dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
|
|
* Copyright (c) 2018-2019 Synopsys, Inc. and/or its affiliates.
|
|
|
|
* Synopsys DesignWare eDMA core driver
|
|
|
|
*
|
|
|
|
* Author: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/device.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/dmaengine.h>
|
|
|
|
#include <linux/err.h>
|
|
|
|
#include <linux/interrupt.h>
|
2020-04-23 09:58:21 +08:00
|
|
|
#include <linux/irq.h>
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
#include <linux/dma/edma.h>
|
2020-04-16 01:27:09 +08:00
|
|
|
#include <linux/dma-mapping.h>
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
|
|
|
#include "dw-edma-core.h"
|
2019-06-04 21:29:23 +08:00
|
|
|
#include "dw-edma-v0-core.h"
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
#include "../dmaengine.h"
|
|
|
|
#include "../virt-dma.h"
|
|
|
|
|
|
|
|
static inline
|
|
|
|
struct device *dchan2dev(struct dma_chan *dchan)
|
|
|
|
{
|
|
|
|
return &dchan->dev->device;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline
|
|
|
|
struct device *chan2dev(struct dw_edma_chan *chan)
|
|
|
|
{
|
|
|
|
return &chan->vc.chan.dev->device;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline
|
|
|
|
struct dw_edma_desc *vd2dw_edma_desc(struct virt_dma_desc *vd)
|
|
|
|
{
|
|
|
|
return container_of(vd, struct dw_edma_desc, vd);
|
|
|
|
}
|
|
|
|
|
2023-01-14 01:13:49 +08:00
|
|
|
static inline
|
|
|
|
u64 dw_edma_get_pci_address(struct dw_edma_chan *chan, phys_addr_t cpu_addr)
|
|
|
|
{
|
|
|
|
struct dw_edma_chip *chip = chan->dw->chip;
|
|
|
|
|
|
|
|
if (chip->ops->pci_address)
|
|
|
|
return chip->ops->pci_address(chip->dev, cpu_addr);
|
|
|
|
|
|
|
|
return cpu_addr;
|
|
|
|
}
|
|
|
|
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
static struct dw_edma_burst *dw_edma_alloc_burst(struct dw_edma_chunk *chunk)
|
|
|
|
{
|
|
|
|
struct dw_edma_burst *burst;
|
|
|
|
|
|
|
|
burst = kzalloc(sizeof(*burst), GFP_NOWAIT);
|
|
|
|
if (unlikely(!burst))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&burst->list);
|
|
|
|
if (chunk->burst) {
|
|
|
|
/* Create and add new element into the linked list */
|
|
|
|
chunk->bursts_alloc++;
|
|
|
|
list_add_tail(&burst->list, &chunk->burst->list);
|
|
|
|
} else {
|
|
|
|
/* List head */
|
|
|
|
chunk->bursts_alloc = 0;
|
|
|
|
chunk->burst = burst;
|
|
|
|
}
|
|
|
|
|
|
|
|
return burst;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct dw_edma_chunk *dw_edma_alloc_chunk(struct dw_edma_desc *desc)
|
|
|
|
{
|
2022-05-24 23:21:53 +08:00
|
|
|
struct dw_edma_chip *chip = desc->chan->dw->chip;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
struct dw_edma_chan *chan = desc->chan;
|
|
|
|
struct dw_edma_chunk *chunk;
|
|
|
|
|
|
|
|
chunk = kzalloc(sizeof(*chunk), GFP_NOWAIT);
|
|
|
|
if (unlikely(!chunk))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&chunk->list);
|
|
|
|
chunk->chan = chan;
|
|
|
|
/* Toggling change bit (CB) in each chunk, this is a mechanism to
|
|
|
|
* inform the eDMA HW block that this is a new linked list ready
|
|
|
|
* to be consumed.
|
|
|
|
* - Odd chunks originate CB equal to 0
|
|
|
|
* - Even chunks originate CB equal to 1
|
|
|
|
*/
|
|
|
|
chunk->cb = !(desc->chunks_alloc % 2);
|
2021-02-19 03:04:03 +08:00
|
|
|
if (chan->dir == EDMA_DIR_WRITE) {
|
2022-05-24 23:21:53 +08:00
|
|
|
chunk->ll_region.paddr = chip->ll_region_wr[chan->id].paddr;
|
|
|
|
chunk->ll_region.vaddr = chip->ll_region_wr[chan->id].vaddr;
|
2021-02-19 03:04:03 +08:00
|
|
|
} else {
|
2022-05-24 23:21:53 +08:00
|
|
|
chunk->ll_region.paddr = chip->ll_region_rd[chan->id].paddr;
|
|
|
|
chunk->ll_region.vaddr = chip->ll_region_rd[chan->id].vaddr;
|
2021-02-19 03:04:03 +08:00
|
|
|
}
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
|
|
|
if (desc->chunk) {
|
|
|
|
/* Create and add new element into the linked list */
|
|
|
|
if (!dw_edma_alloc_burst(chunk)) {
|
|
|
|
kfree(chunk);
|
|
|
|
return NULL;
|
|
|
|
}
|
2020-12-14 19:56:52 +08:00
|
|
|
desc->chunks_alloc++;
|
|
|
|
list_add_tail(&chunk->list, &desc->chunk->list);
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
} else {
|
|
|
|
/* List head */
|
|
|
|
chunk->burst = NULL;
|
|
|
|
desc->chunks_alloc = 0;
|
|
|
|
desc->chunk = chunk;
|
|
|
|
}
|
|
|
|
|
|
|
|
return chunk;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct dw_edma_desc *dw_edma_alloc_desc(struct dw_edma_chan *chan)
|
|
|
|
{
|
|
|
|
struct dw_edma_desc *desc;
|
|
|
|
|
|
|
|
desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
|
|
|
|
if (unlikely(!desc))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
desc->chan = chan;
|
|
|
|
if (!dw_edma_alloc_chunk(desc)) {
|
|
|
|
kfree(desc);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return desc;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void dw_edma_free_burst(struct dw_edma_chunk *chunk)
|
|
|
|
{
|
|
|
|
struct dw_edma_burst *child, *_next;
|
|
|
|
|
|
|
|
/* Remove all the list elements */
|
|
|
|
list_for_each_entry_safe(child, _next, &chunk->burst->list, list) {
|
|
|
|
list_del(&child->list);
|
|
|
|
kfree(child);
|
|
|
|
chunk->bursts_alloc--;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Remove the list head */
|
|
|
|
kfree(child);
|
|
|
|
chunk->burst = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void dw_edma_free_chunk(struct dw_edma_desc *desc)
|
|
|
|
{
|
|
|
|
struct dw_edma_chunk *child, *_next;
|
|
|
|
|
|
|
|
if (!desc->chunk)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Remove all the list elements */
|
|
|
|
list_for_each_entry_safe(child, _next, &desc->chunk->list, list) {
|
|
|
|
dw_edma_free_burst(child);
|
|
|
|
list_del(&child->list);
|
|
|
|
kfree(child);
|
|
|
|
desc->chunks_alloc--;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Remove the list head */
|
|
|
|
kfree(child);
|
