OpenCloudOS-Kernel/drivers/media/i2c/ccs-pll.c

881 lines
25 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* drivers/media/i2c/ccs-pll.c
*
* Generic MIPI CCS/SMIA/SMIA++ PLL calculator
*
* Copyright (C) 2020 Intel Corporation
* Copyright (C) 2011--2012 Nokia Corporation
* Contact: Sakari Ailus <sakari.ailus@linux.intel.com>
*/
#include <linux/device.h>
#include <linux/gcd.h>
#include <linux/lcm.h>
#include <linux/module.h>
#include "ccs-pll.h"
/* Return an even number or one. */
static inline u32 clk_div_even(u32 a)
{
return max_t(u32, 1, a & ~1);
}
/* Return an even number or one. */
static inline u32 clk_div_even_up(u32 a)
{
if (a == 1)
return 1;
return (a + 1) & ~1;
}
static inline u32 is_one_or_even(u32 a)
{
if (a == 1)
return 1;
if (a & 1)
return 0;
return 1;
}
static inline u32 one_or_more(u32 a)
{
return a ?: 1;
}
static int bounds_check(struct device *dev, u32 val,
u32 min, u32 max, const char *prefix,
char *str)
{
if (val >= min && val <= max)
return 0;
dev_dbg(dev, "%s_%s out of bounds: %d (%d--%d)\n", prefix,
str, val, min, max);
return -EINVAL;
}
#define PLL_OP 1
#define PLL_VT 2
static const char *pll_string(unsigned int which)
{
switch (which) {
case PLL_OP:
return "op";
case PLL_VT:
return "vt";
}
return NULL;
}
#define PLL_FL(f) CCS_PLL_FLAG_##f
static void print_pll(struct device *dev, struct ccs_pll *pll)
{
const struct {
struct ccs_pll_branch_fr *fr;
struct ccs_pll_branch_bk *bk;
unsigned int which;
} branches[] = {
{ &pll->vt_fr, &pll->vt_bk, PLL_VT },
{ &pll->op_fr, &pll->op_bk, PLL_OP }
}, *br;
unsigned int i;
dev_dbg(dev, "ext_clk_freq_hz\t\t%u\n", pll->ext_clk_freq_hz);
for (i = 0, br = branches; i < ARRAY_SIZE(branches); i++, br++) {
const char *s = pll_string(br->which);
if (pll->flags & CCS_PLL_FLAG_DUAL_PLL ||
br->which == PLL_VT) {
dev_dbg(dev, "%s_pre_pll_clk_div\t\t%u\n", s,
br->fr->pre_pll_clk_div);
dev_dbg(dev, "%s_pll_multiplier\t\t%u\n", s,
br->fr->pll_multiplier);
dev_dbg(dev, "%s_pll_ip_clk_freq_hz\t%u\n", s,
br->fr->pll_ip_clk_freq_hz);
dev_dbg(dev, "%s_pll_op_clk_freq_hz\t%u\n", s,
br->fr->pll_op_clk_freq_hz);
}
if (!(pll->flags & CCS_PLL_FLAG_NO_OP_CLOCKS) ||
br->which == PLL_VT) {
dev_dbg(dev, "%s_sys_clk_div\t\t%u\n", s,
br->bk->sys_clk_div);
dev_dbg(dev, "%s_pix_clk_div\t\t%u\n", s,
br->bk->pix_clk_div);
dev_dbg(dev, "%s_sys_clk_freq_hz\t%u\n", s,
br->bk->sys_clk_freq_hz);
dev_dbg(dev, "%s_pix_clk_freq_hz\t%u\n", s,
br->bk->pix_clk_freq_hz);
}
}
dev_dbg(dev, "pixel rate in pixel array:\t%u\n",
pll->pixel_rate_pixel_array);
dev_dbg(dev, "pixel rate on CSI-2 bus:\t%u\n",
pll->pixel_rate_csi);
dev_dbg(dev, "flags%s%s%s%s%s%s%s%s%s\n",
pll->flags & PLL_FL(LANE_SPEED_MODEL) ? " lane-speed" : "",
pll->flags & PLL_FL(LINK_DECOUPLED) ? " link-decoupled" : "",
pll->flags & PLL_FL(EXT_IP_PLL_DIVIDER) ?
" ext-ip-pll-divider" : "",
pll->flags & PLL_FL(FLEXIBLE_OP_PIX_CLK_DIV) ?
