instances (e.g., two instances running osnoise), it still does not allow instances of timerlat and osnoise in parallel (e.g., one timerlat and osnoise). That is because the osnoise: events have different behavior depending on which tracer is enabled (osnoise or timerlat). Enabling the parallel usage of these two tracers is in my TODO list. Link: https://lkml.kernel.org/r/38c8f14b613492a4f3f938d9d3bf0b063b72f0f0.1635702894.git.bristot@kernel.org Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <zanussi@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Clark Williams <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Daniel Bristot de Oliveira <bristot@kernel.org> Cc: linux-rt-users@vger.kernel.org Cc: linux-trace-devel@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-11-01 02:05:02 +08:00
osnoise_unregister_instance(tr);
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
tracing/osnoise: Allow multiple instances of the same tracer Currently, the user can start only one instance of timerlat/osnoise tracers and the tracers cannot run in parallel. As starting point to add more flexibility, let's allow the same tracer to run on different trace instances. The workload will start when the first trace_array (instance) is registered and stop when the last instance is unregistered. So, while this patch allows the same tracer to run in multiple instances (e.g., two instances running osnoise), it still does not allow instances of timerlat and osnoise in parallel (e.g., one timerlat and osnoise). That is because the osnoise: events have different behavior depending on which tracer is enabled (osnoise or timerlat). Enabling the parallel usage of these two tracers is in my TODO list. Link: https://lkml.kernel.org/r/38c8f14b613492a4f3f938d9d3bf0b063b72f0f0.1635702894.git.bristot@kernel.org Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <zanussi@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Clark Williams <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Daniel Bristot de Oliveira <bristot@kernel.org> Cc: linux-rt-users@vger.kernel.org Cc: linux-trace-devel@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-11-01 02:05:02 +08:00
/*
* Instruct the threads to stop only if this is the last instance.
*/
if (!osnoise_has_registered_instances()) {
for_each_online_cpu(cpu)
per_cpu(per_cpu_osnoise_var, cpu).sampling = 0;
}
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
tracing/osnoise: Allow multiple instances of the same tracer Currently, the user can start only one instance of timerlat/osnoise tracers and the tracers cannot run in parallel. As starting point to add more flexibility, let's allow the same tracer to run on different trace instances. The workload will start when the first trace_array (instance) is registered and stop when the last instance is unregistered. So, while this patch allows the same tracer to run in multiple instances (e.g., two instances running osnoise), it still does not allow instances of timerlat and osnoise in parallel (e.g., one timerlat and osnoise). That is because the osnoise: events have different behavior depending on which tracer is enabled (osnoise or timerlat). Enabling the parallel usage of these two tracers is in my TODO list. Link: https://lkml.kernel.org/r/38c8f14b613492a4f3f938d9d3bf0b063b72f0f0.1635702894.git.bristot@kernel.org Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <zanussi@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Clark Williams <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Daniel Bristot de Oliveira <bristot@kernel.org> Cc: linux-rt-users@vger.kernel.org Cc: linux-trace-devel@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-11-01 02:05:02 +08:00
osnoise_workload_stop();
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
}
static int timerlat_tracer_init(struct trace_array *tr)
{
tracing/osnoise: Allow multiple instances of the same tracer Currently, the user can start only one instance of timerlat/osnoise tracers and the tracers cannot run in parallel. As starting point to add more flexibility, let's allow the same tracer to run on different trace instances. The workload will start when the first trace_array (instance) is registered and stop when the last instance is unregistered. So, while this patch allows the same tracer to run in multiple instances (e.g., two instances running osnoise), it still does not allow instances of timerlat and osnoise in parallel (e.g., one timerlat and osnoise). That is because the osnoise: events have different behavior depending on which tracer is enabled (osnoise or timerlat). Enabling the parallel usage of these two tracers is in my TODO list. Link: https://lkml.kernel.org/r/38c8f14b613492a4f3f938d9d3bf0b063b72f0f0.1635702894.git.bristot@kernel.org Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <zanussi@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Clark Williams <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Daniel Bristot de Oliveira <bristot@kernel.org> Cc: linux-rt-users@vger.kernel.org Cc: linux-trace-devel@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-11-01 02:05:02 +08:00
/*
* Only allow timerlat tracer if osnoise tracer is not running already.
*/
if (osnoise_has_registered_instances() && !osnoise_data.timerlat_tracer)
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
return -EBUSY;
tracing/osnoise: Allow multiple instances of the same tracer Currently, the user can start only one instance of timerlat/osnoise tracers and the tracers cannot run in parallel. As starting point to add more flexibility, let's allow the same tracer to run on different trace instances. The workload will start when the first trace_array (instance) is registered and stop when the last instance is unregistered. So, while this patch allows the same tracer to run in multiple instances (e.g., two instances running osnoise), it still does not allow instances of timerlat and osnoise in parallel (e.g., one timerlat and osnoise). That is because the osnoise: events have different behavior depending on which tracer is enabled (osnoise or timerlat). Enabling the parallel usage of these two tracers is in my TODO list. Link: https://lkml.kernel.org/r/38c8f14b613492a4f3f938d9d3bf0b063b72f0f0.1635702894.git.bristot@kernel.org Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <zanussi@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Clark Williams <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Daniel Bristot de Oliveira <bristot@kernel.org> Cc: linux-rt-users@vger.kernel.org Cc: linux-trace-devel@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-11-01 02:05:02 +08:00
/*
* If this is the first instance, set timerlat_tracer to block
* osnoise tracer start.