|
|
|
desc->chunk = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void dw_edma_free_desc(struct dw_edma_desc *desc)
|
|
|
|
{
|
|
|
|
dw_edma_free_chunk(desc);
|
|
|
|
kfree(desc);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vchan_free_desc(struct virt_dma_desc *vdesc)
|
|
|
|
{
|
|
|
|
dw_edma_free_desc(vd2dw_edma_desc(vdesc));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void dw_edma_start_transfer(struct dw_edma_chan *chan)
|
|
|
|
{
|
|
|
|
struct dw_edma_chunk *child;
|
|
|
|
struct dw_edma_desc *desc;
|
|
|
|
struct virt_dma_desc *vd;
|
|
|
|
|
|
|
|
vd = vchan_next_desc(&chan->vc);
|
|
|
|
if (!vd)
|
|
|
|
return;
|
|
|
|
|
|
|
|
desc = vd2dw_edma_desc(vd);
|
|
|
|
if (!desc)
|
|
|
|
return;
|
|
|
|
|
|
|
|
child = list_first_entry_or_null(&desc->chunk->list,
|
|
|
|
struct dw_edma_chunk, list);
|
|
|
|
if (!child)
|
|
|
|
return;
|
|
|
|
|
|
|
|
dw_edma_v0_core_start(child, !desc->xfer_sz);
|
|
|
|
desc->xfer_sz += child->ll_region.sz;
|
|
|
|
dw_edma_free_burst(child);
|
|
|
|
list_del(&child->list);
|
|
|
|
kfree(child);
|
|
|
|
desc->chunks_alloc--;
|
|
|
|
}
|
|
|
|
|
2023-01-14 01:13:59 +08:00
|
|
|
static void dw_edma_device_caps(struct dma_chan *dchan,
|
|
|
|
struct dma_slave_caps *caps)
|
|
|
|
{
|
|
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
|
|
|
|
|
|
if (chan->dw->chip->flags & DW_EDMA_CHIP_LOCAL) {
|
|
|
|
if (chan->dir == EDMA_DIR_READ)
|
|
|
|
caps->directions = BIT(DMA_DEV_TO_MEM);
|
|
|
|
else
|
|
|
|
caps->directions = BIT(DMA_MEM_TO_DEV);
|
|
|
|
} else {
|
|
|
|
if (chan->dir == EDMA_DIR_WRITE)
|
|
|
|
caps->directions = BIT(DMA_DEV_TO_MEM);
|
|
|
|
else
|
|
|
|
caps->directions = BIT(DMA_MEM_TO_DEV);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
static int dw_edma_device_config(struct dma_chan *dchan,
|
|
|
|
struct dma_slave_config *config)
|
|
|
|
{
|
|
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
|
|
|
|
|
|
memcpy(&chan->config, config, sizeof(*config));
|
|
|
|
chan->configured = true;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int dw_edma_device_pause(struct dma_chan *dchan)
|
|
|
|
{
|
|
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
|
|
int err = 0;
|
|
|
|
|
|
|
|
if (!chan->configured)
|
|
|
|
err = -EPERM;
|
|
|
|
else if (chan->status != EDMA_ST_BUSY)
|
|
|
|
err = -EPERM;
|
|
|
|
else if (chan->request != EDMA_REQ_NONE)
|
|
|
|
err = -EPERM;
|
|
|
|
else
|
|
|
|
chan->request = EDMA_REQ_PAUSE;
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int dw_edma_device_resume(struct dma_chan *dchan)
|
|
|
|
{
|
|
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
|
|
int err = 0;
|
|
|
|
|
|
|
|
if (!chan->configured) {
|
|
|
|
err = -EPERM;
|
|
|
|
} else if (chan->status != EDMA_ST_PAUSE) {
|
|
|
|
err = -EPERM;
|
|
|
|
} else if (chan->request != EDMA_REQ_NONE) {
|
|
|
|
err = -EPERM;
|
|
|
|
} else {
|
|
|
|
chan->status = EDMA_ST_BUSY;
|
|
|
|
dw_edma_start_transfer(chan);
|
|
|
|
}
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int dw_edma_device_terminate_all(struct dma_chan *dchan)
|
|
|
|
{
|
|
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
|
|
int err = 0;
|
|
|
|
|
|
|
|
if (!chan->configured) {
|
|
|
|
/* Do nothing */
|
|
|
|
} else if (chan->status == EDMA_ST_PAUSE) {
|
|
|
|
chan->status = EDMA_ST_IDLE;
|
|
|
|
chan->configured = false;
|
|
|
|
} else if (chan->status == EDMA_ST_IDLE) {
|
|
|
|
chan->configured = false;
|
|
|
|
} else if (dw_edma_v0_core_ch_status(chan) == DMA_COMPLETE) {
|
|
|
|
/*
|
|
|
|
* The channel is in a false BUSY state, probably didn't
|
|
|
|
* receive or lost an interrupt
|
|
|
|
*/
|
|
|
|
chan->status = EDMA_ST_IDLE;
|
|
|
|
chan->configured = false;
|
|
|
|
} else if (chan->request > EDMA_REQ_PAUSE) {
|
|
|
|
err = -EPERM;
|
|
|
|
} else {
|
|
|
|
chan->request = EDMA_REQ_STOP;
|
|
|
|
}
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void dw_edma_device_issue_pending(struct dma_chan *dchan)
|
|
|
|
{
|
|
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&chan->vc.lock, flags);
|
|
|
|
if (chan->configured && chan->request == EDMA_REQ_NONE &&
|
|
|
|
chan->status == EDMA_ST_IDLE && vchan_issue_pending(&chan->vc)) {
|
|
|
|
chan->status = EDMA_ST_BUSY;
|
|
|
|
dw_edma_start_transfer(chan);
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&chan->vc.lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static enum dma_status
|
|
|
|
dw_edma_device_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
|
|
|
|
struct dma_tx_state *txstate)
|
|
|
|
{
|
|
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
|
|
struct dw_edma_desc *desc;
|
|
|
|
struct virt_dma_desc *vd;
|
|
|
|
unsigned long flags;
|
|
|
|
enum dma_status ret;
|
|
|
|
u32 residue = 0;
|
|
|
|
|
|
|
|
ret = dma_cookie_status(dchan, cookie, txstate);
|
|
|
|
if (ret == DMA_COMPLETE)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
if (ret == DMA_IN_PROGRESS && chan->status == EDMA_ST_PAUSE)
|
|
|
|
ret = DMA_PAUSED;
|
|
|
|
|
|
|
|
if (!txstate)
|
|
|
|
goto ret_residue;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&chan->vc.lock, flags);
|
|
|
|
vd = vchan_find_desc(&chan->vc, cookie);
|
|
|
|
if (vd) {
|
|
|
|
desc = vd2dw_edma_desc(vd);
|
|
|
|
if (desc)
|
|
|
|
residue = desc->alloc_sz - desc->xfer_sz;
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&chan->vc.lock, flags);
|
|
|
|
|
|
|
|
ret_residue:
|
|
|
|
dma_set_residue(txstate, residue);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
|
|
dw_edma_device_transfer(struct dw_edma_transfer *xfer)
|
|
|
|
{
|
|
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(xfer->dchan);
|
dmaengine: dw-edma: support local dma device transfer semantics
Modify dw_edma_device_transfer() to also support the semantics of dma
device transfer for additional use cases involving pcitest utility as a
local initiator.