" flexible-op-pix-div" : "",
pll->flags & PLL_FL(FIFO_DERATING) ? " fifo-derating" : "",
pll->flags & PLL_FL(FIFO_OVERRATING) ? " fifo-overrating" : "",
pll->flags & PLL_FL(DUAL_PLL) ? " dual-pll" : "",
pll->flags & PLL_FL(OP_SYS_DDR) ? " op-sys-ddr" : "",
pll->flags & PLL_FL(OP_PIX_DDR) ? " op-pix-ddr" : "");
}
static u32 op_sys_ddr(u32 flags)
{
return flags & CCS_PLL_FLAG_OP_SYS_DDR ? 1 : 0;
}
static u32 op_pix_ddr(u32 flags)
{
return flags & CCS_PLL_FLAG_OP_PIX_DDR ? 1 : 0;
}
static int check_fr_bounds(struct device *dev,
const struct ccs_pll_limits *lim,
struct ccs_pll *pll, unsigned int which)
{
const struct ccs_pll_branch_limits_fr *lim_fr;
struct ccs_pll_branch_fr *pll_fr;
const char *s = pll_string(which);
int rval;
if (which == PLL_OP) {
lim_fr = &lim->op_fr;
pll_fr = &pll->op_fr;
} else {
lim_fr = &lim->vt_fr;
pll_fr = &pll->vt_fr;
}
rval = bounds_check(dev, pll_fr->pre_pll_clk_div,
lim_fr->min_pre_pll_clk_div,
lim_fr->max_pre_pll_clk_div, s, "pre_pll_clk_div");
if (!rval)
rval = bounds_check(dev, pll_fr->pll_ip_clk_freq_hz,
lim_fr->min_pll_ip_clk_freq_hz,
lim_fr->max_pll_ip_clk_freq_hz,
s, "pll_ip_clk_freq_hz");
if (!rval)
rval = bounds_check(dev, pll_fr->pll_multiplier,
lim_fr->min_pll_multiplier,
lim_fr->max_pll_multiplier,
s, "pll_multiplier");
if (!rval)
rval = bounds_check(dev, pll_fr->pll_op_clk_freq_hz,
lim_fr->min_pll_op_clk_freq_hz,
lim_fr->max_pll_op_clk_freq_hz,
s, "pll_op_clk_freq_hz");
return rval;
}
static int check_bk_bounds(struct device *dev,
const struct ccs_pll_limits *lim,
struct ccs_pll *pll, unsigned int which)
{
const struct ccs_pll_branch_limits_bk *lim_bk;
struct ccs_pll_branch_bk *pll_bk;
const char *s = pll_string(which);
int rval;
if (which == PLL_OP) {
if (pll->flags & CCS_PLL_FLAG_NO_OP_CLOCKS)
return 0;
lim_bk = &lim->op_bk;
pll_bk = &pll->op_bk;
} else {
lim_bk = &lim->vt_bk;
pll_bk = &pll->vt_bk;
}
rval = bounds_check(dev, pll_bk->sys_clk_div,
lim_bk->min_sys_clk_div,
lim_bk->max_sys_clk_div, s, "op_sys_clk_div");
if (!rval)
rval = bounds_check(dev, pll_bk->sys_clk_freq_hz,
lim_bk->min_sys_clk_freq_hz,
lim_bk->max_sys_clk_freq_hz,
s, "sys_clk_freq_hz");
if (!rval)
rval = bounds_check(dev, pll_bk->sys_clk_div,
lim_bk->min_sys_clk_div,
lim_bk->max_sys_clk_div,
s, "sys_clk_div");
if (!rval)
rval = bounds_check(dev, pll_bk->pix_clk_freq_hz,
lim_bk->min_pix_clk_freq_hz,
lim_bk->max_pix_clk_freq_hz,
s, "pix_clk_freq_hz");
return rval;
}
static int check_ext_bounds(struct device *dev, struct ccs_pll *pll)
{
if (!(pll->flags & CCS_PLL_FLAG_FIFO_DERATING) &&
pll->pixel_rate_pixel_array > pll->pixel_rate_csi) {
dev_dbg(dev, "device does not support derating\n");
return -EINVAL;
}
if (!(pll->flags & CCS_PLL_FLAG_FIFO_OVERRATING) &&
pll->pixel_rate_pixel_array < pll->pixel_rate_csi) {
dev_dbg(dev, "device does not support overrating\n");
return -EINVAL;
}
return 0;
}
static void
ccs_pll_find_vt_sys_div(struct device *dev, const struct ccs_pll_limits *lim,
struct ccs_pll *pll, struct ccs_pll_branch_fr *pll_fr,
u16 min_vt_div, u16 max_vt_div,
u16 *min_sys_div, u16 *max_sys_div)
{
/*
* Find limits for sys_clk_div. Not all values are possible with all
* values of pix_clk_div.