*/
if (!osnoise_has_registered_instances())
osnoise_data.timerlat_tracer = 1;
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
tracing/osnoise: Allow multiple instances of the same tracer Currently, the user can start only one instance of timerlat/osnoise tracers and the tracers cannot run in parallel. As starting point to add more flexibility, let's allow the same tracer to run on different trace instances. The workload will start when the first trace_array (instance) is registered and stop when the last instance is unregistered. So, while this patch allows the same tracer to run in multiple instances (e.g., two instances running osnoise), it still does not allow instances of timerlat and osnoise in parallel (e.g., one timerlat and osnoise). That is because the osnoise: events have different behavior depending on which tracer is enabled (osnoise or timerlat). Enabling the parallel usage of these two tracers is in my TODO list. Link: https://lkml.kernel.org/r/38c8f14b613492a4f3f938d9d3bf0b063b72f0f0.1635702894.git.bristot@kernel.org Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <zanussi@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Clark Williams <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Daniel Bristot de Oliveira <bristot@kernel.org> Cc: linux-rt-users@vger.kernel.org Cc: linux-trace-devel@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-11-01 02:05:02 +08:00
tr->max_latency = 0;
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
timerlat_tracer_start(tr);
return 0;
}
static void timerlat_tracer_reset(struct trace_array *tr)
{
timerlat_tracer_stop(tr);
tracing/osnoise: Allow multiple instances of the same tracer Currently, the user can start only one instance of timerlat/osnoise tracers and the tracers cannot run in parallel. As starting point to add more flexibility, let's allow the same tracer to run on different trace instances. The workload will start when the first trace_array (instance) is registered and stop when the last instance is unregistered. So, while this patch allows the same tracer to run in multiple instances (e.g., two instances running osnoise), it still does not allow instances of timerlat and osnoise in parallel (e.g., one timerlat and osnoise). That is because the osnoise: events have different behavior depending on which tracer is enabled (osnoise or timerlat). Enabling the parallel usage of these two tracers is in my TODO list. Link: https://lkml.kernel.org/r/38c8f14b613492a4f3f938d9d3bf0b063b72f0f0.1635702894.git.bristot@kernel.org Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <zanussi@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Clark Williams <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Daniel Bristot de Oliveira <bristot@kernel.org> Cc: linux-rt-users@vger.kernel.org Cc: linux-trace-devel@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-11-01 02:05:02 +08:00
/*
* If this is the last instance, reset timerlat_tracer allowing
* osnoise to be started.
*/
if (!osnoise_has_registered_instances())
osnoise_data.timerlat_tracer = 0;
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
}
static struct tracer timerlat_tracer __read_mostly = {
.name = "timerlat",
.init = timerlat_tracer_init,
.reset = timerlat_tracer_reset,
.start = timerlat_tracer_start,
.stop = timerlat_tracer_stop,
.print_header = print_timerlat_headers,
.allow_instances = true,
};
__init static int init_timerlat_tracer(void)
{
return register_tracer(&timerlat_tracer);
}
#else /* CONFIG_TIMERLAT_TRACER */
__init static int init_timerlat_tracer(void)
{
return 0;
}
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
#endif /* CONFIG_TIMERLAT_TRACER */
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
__init static int init_osnoise_tracer(void)
{
int ret;
mutex_init(&interface_lock);
cpumask_copy(&osnoise_cpumask, cpu_all_mask);
ret = register_tracer(&osnoise_tracer);
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
if (ret) {
pr_err(BANNER "Error registering osnoise!\n");
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
return ret;
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
}
ret = init_timerlat_tracer();
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
if (ret) {
pr_err(BANNER "Error registering timerlat!\n");
trace: Add timerlat tracer The timerlat tracer aims to help the preemptive kernel developers to found souces of wakeup latencies of real-time threads. Like cyclictest, the tracer sets a periodic timer that wakes up a thread. The thread then computes a *wakeup latency* value as the difference between the *current time* and the *absolute time* that the timer was set to expire. The main goal of timerlat is tracing in such a way to help kernel developers. Usage Write the ASCII text "timerlat" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer It is possible to follow the trace by reading the trace trace file: [root@f32 tracing]# cat trace # tracer: timerlat # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # || / # |||| ACTIVATION # TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY # | | | |||| | | | | <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns <...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns <...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns <...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns <...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns The tracer creates a per-cpu kernel thread with real-time priority that prints two lines at every activation. The first is the *timer latency* observed at the *hardirq* context before the activation of the thread. The second is the *timer latency* observed by the thread, which is the same level that cyclictest reports. The ACTIVATION ID field serves to relate the *irq* execution to its respective *thread* execution. The irq/thread splitting is important to clarify at which context the unexpected high value is coming from. The *irq* context can be delayed by hardware related actions, such as SMIs, NMIs, IRQs or by a thread masking interrupts. Once the timer happens, the delay can also be influenced by blocking caused by threads. For example, by postponing the scheduler execution via preempt_disable(), by the scheduler execution, or by masking interrupts. Threads can also be delayed by the interference from other threads and IRQs. The timerlat can also take advantage of the osnoise: traceevents. For example: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo timerlat > current_tracer [root@f32 tracing]# echo osnoise > set_event [root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us [root@f32 tracing]# tail -10 trace cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns For further information see: Documentation/trace/timerlat-tracer.rst Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:28 +08:00
return ret;
}
osnoise_init_hotplug_support();
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
2021-11-01 02:05:00 +08:00
INIT_LIST_HEAD_RCU(&osnoise_instances);
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:27 +08:00
init_tracefs();
return 0;
}
late_initcall(init_osnoise_tracer);