For its original use case, dw-edma supported the semantics of dma device
transfer from the perspective of a remote initiator who is located across
the PCIe bus from dma channel hardware.
To a remote initiator, DMA_DEV_TO_MEM means using a remote dma WRITE
channel to transfer from remote memory to local memory. A WRITE channel
would be employed on the remote device in order to move the contents of
remote memory to the bus destined for local memory.
To a remote initiator, DMA_MEM_TO_DEV means using a remote dma READ
channel to transfer from local memory to remote memory. A READ channel
would be employed on the remote device in order to move the contents of
local memory to the bus destined for remote memory.
>From the perspective of a local dma initiator who is co-located on the
same side of the PCIe bus as the dma channel hardware, the semantics of
dma device transfer are flipped.
To a local initiator, DMA_DEV_TO_MEM means using a local dma READ channel
to transfer from remote memory to local memory. A READ channel would be
employed on the local device in order to move the contents of remote
memory to the bus destined for local memory.
To a local initiator, DMA_MEM_TO_DEV means using a local dma WRITE channel
to transfer from local memory to remote memory. A WRITE channel would be
employed on the local device in order to move the contents of local memory
to the bus destined for remote memory.
To support local dma initiators, dw_edma_device_transfer() is modified to
now examine the direction field of struct dma_slave_config for the channel
which initiators can configure by calling dmaengine_slave_config().
If direction is configured as either DMA_DEV_TO_MEM or DMA_MEM_TO_DEV,
local initiator semantics are used. If direction is a value other than
DMA_DEV_TO_MEM nor DMA_MEM_TO_DEV, then remote initiator semantics are
used. This should maintain backward compatibility with the original use
case of dw-edma.
The dw-edma-test utility is an example of a remote initiator. From reading
its patch, dw-edma-test does not specifically set the direction field of
struct dma_slave_config. Since dw_edma_device_transfer() also does not
check the direction field of struct dma_slave_config, it seems safe to use
this convention in dw-edma to support both local and remote initiator
semantics.
Signed-off-by: Alan Mikhak <alan.mikhak@sifive.com>
Link: https://lore.kernel.org/r/1588122633-1552-1-git-send-email-alan.mikhak@sifive.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2020-04-29 09:10:33 +08:00
|
|
|
enum dma_transfer_direction dir = xfer->direction;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
struct scatterlist *sg = NULL;
|
|
|
|
struct dw_edma_chunk *chunk;
|
|
|
|
struct dw_edma_burst *burst;
|
|
|
|
struct dw_edma_desc *desc;
|
2023-01-14 01:13:49 +08:00
|
|
|
u64 src_addr, dst_addr;
|
2023-01-14 01:13:48 +08:00
|
|
|
size_t fsz = 0;
|
2021-02-19 03:04:00 +08:00
|
|
|
u32 cnt = 0;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
int i;
|
|
|
|
|
dmaengine: dw-edma: support local dma device transfer semantics
Modify dw_edma_device_transfer() to also support the semantics of dma
device transfer for additional use cases involving pcitest utility as a
local initiator.
For its original use case, dw-edma supported the semantics of dma device
transfer from the perspective of a remote initiator who is located across
the PCIe bus from dma channel hardware.
To a remote initiator, DMA_DEV_TO_MEM means using a remote dma WRITE
channel to transfer from remote memory to local memory. A WRITE channel
would be employed on the remote device in order to move the contents of
remote memory to the bus destined for local memory.
To a remote initiator, DMA_MEM_TO_DEV means using a remote dma READ
channel to transfer from local memory to remote memory. A READ channel
would be employed on the remote device in order to move the contents of
local memory to the bus destined for remote memory.
>From the perspective of a local dma initiator who is co-located on the
same side of the PCIe bus as the dma channel hardware, the semantics of
dma device transfer are flipped.
To a local initiator, DMA_DEV_TO_MEM means using a local dma READ channel
to transfer from remote memory to local memory. A READ channel would be
employed on the local device in order to move the contents of remote
memory to the bus destined for local memory.
To a local initiator, DMA_MEM_TO_DEV means using a local dma WRITE channel
to transfer from local memory to remote memory. A WRITE channel would be
employed on the local device in order to move the contents of local memory
to the bus destined for remote memory.
To support local dma initiators, dw_edma_device_transfer() is modified to
now examine the direction field of struct dma_slave_config for the channel
which initiators can configure by calling dmaengine_slave_config().
If direction is configured as either DMA_DEV_TO_MEM or DMA_MEM_TO_DEV,
local initiator semantics are used. If direction is a value other than
DMA_DEV_TO_MEM nor DMA_MEM_TO_DEV, then remote initiator semantics are
used. This should maintain backward compatibility with the original use
case of dw-edma.
The dw-edma-test utility is an example of a remote initiator. From reading
its patch, dw-edma-test does not specifically set the direction field of
struct dma_slave_config. Since dw_edma_device_transfer() also does not
check the direction field of struct dma_slave_config, it seems safe to use
this convention in dw-edma to support both local and remote initiator
semantics.
Signed-off-by: Alan Mikhak <alan.mikhak@sifive.com>
Link: https://lore.kernel.org/r/1588122633-1552-1-git-send-email-alan.mikhak@sifive.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2020-04-29 09:10:33 +08:00
|
|
|
if (!chan->configured)
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
return NULL;
|
|
|
|
|
2022-05-24 23:21:56 +08:00
|
|
|
/*
|
|
|
|
* Local Root Port/End-point Remote End-point
|
|
|
|
* +-----------------------+ PCIe bus +----------------------+
|
|
|
|
* | | +-+ | |
|
|
|
|
* | DEV_TO_MEM Rx Ch <----+ +---+ Tx Ch DEV_TO_MEM |
|
|
|
|
* | | | | | |
|
|
|
|
* | MEM_TO_DEV Tx Ch +----+ +---> Rx Ch MEM_TO_DEV |
|
|
|
|
* | | +-+ | |
|
|
|
|
* +-----------------------+ +----------------------+
|
|
|
|
*
|
|
|
|
* 1. Normal logic:
|
|
|
|
* If eDMA is embedded into the DW PCIe RP/EP and controlled from the
|
|
|
|
* CPU/Application side, the Rx channel (EDMA_DIR_READ) will be used
|
|
|
|
* for the device read operations (DEV_TO_MEM) and the Tx channel
|
|
|
|
* (EDMA_DIR_WRITE) - for the write operations (MEM_TO_DEV).