*/
*min_sys_div = lim->vt_bk.min_sys_clk_div;
dev_dbg(dev, "min_sys_div: %u\n", *min_sys_div);
*min_sys_div = max_t(u16, *min_sys_div,
DIV_ROUND_UP(min_vt_div,
lim->vt_bk.max_pix_clk_div));
dev_dbg(dev, "min_sys_div: max_vt_pix_clk_div: %u\n", *min_sys_div);
*min_sys_div = max_t(u16, *min_sys_div,
pll_fr->pll_op_clk_freq_hz
/ lim->vt_bk.max_sys_clk_freq_hz);
dev_dbg(dev, "min_sys_div: max_pll_op_clk_freq_hz: %u\n", *min_sys_div);
*min_sys_div = clk_div_even_up(*min_sys_div);
dev_dbg(dev, "min_sys_div: one or even: %u\n", *min_sys_div);
*max_sys_div = lim->vt_bk.max_sys_clk_div;
dev_dbg(dev, "max_sys_div: %u\n", *max_sys_div);
*max_sys_div = min_t(u16, *max_sys_div,
DIV_ROUND_UP(max_vt_div,
lim->vt_bk.min_pix_clk_div));
dev_dbg(dev, "max_sys_div: min_vt_pix_clk_div: %u\n", *max_sys_div);
*max_sys_div = min_t(u16, *max_sys_div,
DIV_ROUND_UP(pll_fr->pll_op_clk_freq_hz,
lim->vt_bk.min_pix_clk_freq_hz));
dev_dbg(dev, "max_sys_div: min_vt_pix_clk_freq_hz: %u\n", *max_sys_div);
}
#define CPHY_CONST 7
#define DPHY_CONST 16
#define PHY_CONST_DIV 16
static inline int
__ccs_pll_calculate_vt_tree(struct device *dev,
const struct ccs_pll_limits *lim,
struct ccs_pll *pll, u32 mul, u32 div)
{
const struct ccs_pll_branch_limits_fr *lim_fr = &lim->vt_fr;
const struct ccs_pll_branch_limits_bk *lim_bk = &lim->vt_bk;
struct ccs_pll_branch_fr *pll_fr = &pll->vt_fr;
struct ccs_pll_branch_bk *pll_bk = &pll->vt_bk;
u32 more_mul;
u16 best_pix_div = SHRT_MAX >> 1, best_div;
u16 vt_div, min_sys_div, max_sys_div, sys_div;
pll_fr->pll_ip_clk_freq_hz =
pll->ext_clk_freq_hz / pll_fr->pre_pll_clk_div;
dev_dbg(dev, "vt_pll_ip_clk_freq_hz %u\n", pll_fr->pll_ip_clk_freq_hz);
more_mul = one_or_more(DIV_ROUND_UP(lim_fr->min_pll_op_clk_freq_hz,
pll_fr->pll_ip_clk_freq_hz * mul));
dev_dbg(dev, "more_mul: %u\n", more_mul);
more_mul *= DIV_ROUND_UP(lim_fr->min_pll_multiplier, mul * more_mul);
dev_dbg(dev, "more_mul2: %u\n", more_mul);
pll_fr->pll_multiplier = mul * more_mul;
if (pll_fr->pll_multiplier * pll_fr->pll_ip_clk_freq_hz >
lim_fr->max_pll_op_clk_freq_hz)
return -EINVAL;
pll_fr->pll_op_clk_freq_hz =
pll_fr->pll_ip_clk_freq_hz * pll_fr->pll_multiplier;
vt_div = div * more_mul;
ccs_pll_find_vt_sys_div(dev, lim, pll, pll_fr, vt_div, vt_div,
&min_sys_div, &max_sys_div);
max_sys_div = (vt_div & 1) ? 1 : max_sys_div;
dev_dbg(dev, "vt min/max_sys_div: %u,%u\n", min_sys_div, max_sys_div);
for (sys_div = min_sys_div; sys_div <= max_sys_div;
sys_div += 2 - (sys_div & 1)) {
u16 pix_div;
if (vt_div % sys_div)
continue;
pix_div = vt_div / sys_div;
if (pix_div < lim_bk->min_pix_clk_div ||
pix_div > lim_bk->max_pix_clk_div) {
dev_dbg(dev,
"pix_div %u too small or too big (%u--%u)\n",
pix_div,
lim_bk->min_pix_clk_div,
lim_bk->max_pix_clk_div);
continue;
}
dev_dbg(dev, "sys/pix/best_pix: %u,%u,%u\n", sys_div, pix_div,
best_pix_div);
if (pix_div * sys_div <= best_pix_div) {
best_pix_div = pix_div;
best_div = pix_div * sys_div;
}
}
if (best_pix_div == SHRT_MAX >> 1)
return -EINVAL;