|
|
|
|
*
|
|
|
|
* 2. Inverted logic:
|
|
|
|
* If eDMA is embedded into a Remote PCIe EP and is controlled by the
|
|
|
|
* MWr/MRd TLPs sent from the CPU's PCIe host controller, the Tx
|
|
|
|
* channel (EDMA_DIR_WRITE) will be used for the device read operations
|
|
|
|
* (DEV_TO_MEM) and the Rx channel (EDMA_DIR_READ) - for the write
|
|
|
|
* operations (MEM_TO_DEV).
|
|
|
|
*
|
|
|
|
* It is the client driver responsibility to choose a proper channel
|
|
|
|
* for the DMA transfers.
|
|
|
|
*/
|
|
|
|
if (chan->dw->chip->flags & DW_EDMA_CHIP_LOCAL) {
|
|
|
|
if ((chan->dir == EDMA_DIR_READ && dir != DMA_DEV_TO_MEM) ||
|
|
|
|
(chan->dir == EDMA_DIR_WRITE && dir != DMA_MEM_TO_DEV))
|
|
|
|
return NULL;
|
|
|
|
} else {
|
|
|
|
if ((chan->dir == EDMA_DIR_WRITE && dir != DMA_DEV_TO_MEM) ||
|
|
|
|
(chan->dir == EDMA_DIR_READ && dir != DMA_MEM_TO_DEV))
|
|
|
|
return NULL;
|
dmaengine: dw-edma: support local dma device transfer semantics
Modify dw_edma_device_transfer() to also support the semantics of dma
device transfer for additional use cases involving pcitest utility as a
local initiator.
For its original use case, dw-edma supported the semantics of dma device
transfer from the perspective of a remote initiator who is located across
the PCIe bus from dma channel hardware.
To a remote initiator, DMA_DEV_TO_MEM means using a remote dma WRITE
channel to transfer from remote memory to local memory. A WRITE channel
would be employed on the remote device in order to move the contents of
remote memory to the bus destined for local memory.
To a remote initiator, DMA_MEM_TO_DEV means using a remote dma READ
channel to transfer from local memory to remote memory. A READ channel
would be employed on the remote device in order to move the contents of
local memory to the bus destined for remote memory.
>From the perspective of a local dma initiator who is co-located on the
same side of the PCIe bus as the dma channel hardware, the semantics of
dma device transfer are flipped.
To a local initiator, DMA_DEV_TO_MEM means using a local dma READ channel
to transfer from remote memory to local memory. A READ channel would be
employed on the local device in order to move the contents of remote
memory to the bus destined for local memory.
To a local initiator, DMA_MEM_TO_DEV means using a local dma WRITE channel
to transfer from local memory to remote memory. A WRITE channel would be
employed on the local device in order to move the contents of local memory
to the bus destined for remote memory.
To support local dma initiators, dw_edma_device_transfer() is modified to
now examine the direction field of struct dma_slave_config for the channel
which initiators can configure by calling dmaengine_slave_config().
If direction is configured as either DMA_DEV_TO_MEM or DMA_MEM_TO_DEV,
local initiator semantics are used. If direction is a value other than
DMA_DEV_TO_MEM nor DMA_MEM_TO_DEV, then remote initiator semantics are
used. This should maintain backward compatibility with the original use
case of dw-edma.
The dw-edma-test utility is an example of a remote initiator. From reading
its patch, dw-edma-test does not specifically set the direction field of
struct dma_slave_config. Since dw_edma_device_transfer() also does not
check the direction field of struct dma_slave_config, it seems safe to use
this convention in dw-edma to support both local and remote initiator
semantics.
Signed-off-by: Alan Mikhak <alan.mikhak@sifive.com>
Link: https://lore.kernel.org/r/1588122633-1552-1-git-send-email-alan.mikhak@sifive.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2020-04-29 09:10:33 +08:00
|
|
|
}
|
|
|
|
|
2021-02-19 03:04:00 +08:00
|
|
|
if (xfer->type == EDMA_XFER_CYCLIC) {
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
if (!xfer->xfer.cyclic.len || !xfer->xfer.cyclic.cnt)
|
|
|
|
return NULL;
|
2021-02-19 03:04:00 +08:00
|
|
|
} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
if (xfer->xfer.sg.len < 1)
|
|
|
|
return NULL;
|
2021-02-19 03:04:00 +08:00
|
|
|
} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
|
2023-01-14 01:13:48 +08:00
|
|
|
if (!xfer->xfer.il->numf || xfer->xfer.il->frame_size < 1)
|
2021-02-19 03:04:00 +08:00
|
|
|
return NULL;
|
2023-01-14 01:13:47 +08:00
|
|
|
if (!xfer->xfer.il->src_inc || !xfer->xfer.il->dst_inc)
|
|
|
|
return NULL;
|
2021-02-19 03:04:00 +08:00
|
|
|
} else {
|
|
|
|
return NULL;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
desc = dw_edma_alloc_desc(chan);
|
|
|
|
if (unlikely(!desc))
|
|
|
|
goto err_alloc;
|
|
|
|
|
|
|
|
chunk = dw_edma_alloc_chunk(desc);
|
|
|
|
if (unlikely(!chunk))
|
|
|
|
goto err_alloc;
|
|
|
|
|
2021-02-19 03:04:00 +08:00
|
|
|
if (xfer->type == EDMA_XFER_INTERLEAVED) {
|
|
|
|
src_addr = xfer->xfer.il->src_start;
|
|
|
|
dst_addr = xfer->xfer.il->dst_start;
|
|
|
|
} else {
|
|
|
|
src_addr = chan->config.src_addr;
|
|
|
|
dst_addr = chan->config.dst_addr;
|
|
|
|
}
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
2023-01-14 01:13:49 +08:00
|
|
|
if (dir == DMA_DEV_TO_MEM)
|
|
|
|
src_addr = dw_edma_get_pci_address(chan, (phys_addr_t)src_addr);
|
|
|
|
else
|
|
|
|
dst_addr = dw_edma_get_pci_address(chan, (phys_addr_t)dst_addr);
|
|
|
|
|
2021-02-19 03:04:00 +08:00
|
|
|
if (xfer->type == EDMA_XFER_CYCLIC) {
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
cnt = xfer->xfer.cyclic.cnt;
|
2021-02-19 03:04:00 +08:00
|
|
|
} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
cnt = xfer->xfer.sg.len;
|
|
|
|
sg = xfer->xfer.sg.sgl;
|
2021-02-19 03:04:00 +08:00
|
|
|
} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
|
2023-01-14 01:13:48 +08:00
|
|
|
cnt = xfer->xfer.il->numf * xfer->xfer.il->frame_size;
|
|
|
|
fsz = xfer->xfer.il->frame_size;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < cnt; i++) {
|
2021-02-19 03:04:00 +08:00
|
|
|
if (xfer->type == EDMA_XFER_SCATTER_GATHER && !sg)
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
if (chunk->bursts_alloc == chan->ll_max) {
|
|
|
|
chunk = dw_edma_alloc_chunk(desc);
|
|
|
|
if (unlikely(!chunk))
|
|
|
|
goto err_alloc;
|
|
|
|
}
|
|
|
|
|
|
|
|
burst = dw_edma_alloc_burst(chunk);
|
|
|
|
if (unlikely(!burst))
|
|
|
|
goto err_alloc;
|
|
|
|
|
2021-02-19 03:04:00 +08:00
|
|
|
if (xfer->type == EDMA_XFER_CYCLIC)
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
burst->sz = xfer->xfer.cyclic.len;
|
2021-02-19 03:04:00 +08:00
|
|
|
else if (xfer->type == EDMA_XFER_SCATTER_GATHER)
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
burst->sz = sg_dma_len(sg);
|
2021-02-19 03:04:00 +08:00
|
|
|
else if (xfer->type == EDMA_XFER_INTERLEAVED)
|
2023-01-14 01:13:48 +08:00
|
|
|
burst->sz = xfer->xfer.il->sgl[i % fsz].size;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
|
|
|
chunk->ll_region.sz += burst->sz;
|
|
|
|
desc->alloc_sz += burst->sz;
|
|
|
|
|
dmaengine: dw-edma: Fix eDMA Rd/Wr-channels and DMA-direction semantics
In accordance with [1, 2] the DW eDMA controller has been created to be
part of the DW PCIe Root Port and DW PCIe End-point controllers and to
offload the transferring of large blocks of data between application and
remote PCIe domains leaving the system CPU free for other tasks. In the
first case (eDMA being part of DW PCIe Root Port) the eDMA controller is
always accessible via the CPU DBI interface and never over the PCIe wire.