pll_bk->sys_clk_div = best_div / best_pix_div;
pll_bk->pix_clk_div = best_pix_div;
pll_bk->sys_clk_freq_hz =
pll_fr->pll_op_clk_freq_hz / pll_bk->sys_clk_div;
pll_bk->pix_clk_freq_hz =
pll_bk->sys_clk_freq_hz / pll_bk->pix_clk_div;
pll->pixel_rate_pixel_array =
pll_bk->pix_clk_freq_hz * pll->vt_lanes;
return 0;
}
static int ccs_pll_calculate_vt_tree(struct device *dev,
const struct ccs_pll_limits *lim,
struct ccs_pll *pll)
{
const struct ccs_pll_branch_limits_fr *lim_fr = &lim->vt_fr;
struct ccs_pll_branch_fr *pll_fr = &pll->vt_fr;
u16 min_pre_pll_clk_div = lim_fr->min_pre_pll_clk_div;
u16 max_pre_pll_clk_div = lim_fr->max_pre_pll_clk_div;
u32 pre_mul, pre_div;
pre_div = gcd(pll->pixel_rate_csi,
pll->ext_clk_freq_hz * pll->vt_lanes);
pre_mul = pll->pixel_rate_csi / pre_div;
pre_div = pll->ext_clk_freq_hz * pll->vt_lanes / pre_div;
/* Make sure PLL input frequency is within limits */
max_pre_pll_clk_div =
min_t(u16, max_pre_pll_clk_div,
DIV_ROUND_UP(pll->ext_clk_freq_hz,
lim_fr->min_pll_ip_clk_freq_hz));
min_pre_pll_clk_div = max_t(u16, min_pre_pll_clk_div,
pll->ext_clk_freq_hz /
lim_fr->max_pll_ip_clk_freq_hz);
dev_dbg(dev, "vt min/max_pre_pll_clk_div: %u,%u\n",
min_pre_pll_clk_div, max_pre_pll_clk_div);
for (pll_fr->pre_pll_clk_div = min_pre_pll_clk_div;
pll_fr->pre_pll_clk_div <= max_pre_pll_clk_div;
pll_fr->pre_pll_clk_div +=
(pll->flags & CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER) ? 1 :
2 - (pll_fr->pre_pll_clk_div & 1)) {
u32 mul, div;
int rval;
div = gcd(pre_mul * pll_fr->pre_pll_clk_div, pre_div);
mul = pre_mul * pll_fr->pre_pll_clk_div / div;
div = pre_div / div;
dev_dbg(dev, "vt pre-div/mul/div: %u,%u,%u\n",
pll_fr->pre_pll_clk_div, mul, div);
rval = __ccs_pll_calculate_vt_tree(dev, lim, pll,
mul, div);
if (rval)
continue;
rval = check_fr_bounds(dev, lim, pll, PLL_VT);
if (rval)
continue;
rval = check_bk_bounds(dev, lim, pll, PLL_VT);
if (rval)
continue;
return 0;
}
return -EINVAL;
}
static void
ccs_pll_calculate_vt(struct device *dev, const struct ccs_pll_limits *lim,
const struct ccs_pll_branch_limits_bk *op_lim_bk,
struct ccs_pll *pll, struct ccs_pll_branch_fr *pll_fr,
struct ccs_pll_branch_bk *op_pll_bk, bool cphy,
u32 phy_const)
{
u16 sys_div;
u16 best_pix_div = SHRT_MAX >> 1;
u16 vt_op_binning_div;
u16 min_vt_div, max_vt_div, vt_div;
u16 min_sys_div, max_sys_div;
if (pll->flags & CCS_PLL_FLAG_NO_OP_CLOCKS)
goto out_calc_pixel_rate;
/*
* Find out whether a sensor supports derating. If it does not, VT and
* OP domains are required to run at the same pixel rate.
*/
if (!(pll->flags & CCS_PLL_FLAG_FIFO_DERATING)) {
min_vt_div =
op_pll_bk->sys_clk_div * op_pll_bk->pix_clk_div
* pll->vt_lanes * phy_const / pll->op_lanes
/ (PHY_CONST_DIV << op_pix_ddr(pll->flags));
} else {
/*
* Some sensors perform analogue binning and some do this
* digitally. The ones doing this digitally can be roughly be
* found out using this formula. The ones doing this digitally
* should run at higher clock rate, so smaller divisor is used
* on video timing side.