The latter case is more complex. Depending on the DW PCIe End-Point IP-core
synthesize parameters it's possible to have the eDMA registers accessible
not only from the application CPU side, but also via mapping the eDMA CSRs
over a dedicated endpoint BAR. So based on the specifics denoted above the
eDMA driver is supposed to support two types of the DMA controller setups:
1) eDMA embedded into the DW PCIe Root Port/End-point and accessible over
the local CPU from the application side.
2) eDMA embedded into the DW PCIe End-point and accessible via the PCIe
wire with MWr/MRd TLPs generated by the CPU PCIe host controller.
Since the CPU memory resides different sides in these cases the semantics
of the MEM_TO_DEV and DEV_TO_MEM operations is flipped with respect to the
Tx and Rx DMA channels. So MEM_TO_DEV/DEV_TO_MEM corresponds to the Tx/Rx
channels in setup 1) and to the Rx/Tx channels in case of setup 2).
The DW eDMA driver has supported the case 2) since e63d79d1ffcd
("dmaengine: Add Synopsys eDMA IP core driver") in the framework of the
drivers/dma/dw-edma/dw-edma-pcie.c driver.
The case 1) support was added later by bd96f1b2f43a ("dmaengine: dw-edma:
support local dma device transfer semantics"). Afterwards the driver was
supposed to cover the both possible eDMA setups, but the latter commit
turned out to be not fully correct.
The problem was that the commit together with the new functionality support
also changed the channel direction semantics so the eDMA Read-channel
(corresponding to the DMA_DEV_TO_MEM direction for case 1) now uses the
sgl/cyclic base addresses as the Source addresses of the DMA transfers and
dma_slave_config.dst_addr as the Destination address of the DMA transfers.
Similarly the eDMA Write-channel (corresponding to the DMA_MEM_TO_DEV
direction for case 1) now uses dma_slave_config.src_addr as a source
address of the DMA transfers and sgl/cyclic base address as the Destination
address of the DMA transfers. This contradicts the logic of the
DMA-interface, which implies that DEV side is supposed to belong to the
PCIe device memory and MEM - to the CPU/Application memory. Indeed it seems
irrational to have the SG-list defined in the PCIe bus space, while
expecting a contiguous buffer allocated in the CPU memory. Moreover the
passed SG-list and cyclic DMA buffers are supposed to be mapped in a way so
to be seen by the DW eDMA Application (CPU) interface.
So in order to have the correct DW eDMA interface we need to invert the
eDMA Rd/Wr-channels and DMA-slave directions semantics by selecting the
src/dst addresses based on the DMA transfer direction instead of using the
channel direction capability.
[1] DesignWare Cores PCI Express Controller Databook - DWC PCIe Root Port,
v.5.40a, March 2019, p.1092
[2] DesignWare Cores PCI Express Controller Databook - DWC PCIe Endpoint,
v.5.40a, March 2019, p.1189
Co-developed-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Fixes: bd96f1b2f43a ("dmaengine: dw-edma: support local dma device transfer semantics")
Link: https://lore.kernel.org/r/20220524152159.2370739-7-Frank.Li@nxp.com
Tested-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Signed-off-by: Frank Li <Frank.Li@nxp.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-By: Vinod Koul <vkoul@kernel.org>
2022-05-24 23:21:57 +08:00
|
|
|
if (dir == DMA_DEV_TO_MEM) {
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
burst->sar = src_addr;
|
2021-02-19 03:04:00 +08:00
|
|
|
if (xfer->type == EDMA_XFER_CYCLIC) {
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
burst->dar = xfer->xfer.cyclic.paddr;
|
2021-02-19 03:04:00 +08:00
|
|
|
} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
|
2021-02-19 03:04:08 +08:00
|
|
|
src_addr += sg_dma_len(sg);
|
|
|
|
burst->dar = sg_dma_address(sg);
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
/* Unlike the typical assumption by other
|
|
|
|
* drivers/IPs the peripheral memory isn't
|
|
|
|
* a FIFO memory, in this case, it's a
|
|
|
|
* linear memory and that why the source
|
|
|
|
* and destination addresses are increased
|
|
|
|
* by the same portion (data length)
|
|
|
|
*/
|
2023-01-14 01:13:46 +08:00
|
|
|
} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
|
|
|
|
burst->dar = dst_addr;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
burst->dar = dst_addr;
|
2021-02-19 03:04:00 +08:00
|
|
|
if (xfer->type == EDMA_XFER_CYCLIC) {
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
burst->sar = xfer->xfer.cyclic.paddr;
|
2021-02-19 03:04:00 +08:00
|
|
|
} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
|
2021-02-19 03:04:08 +08:00
|
|
|
dst_addr += sg_dma_len(sg);
|
|
|
|
burst->sar = sg_dma_address(sg);
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
/* Unlike the typical assumption by other
|
|
|
|
* drivers/IPs the peripheral memory isn't
|
|
|
|
* a FIFO memory, in this case, it's a
|
|
|
|
* linear memory and that why the source
|
|
|
|
* and destination addresses are increased
|
|
|
|
* by the same portion (data length)
|
|
|
|
*/
|
2023-01-14 01:13:46 +08:00
|
|
|
} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
|
|
|
|
burst->sar = src_addr;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-02-19 03:04:00 +08:00
|
|
|
if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
sg = sg_next(sg);
|
2023-01-14 01:13:48 +08:00
|
|
|
} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
|
2021-02-19 03:04:00 +08:00
|
|
|
struct dma_interleaved_template *il = xfer->xfer.il;
|
2023-01-14 01:13:48 +08:00
|
|
|
struct data_chunk *dc = &il->sgl[i % fsz];
|
2021-02-19 03:04:00 +08:00
|
|
|
|
2023-01-14 01:13:47 +08:00
|
|
|
src_addr += burst->sz;
|
|
|
|
if (il->src_sgl)
|
2021-02-19 03:04:00 +08:00
|
|
|
src_addr += dmaengine_get_src_icg(il, dc);
|
|
|
|
|
2023-01-14 01:13:47 +08:00
|
|
|
dst_addr += burst->sz;
|
|
|
|
if (il->dst_sgl)
|
2021-02-19 03:04:00 +08:00
|
|
|
dst_addr += dmaengine_get_dst_icg(il, dc);
|
2020-08-13 22:14:04 +08:00
|
|
|
}
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return vchan_tx_prep(&chan->vc, &desc->vd, xfer->flags);
|
|
|
|
|
|
|
|
err_alloc:
|
|
|
|
if (desc)
|
|
|
|
dw_edma_free_desc(desc);
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
|
|
dw_edma_device_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
|
|
|
|
unsigned int len,
|
|
|
|
enum dma_transfer_direction direction,
|
|
|
|
unsigned long flags, void *context)
|
|
|
|
{
|
|
|
|
struct dw_edma_transfer xfer;
|
|
|
|
|
|
|
|
xfer.dchan = dchan;
|
|
|
|
xfer.direction = direction;
|
|
|
|
xfer.xfer.sg.sgl = sgl;
|
|
|
|
xfer.xfer.sg.len = len;
|
|
|
|
xfer.flags = flags;
|
2021-02-19 03:04:00 +08:00
|
|
|
xfer.type = EDMA_XFER_SCATTER_GATHER;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
|
|
|
return dw_edma_device_transfer(&xfer);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
|
|
dw_edma_device_prep_dma_cyclic(struct dma_chan *dchan, dma_addr_t paddr,
|
|
|
|
size_t len, size_t count,
|
|
|
|
enum dma_transfer_direction direction,
|
|
|
|
unsigned long flags)
|
|
|
|
{
|
|
|
|
struct dw_edma_transfer xfer;
|
|
|
|
|
|
|
|
xfer.dchan = dchan;
|
|
|
|
xfer.direction = direction;
|
|
|
|
xfer.xfer.cyclic.paddr = paddr;
|
|
|
|
xfer.xfer.cyclic.len = len;
|
|
|
|
xfer.xfer.cyclic.cnt = count;
|
|
|
|
xfer.flags = flags;
|
2021-02-19 03:04:00 +08:00
|
|
|
xfer.type = EDMA_XFER_CYCLIC;
|
|
|
|
|
|
|
|
return dw_edma_device_transfer(&xfer);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
|
|
dw_edma_device_prep_interleaved_dma(struct dma_chan *dchan,
|
|
|
|
struct dma_interleaved_template *ilt,
|
|
|
|
unsigned long flags)
|
|
|
|
{
|
|
|
|
struct dw_edma_transfer xfer;
|
|
|
|
|
|
|
|
xfer.dchan = dchan;
|
|
|
|
xfer.direction = ilt->dir;
|
|
|
|
xfer.xfer.il = ilt;
|
|
|
|
xfer.flags = flags;
|
|
|
|
xfer.type = EDMA_XFER_INTERLEAVED;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
|
|
|
return dw_edma_device_transfer(&xfer);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void dw_edma_done_interrupt(struct dw_edma_chan *chan)
|
|
|
|
{
|
|
|
|
struct dw_edma_desc *desc;
|
|
|
|
struct virt_dma_desc *vd;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
dw_edma_v0_core_clear_done_int(chan);
|
|
|
|
|
|
|
|
spin_lock_irqsave(&chan->vc.lock, flags);
|
|
|
|
vd = vchan_next_desc(&chan->vc);
|
|
|
|
if (vd) {
|
|
|
|
switch (chan->request) {
|
|
|
|
case EDMA_REQ_NONE:
|
|
|
|
desc = vd2dw_edma_desc(vd);
|
|
|
|
if (desc->chunks_alloc) {
|
|
|
|
chan->status = EDMA_ST_BUSY;
|
|
|
|
dw_edma_start_transfer(chan);
|
|
|
|
} else {
|
|
|
|
list_del(&vd->node);
|
|
|
|
vchan_cookie_complete(vd);
|
|
|
|
chan->status = EDMA_ST_IDLE;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case EDMA_REQ_STOP:
|
|
|
|
list_del(&vd->node);
|
|
|
|
vchan_cookie_complete(vd);
|
|
|
|
chan->request = EDMA_REQ_NONE;
|
|
|
|
chan->status = EDMA_ST_IDLE;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case EDMA_REQ_PAUSE:
|
|
|
|
chan->request = EDMA_REQ_NONE;
|
|
|
|
chan->status = EDMA_ST_PAUSE;
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&chan->vc.lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void dw_edma_abort_interrupt(struct dw_edma_chan *chan)
|
|
|
|
{
|
|
|
|
struct virt_dma_desc *vd;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
dw_edma_v0_core_clear_abort_int(chan);
|
|
|
|
|
|
|
|
spin_lock_irqsave(&chan->vc.lock, flags);
|
|
|
|
vd = vchan_next_desc(&chan->vc);
|
|
|
|
if (vd) {
|
|
|
|
list_del(&vd->node);
|
|
|
|
vchan_cookie_complete(vd);
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&chan->vc.lock, flags);
|
|
|
|
chan->request = EDMA_REQ_NONE;
|
|
|
|
chan->status = EDMA_ST_IDLE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static irqreturn_t dw_edma_interrupt(int irq, void *data, bool write)
|
|
|
|
{
|
|
|
|
struct dw_edma_irq *dw_irq = data;
|
|
|
|
struct dw_edma *dw = dw_irq->dw;
|
|
|
|
unsigned long total, pos, val;
|
|
|
|
unsigned long off;
|
|
|
|
u32 mask;
|
|
|
|
|
|
|
|
if (write) {
|
|
|
|
total = dw->wr_ch_cnt;
|
|
|
|
off = 0;
|
|
|
|
mask = dw_irq->wr_mask;
|
|
|
|
} else {
|
|
|
|
total = dw->rd_ch_cnt;
|
|
|
|
off = dw->wr_ch_cnt;
|
|
|
|
mask = dw_irq->rd_mask;
|
|
|
|
}
|
|
|
|
|
|
|
|
val = dw_edma_v0_core_status_done_int(dw, write ?
|
|
|
|
EDMA_DIR_WRITE :
|
|
|
|
EDMA_DIR_READ);
|
|
|
|
val &= mask;
|
|
|
|
for_each_set_bit(pos, &val, total) {
|
|
|
|
struct dw_edma_chan *chan = &dw->chan[pos + off];
|
|
|
|
|
|
|
|
dw_edma_done_interrupt(chan);
|
|
|
|
}
|
|
|
|
|
|
|
|
val = dw_edma_v0_core_status_abort_int(dw, write ?