*/
if (lim->min_line_length_pck_bin > lim->min_line_length_pck
/ pll->binning_horizontal)
vt_op_binning_div = pll->binning_horizontal;
else
vt_op_binning_div = 1;
dev_dbg(dev, "vt_op_binning_div: %u\n", vt_op_binning_div);
/*
* Profile 2 supports vt_pix_clk_div E [4, 10]
*
* Horizontal binning can be used as a base for difference in
* divisors. One must make sure that horizontal blanking is
* enough to accommodate the CSI-2 sync codes.
*
* Take scaling factor and number of VT lanes into account as well.
*
* Find absolute limits for the factor of vt divider.
*/
dev_dbg(dev, "scale_m: %u\n", pll->scale_m);
min_vt_div =
DIV_ROUND_UP(pll->bits_per_pixel
* op_pll_bk->sys_clk_div * pll->scale_n
* pll->vt_lanes * phy_const,
(pll->flags &
CCS_PLL_FLAG_LANE_SPEED_MODEL ?
pll->csi2.lanes : 1)
* vt_op_binning_div * pll->scale_m
* PHY_CONST_DIV << op_pix_ddr(pll->flags));
}
/* Find smallest and biggest allowed vt divisor. */
dev_dbg(dev, "min_vt_div: %u\n", min_vt_div);
min_vt_div = max_t(u16, min_vt_div,
DIV_ROUND_UP(pll_fr->pll_op_clk_freq_hz,
lim->vt_bk.max_pix_clk_freq_hz));
dev_dbg(dev, "min_vt_div: max_vt_pix_clk_freq_hz: %u\n",
min_vt_div);
min_vt_div = max_t(u16, min_vt_div, lim->vt_bk.min_pix_clk_div
* lim->vt_bk.min_sys_clk_div);
dev_dbg(dev, "min_vt_div: min_vt_clk_div: %u\n", min_vt_div);
max_vt_div = lim->vt_bk.max_sys_clk_div * lim->vt_bk.max_pix_clk_div;
dev_dbg(dev, "max_vt_div: %u\n", max_vt_div);
max_vt_div = min_t(u16, max_vt_div,
DIV_ROUND_UP(pll_fr->pll_op_clk_freq_hz,
lim->vt_bk.min_pix_clk_freq_hz));
dev_dbg(dev, "max_vt_div: min_vt_pix_clk_freq_hz: %u\n",
max_vt_div);
ccs_pll_find_vt_sys_div(dev, lim, pll, pll_fr, min_vt_div,
max_vt_div, &min_sys_div, &max_sys_div);
/*
* Find pix_div such that a legal pix_div * sys_div results
* into a value which is not smaller than div, the desired
* divisor.
*/
for (vt_div = min_vt_div; vt_div <= max_vt_div; vt_div++) {
u16 __max_sys_div = vt_div & 1 ? 1 : max_sys_div;
for (sys_div = min_sys_div; sys_div <= __max_sys_div;
sys_div += 2 - (sys_div & 1)) {
u16 pix_div;
u16 rounded_div;
pix_div = DIV_ROUND_UP(vt_div, sys_div);
if (pix_div < lim->vt_bk.min_pix_clk_div
|| pix_div > lim->vt_bk.max_pix_clk_div) {
dev_dbg(dev,
"pix_div %u too small or too big (%u--%u)\n",
pix_div,
lim->vt_bk.min_pix_clk_div,
lim->vt_bk.max_pix_clk_div);
continue;
}
rounded_div = roundup(vt_div, best_pix_div);
/* Check if this one is better. */
if (pix_div * sys_div <= rounded_div)
best_pix_div = pix_div;
/* Bail out if we've already found the best value. */
if (vt_div == rounded_div)
break;
}
if (best_pix_div < SHRT_MAX >> 1)
break;
}
pll->vt_bk.sys_clk_div = DIV_ROUND_UP(vt_div, best_pix_div);
pll->vt_bk.pix_clk_div = best_pix_div;
pll->vt_bk.sys_clk_freq_hz =
pll_fr->pll_op_clk_freq_hz / pll->vt_bk.sys_clk_div;
pll->vt_bk.pix_clk_freq_hz =
pll->vt_bk.sys_clk_freq_hz / pll->vt_bk.pix_clk_div;
out_calc_pixel_rate:
pll->pixel_rate_pixel_array =
pll->vt_bk.pix_clk_freq_hz * pll->vt_lanes;
}
/*
* Heuristically guess the PLL tree for a given common multiplier and
* divisor. Begin with the operational timing and continue to video
* timing once operational timing has been verified.
*
* @mul is the PLL multiplier and @div is the common divisor
* (pre_pll_clk_div and op_sys_clk_div combined). The final PLL
* multiplier will be a multiple of @mul.
*
* @return Zero on success, error code on error.
*/
static int
ccs_pll_calculate_op(struct device *dev, const struct ccs_pll_limits *lim,
const struct ccs_pll_branch_limits_fr *op_lim_fr,
const struct ccs_pll_branch_limits_bk *op_lim_bk,
struct ccs_pll *pll, struct ccs_pll_branch_fr *op_pll_fr,
struct ccs_pll_branch_bk *op_pll_bk, u32 mul,
u32 div, u32 op_sys_clk_freq_hz_sdr, u32 l,
bool cphy, u32 phy_const)
{
/*
* Higher multipliers (and divisors) are often required than
* necessitated by the external clock and the output clocks.
* There are limits for all values in the clock tree. These
* are the minimum and maximum multiplier for mul.
*/
u32 more_mul_min, more_mul_max;
u32 more_mul_factor;
u32 i;
/*
* Get pre_pll_clk_div so that our pll_op_clk_freq_hz won't be
* too high.
*/
dev_dbg(dev, "op_pre_pll_clk_div %u\n", op_pll_fr->pre_pll_clk_div);
/* Don't go above max pll multiplier. */
more_mul_max = op_lim_fr->max_pll_multiplier / mul;
dev_dbg(dev, "more_mul_max: max_op_pll_multiplier check: %u\n",
more_mul_max);
/* Don't go above max pll op frequency. */
more_mul_max =
min_t(u32,
more_mul_max,
op_lim_fr->max_pll_op_clk_freq_hz
/ (pll->ext_clk_freq_hz /
op_pll_fr->pre_pll_clk_div * mul));
dev_dbg(dev, "more_mul_max: max_pll_op_clk_freq_hz check: %u\n",
more_mul_max);
/* Don't go above the division capability of op sys clock divider. */
more_mul_max = min(more_mul_max,
op_lim_bk->max_sys_clk_div * op_pll_fr->pre_pll_clk_div
/ div);
dev_dbg(dev, "more_mul_max: max_op_sys_clk_div check: %u\n",
more_mul_max);
/* Ensure we won't go above max_pll_multiplier. */
more_mul_max = min(more_mul_max, op_lim_fr->max_pll_multiplier / mul);
dev_dbg(dev, "more_mul_max: min_pll_multiplier check: %u\n",
more_mul_max);
/* Ensure we won't go below min_pll_op_clk_freq_hz. */
more_mul_min = DIV_ROUND_UP(op_lim_fr->min_pll_op_clk_freq_hz,
pll->ext_clk_freq_hz /
op_pll_fr->pre_pll_clk_div * mul);
dev_dbg(dev, "more_mul_min: min_op_pll_op_clk_freq_hz check: %u\n",
more_mul_min);
/* Ensure we won't go below min_pll_multiplier. */
more_mul_min = max(more_mul_min,
DIV_ROUND_UP(op_lim_fr->min_pll_multiplier, mul));
dev_dbg(dev, "more_mul_min: min_op_pll_multiplier check: %u\n",
more_mul_min);
if (more_mul_min > more_mul_max) {
dev_dbg(dev,
"unable to compute more_mul_min and more_mul_max\n");
return -EINVAL;
}
more_mul_factor = lcm(div, op_pll_fr->pre_pll_clk_div) / div;
dev_dbg(dev, "more_mul_factor: %u\n", more_mul_factor);
more_mul_factor = lcm(more_mul_factor, op_lim_bk->min_sys_clk_div);
dev_dbg(dev, "more_mul_factor: min_op_sys_clk_div: %d\n",
more_mul_factor);
i = roundup(more_mul_min, more_mul_factor);
if (!is_one_or_even(i))
i <<= 1;
dev_dbg(dev, "final more_mul: %u\n", i);
if (i > more_mul_max) {
dev_dbg(dev, "final more_mul is bad, max %u\n", more_mul_max);
return -EINVAL;
}
op_pll_fr->pll_multiplier = mul * i;
op_pll_bk->sys_clk_div = div * i / op_pll_fr->pre_pll_clk_div;
dev_dbg(dev, "op_sys_clk_div: %u\n", op_pll_bk->sys_clk_div);