|
|
|
|
EDMA_DIR_WRITE :
|
|
|
|
EDMA_DIR_READ);
|
|
|
|
val &= mask;
|
|
|
|
for_each_set_bit(pos, &val, total) {
|
|
|
|
struct dw_edma_chan *chan = &dw->chan[pos + off];
|
|
|
|
|
|
|
|
dw_edma_abort_interrupt(chan);
|
|
|
|
}
|
|
|
|
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline irqreturn_t dw_edma_interrupt_write(int irq, void *data)
|
|
|
|
{
|
|
|
|
return dw_edma_interrupt(irq, data, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline irqreturn_t dw_edma_interrupt_read(int irq, void *data)
|
|
|
|
{
|
|
|
|
return dw_edma_interrupt(irq, data, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
static irqreturn_t dw_edma_interrupt_common(int irq, void *data)
|
|
|
|
{
|
|
|
|
dw_edma_interrupt(irq, data, true);
|
|
|
|
dw_edma_interrupt(irq, data, false);
|
|
|
|
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int dw_edma_alloc_chan_resources(struct dma_chan *dchan)
|
|
|
|
{
|
|
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
|
|
|
|
|
|
if (chan->status != EDMA_ST_IDLE)
|
|
|
|
return -EBUSY;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void dw_edma_free_chan_resources(struct dma_chan *dchan)
|
|
|
|
{
|
|
|
|
unsigned long timeout = jiffies + msecs_to_jiffies(5000);
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
while (time_before(jiffies, timeout)) {
|
|
|
|
ret = dw_edma_device_terminate_all(dchan);
|
|
|
|
if (!ret)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (time_after_eq(jiffies, timeout))
|
|
|
|
return;
|
|
|
|
|
|
|
|
cpu_relax();
|
2019-06-16 00:05:50 +08:00
|
|
|
}
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
}
|
|
|
|
|
2023-01-14 01:13:59 +08:00
|
|
|
static int dw_edma_channel_setup(struct dw_edma *dw, u32 wr_alloc, u32 rd_alloc)
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
{
|
2022-05-24 23:21:53 +08:00
|
|
|
struct dw_edma_chip *chip = dw->chip;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
struct device *dev = chip->dev;
|
|
|
|
struct dw_edma_chan *chan;
|
|
|
|
struct dw_edma_irq *irq;
|
|
|
|
struct dma_device *dma;
|
2023-01-14 01:13:59 +08:00
|
|
|
u32 i, ch_cnt;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
u32 pos;
|
|
|
|
|
2023-01-14 01:13:59 +08:00
|
|
|
ch_cnt = dw->wr_ch_cnt + dw->rd_ch_cnt;
|
|
|
|
dma = &dw->dma;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
|
|
|
INIT_LIST_HEAD(&dma->channels);
|
2023-01-14 01:13:59 +08:00
|
|
|
|
|
|
|
for (i = 0; i < ch_cnt; i++) {
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
chan = &dw->chan[i];
|
|
|
|
|
2022-05-24 23:21:53 +08:00
|
|
|
chan->dw = dw;
|
2023-01-14 01:13:59 +08:00
|
|
|
|
|
|
|
if (i < dw->wr_ch_cnt) {
|
|
|
|
chan->id = i;
|
|
|
|
chan->dir = EDMA_DIR_WRITE;
|
|
|
|
} else {
|
|
|
|
chan->id = i - dw->wr_ch_cnt;
|
|
|
|
chan->dir = EDMA_DIR_READ;
|
|
|
|
}
|
|
|
|
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
chan->configured = false;
|
|
|
|
chan->request = EDMA_REQ_NONE;
|
|
|
|
chan->status = EDMA_ST_IDLE;
|
|
|
|
|
2023-01-14 01:13:59 +08:00
|
|
|
if (chan->dir == EDMA_DIR_WRITE)
|
|
|
|
chan->ll_max = (chip->ll_region_wr[chan->id].sz / EDMA_LL_SZ);
|
2021-02-19 03:04:03 +08:00
|
|
|
else
|
2023-01-14 01:13:59 +08:00
|
|
|
chan->ll_max = (chip->ll_region_rd[chan->id].sz / EDMA_LL_SZ);
|
2021-02-19 03:04:03 +08:00
|
|
|
chan->ll_max -= 1;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
2021-02-19 03:04:03 +08:00
|
|
|
dev_vdbg(dev, "L. List:\tChannel %s[%u] max_cnt=%u\n",
|
2023-01-14 01:13:59 +08:00
|
|
|
chan->dir == EDMA_DIR_WRITE ? "write" : "read",
|
|
|
|
chan->id, chan->ll_max);
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
|
|
|
if (dw->nr_irqs == 1)
|
|
|
|
pos = 0;
|
2023-01-14 01:13:59 +08:00
|
|
|
else if (chan->dir == EDMA_DIR_WRITE)
|
|
|
|
pos = chan->id % wr_alloc;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
else
|
2023-01-14 01:13:59 +08:00
|
|
|
pos = wr_alloc + chan->id % rd_alloc;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
|
|
|
irq = &dw->irq[pos];
|
|
|
|
|
2023-01-14 01:13:59 +08:00
|
|
|
if (chan->dir == EDMA_DIR_WRITE)
|
|
|
|
irq->wr_mask |= BIT(chan->id);
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
else
|
2023-01-14 01:13:59 +08:00
|
|
|
irq->rd_mask |= BIT(chan->id);
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
|
|
|
irq->dw = dw;
|
|
|
|
memcpy(&chan->msi, &irq->msi, sizeof(chan->msi));
|
|
|
|
|
|
|
|
dev_vdbg(dev, "MSI:\t\tChannel %s[%u] addr=0x%.8x%.8x, data=0x%.8x\n",
|
2023-01-14 01:13:59 +08:00
|
|
|
chan->dir == EDMA_DIR_WRITE ? "write" : "read", chan->id,
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
chan->msi.address_hi, chan->msi.address_lo,
|
|
|
|
chan->msi.data);
|
|
|
|
|
|
|
|
chan->vc.desc_free = vchan_free_desc;
|
2023-01-14 01:14:02 +08:00
|
|
|
chan->vc.chan.private = chan->dir == EDMA_DIR_WRITE ?