op_pll_fr->pll_ip_clk_freq_hz = pll->ext_clk_freq_hz
/ op_pll_fr->pre_pll_clk_div;
op_pll_fr->pll_op_clk_freq_hz = op_pll_fr->pll_ip_clk_freq_hz
* op_pll_fr->pll_multiplier;
if (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL)
op_pll_bk->pix_clk_div =
(pll->bits_per_pixel
* pll->op_lanes * (phy_const << op_sys_ddr(pll->flags))
/ PHY_CONST_DIV / pll->csi2.lanes / l)
>> op_pix_ddr(pll->flags);
else
op_pll_bk->pix_clk_div =
(pll->bits_per_pixel
* (phy_const << op_sys_ddr(pll->flags))
/ PHY_CONST_DIV / l) >> op_pix_ddr(pll->flags);
op_pll_bk->pix_clk_freq_hz =
(op_sys_clk_freq_hz_sdr >> op_pix_ddr(pll->flags))
/ op_pll_bk->pix_clk_div;
op_pll_bk->sys_clk_freq_hz =
op_sys_clk_freq_hz_sdr >> op_sys_ddr(pll->flags);
dev_dbg(dev, "op_pix_clk_div: %u\n", op_pll_bk->pix_clk_div);
return 0;
}
int ccs_pll_calculate(struct device *dev, const struct ccs_pll_limits *lim,
struct ccs_pll *pll)
{
const struct ccs_pll_branch_limits_fr *op_lim_fr;
const struct ccs_pll_branch_limits_bk *op_lim_bk;
struct ccs_pll_branch_fr *op_pll_fr;
struct ccs_pll_branch_bk *op_pll_bk;
bool cphy = pll->bus_type == CCS_PLL_BUS_TYPE_CSI2_CPHY;
u32 phy_const = cphy ? CPHY_CONST : DPHY_CONST;
u32 op_sys_clk_freq_hz_sdr;
u16 min_op_pre_pll_clk_div;
u16 max_op_pre_pll_clk_div;
u32 mul, div;
u32 l = (!pll->op_bits_per_lane ||
pll->op_bits_per_lane >= pll->bits_per_pixel) ? 1 : 2;
u32 i;
int rval = -EINVAL;
if (!(pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL)) {
pll->op_lanes = 1;
pll->vt_lanes = 1;
}
if (pll->flags & CCS_PLL_FLAG_DUAL_PLL) {
op_lim_fr = &lim->op_fr;
op_lim_bk = &lim->op_bk;
op_pll_fr = &pll->op_fr;
op_pll_bk = &pll->op_bk;
} else if (pll->flags & CCS_PLL_FLAG_NO_OP_CLOCKS) {
/*
* If there's no OP PLL at all, use the VT values
* instead. The OP values are ignored for the rest of
* the PLL calculation.
*/
op_lim_fr = &lim->vt_fr;
op_lim_bk = &lim->vt_bk;
op_pll_fr = &pll->vt_fr;
op_pll_bk = &pll->vt_bk;
} else {
op_lim_fr = &lim->vt_fr;
op_lim_bk = &lim->op_bk;
op_pll_fr = &pll->vt_fr;
op_pll_bk = &pll->op_bk;
}
if (!pll->op_lanes || !pll->vt_lanes || !pll->bits_per_pixel ||
!pll->ext_clk_freq_hz || !pll->link_freq || !pll->scale_m ||
!op_lim_fr->min_pll_ip_clk_freq_hz ||
!op_lim_fr->max_pll_ip_clk_freq_hz ||
!op_lim_fr->min_pll_op_clk_freq_hz ||
!op_lim_fr->max_pll_op_clk_freq_hz ||
!op_lim_bk->max_sys_clk_div || !op_lim_fr->max_pll_multiplier)
return -EINVAL;
/*
* Make sure op_pix_clk_div will be integer --- unless flexible
* op_pix_clk_div is supported
*/
if (!(pll->flags & CCS_PLL_FLAG_FLEXIBLE_OP_PIX_CLK_DIV) &&
(pll->bits_per_pixel * pll->op_lanes) %
(pll->csi2.lanes * l << op_pix_ddr(pll->flags))) {
dev_dbg(dev, "op_pix_clk_div not an integer (bpp %u, op lanes %u, lanes %u, l %u)\n",
pll->bits_per_pixel, pll->op_lanes, pll->csi2.lanes, l);
return -EINVAL;
}
dev_dbg(dev, "vt_lanes: %u\n", pll->vt_lanes);
dev_dbg(dev, "op_lanes: %u\n", pll->op_lanes);
dev_dbg(dev, "binning: %ux%u\n", pll->binning_horizontal,
pll->binning_vertical);
switch (pll->bus_type) {
case CCS_PLL_BUS_TYPE_CSI2_DPHY:
case CCS_PLL_BUS_TYPE_CSI2_CPHY:
op_sys_clk_freq_hz_sdr = pll->link_freq * 2
* (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ?
1 : pll->csi2.lanes);
break;
default:
return -EINVAL;
}
pll->pixel_rate_csi =
div_u64((uint64_t)op_sys_clk_freq_hz_sdr
* (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ?
pll->csi2.lanes : 1) * PHY_CONST_DIV,
phy_const * pll->bits_per_pixel * l);
/* Figure out limits for OP pre-pll divider based on extclk */
dev_dbg(dev, "min / max op_pre_pll_clk_div: %u / %u\n",
op_lim_fr->min_pre_pll_clk_div, op_lim_fr->max_pre_pll_clk_div);
max_op_pre_pll_clk_div =
min_t(u16, op_lim_fr->max_pre_pll_clk_div,
clk_div_even(pll->ext_clk_freq_hz /
op_lim_fr->min_pll_ip_clk_freq_hz));
min_op_pre_pll_clk_div =
max_t(u16, op_lim_fr->min_pre_pll_clk_div,
clk_div_even_up(
DIV_ROUND_UP(pll->ext_clk_freq_hz,
op_lim_fr->max_pll_ip_clk_freq_hz)));
dev_dbg(dev, "pre-pll check: min / max op_pre_pll_clk_div: %u / %u\n",
min_op_pre_pll_clk_div, max_op_pre_pll_clk_div);
i = gcd(op_sys_clk_freq_hz_sdr,
pll->ext_clk_freq_hz << op_pix_ddr(pll->flags));
mul = op_sys_clk_freq_hz_sdr / i;
div = (pll->ext_clk_freq_hz << op_pix_ddr(pll->flags)) / i;
dev_dbg(dev, "mul %u / div %u\n", mul, div);
min_op_pre_pll_clk_div =
max_t(u16, min_op_pre_pll_clk_div,
clk_div_even_up(
mul /
one_or_more(
DIV_ROUND_UP(op_lim_fr->max_pll_op_clk_freq_hz,
pll->ext_clk_freq_hz))));
dev_dbg(dev, "pll_op check: min / max op_pre_pll_clk_div: %u / %u\n",
min_op_pre_pll_clk_div, max_op_pre_pll_clk_div);
for (op_pll_fr->pre_pll_clk_div = min_op_pre_pll_clk_div;
op_pll_fr->pre_pll_clk_div <= max_op_pre_pll_clk_div;
op_pll_fr->pre_pll_clk_div +=
(pll->flags & CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER) ? 1 :
2 - (op_pll_fr->pre_pll_clk_div & 1)) {
rval = ccs_pll_calculate_op(dev, lim, op_lim_fr, op_lim_bk, pll,
op_pll_fr, op_pll_bk, mul, div,
op_sys_clk_freq_hz_sdr, l, cphy,
phy_const);
if (rval)
continue;
rval = check_fr_bounds(dev, lim, pll,
pll->flags & CCS_PLL_FLAG_DUAL_PLL ?
PLL_OP : PLL_VT);
if (rval)
continue;
rval = check_bk_bounds(dev, lim, pll, PLL_OP);
if (rval)
continue;
if (pll->flags & CCS_PLL_FLAG_DUAL_PLL)
break;
ccs_pll_calculate_vt(dev, lim, op_lim_bk, pll, op_pll_fr,
op_pll_bk, cphy, phy_const);
rval = check_bk_bounds(dev, lim, pll, PLL_VT);
if (rval)
continue;
rval = check_ext_bounds(dev, pll);
if (rval)
continue;
break;
}
if (rval) {
dev_dbg(dev, "unable to compute pre_pll divisor\n");
return rval;
}
if (pll->flags & CCS_PLL_FLAG_DUAL_PLL) {
rval = ccs_pll_calculate_vt_tree(dev, lim, pll);
if (rval)
return rval;
}
print_pll(dev, pll);
return 0;
}
EXPORT_SYMBOL_GPL(ccs_pll_calculate);
MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
MODULE_DESCRIPTION("Generic MIPI CCS/SMIA/SMIA++ PLL calculator");
MODULE_LICENSE("GPL");