|
|
|
|
&dw->chip->dt_region_wr[chan->id] :
|
|
|
|
&dw->chip->dt_region_rd[chan->id];
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
2023-01-14 01:14:02 +08:00
|
|
|
vchan_init(&chan->vc, dma);
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
|
|
|
dw_edma_v0_core_device_config(chan);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set DMA channel capabilities */
|
|
|
|
dma_cap_zero(dma->cap_mask);
|
|
|
|
dma_cap_set(DMA_SLAVE, dma->cap_mask);
|
|
|
|
dma_cap_set(DMA_CYCLIC, dma->cap_mask);
|
|
|
|
dma_cap_set(DMA_PRIVATE, dma->cap_mask);
|
2021-02-19 03:04:00 +08:00
|
|
|
dma_cap_set(DMA_INTERLEAVE, dma->cap_mask);
|
2023-01-14 01:13:59 +08:00
|
|
|
dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
dma->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
|
|
|
|
dma->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
|
|
|
|
dma->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
|
|
|
|
|
|
|
|
/* Set DMA channel callbacks */
|
|
|
|
dma->dev = chip->dev;
|
|
|
|
dma->device_alloc_chan_resources = dw_edma_alloc_chan_resources;
|
|
|
|
dma->device_free_chan_resources = dw_edma_free_chan_resources;
|
2023-01-14 01:13:59 +08:00
|
|
|
dma->device_caps = dw_edma_device_caps;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
dma->device_config = dw_edma_device_config;
|
|
|
|
dma->device_pause = dw_edma_device_pause;
|
|
|
|
dma->device_resume = dw_edma_device_resume;
|
|
|
|
dma->device_terminate_all = dw_edma_device_terminate_all;
|
|
|
|
dma->device_issue_pending = dw_edma_device_issue_pending;
|
|
|
|
dma->device_tx_status = dw_edma_device_tx_status;
|
|
|
|
dma->device_prep_slave_sg = dw_edma_device_prep_slave_sg;
|
|
|
|
dma->device_prep_dma_cyclic = dw_edma_device_prep_dma_cyclic;
|
2021-02-19 03:04:00 +08:00
|
|
|
dma->device_prep_interleaved_dma = dw_edma_device_prep_interleaved_dma;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
|
|
|
dma_set_max_seg_size(dma->dev, U32_MAX);
|
|
|
|
|
|
|
|
/* Register DMA device */
|
2023-01-14 01:13:59 +08:00
|
|
|
return dma_async_device_register(dma);
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void dw_edma_dec_irq_alloc(int *nr_irqs, u32 *alloc, u16 cnt)
|
|
|
|
{
|
|
|
|
if (*nr_irqs && *alloc < cnt) {
|
|
|
|
(*alloc)++;
|
|
|
|
(*nr_irqs)--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void dw_edma_add_irq_mask(u32 *mask, u32 alloc, u16 cnt)
|
|
|
|
{
|
|
|
|
while (*mask * alloc < cnt)
|
|
|
|
(*mask)++;
|
|
|
|
}
|
|
|
|
|
2022-05-24 23:21:53 +08:00
|
|
|
static int dw_edma_irq_request(struct dw_edma *dw,
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
u32 *wr_alloc, u32 *rd_alloc)
|
|
|
|
{
|
2022-05-24 23:21:53 +08:00
|
|
|
struct dw_edma_chip *chip = dw->chip;
|
|
|
|
struct device *dev = dw->chip->dev;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
u32 wr_mask = 1;
|
|
|
|
u32 rd_mask = 1;
|
|
|
|
int i, err = 0;
|
|
|
|
u32 ch_cnt;
|
2020-04-23 09:58:21 +08:00
|
|
|
int irq;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
|
|
|
ch_cnt = dw->wr_ch_cnt + dw->rd_ch_cnt;
|
|
|
|
|
2022-05-24 23:21:53 +08:00
|
|
|
if (chip->nr_irqs < 1 || !chip->ops->irq_vector)
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
return -EINVAL;
|
|
|
|
|
2022-05-24 23:21:53 +08:00
|
|
|
dw->irq = devm_kcalloc(dev, chip->nr_irqs, sizeof(*dw->irq), GFP_KERNEL);
|
|
|
|
if (!dw->irq)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
if (chip->nr_irqs == 1) {
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
/* Common IRQ shared among all channels */
|
2022-05-24 23:21:53 +08:00
|
|
|
irq = chip->ops->irq_vector(dev, 0);
|
2020-04-23 09:58:21 +08:00
|
|
|
err = request_irq(irq, dw_edma_interrupt_common,
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
IRQF_SHARED, dw->name, &dw->irq[0]);
|
|
|
|
if (err) {
|
|
|
|
dw->nr_irqs = 0;
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2020-04-23 09:58:21 +08:00
|
|
|
if (irq_get_msi_desc(irq))
|
|
|
|
get_cached_msi_msg(irq, &dw->irq[0].msi);
|
2022-05-24 23:21:53 +08:00
|
|
|
|
|
|
|
dw->nr_irqs = 1;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
} else {
|
|
|
|
/* Distribute IRQs equally among all channels */
|
2022-05-24 23:21:53 +08:00
|
|
|
int tmp = chip->nr_irqs;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
|
|
|
while (tmp && (*wr_alloc + *rd_alloc) < ch_cnt) {
|
|
|
|
dw_edma_dec_irq_alloc(&tmp, wr_alloc, dw->wr_ch_cnt);
|
|
|
|
dw_edma_dec_irq_alloc(&tmp, rd_alloc, dw->rd_ch_cnt);
|
|
|
|
}
|
|
|
|
|
|
|
|
dw_edma_add_irq_mask(&wr_mask, *wr_alloc, dw->wr_ch_cnt);
|
|
|
|
dw_edma_add_irq_mask(&rd_mask, *rd_alloc, dw->rd_ch_cnt);
|
|
|
|
|
|
|
|
for (i = 0; i < (*wr_alloc + *rd_alloc); i++) {
|
2022-05-24 23:21:53 +08:00
|
|
|
irq = chip->ops->irq_vector(dev, i);
|
2020-04-23 09:58:21 +08:00
|
|
|
err = request_irq(irq,
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
i < *wr_alloc ?
|
|
|
|
dw_edma_interrupt_write :
|
|
|
|
dw_edma_interrupt_read,
|
|
|
|
IRQF_SHARED, dw->name,
|
|
|
|
&dw->irq[i]);
|
2023-01-14 01:13:44 +08:00
|
|
|
if (err)
|
|
|
|
goto err_irq_free;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
2020-04-23 09:58:21 +08:00
|
|
|
if (irq_get_msi_desc(irq))
|
|
|
|
get_cached_msi_msg(irq, &dw->irq[i].msi);
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
dw->nr_irqs = i;
|
|
|
|
}
|
|
|
|
|
2023-01-14 01:13:44 +08:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
err_irq_free:
|
|
|
|
for (i--; i >= 0; i--) {
|
|
|
|
irq = chip->ops->irq_vector(dev, i);
|
|
|
|
free_irq(irq, &dw->irq[i]);
|
|
|
|
}
|
|
|
|
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
int dw_edma_probe(struct dw_edma_chip *chip)
|
|
|
|
{
|
2020-04-16 01:27:09 +08:00
|
|
|
struct device *dev;
|
|
|
|
struct dw_edma *dw;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
u32 wr_alloc = 0;
|
|
|
|
u32 rd_alloc = 0;
|
|
|
|
int i, err;
|
|
|
|
|
2020-04-16 01:27:09 +08:00
|
|
|
if (!chip)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
dev = chip->dev;
|
2022-05-24 23:21:53 +08:00
|
|
|
if (!dev || !chip->ops)
|
2020-04-16 01:27:09 +08:00
|
|
|
return -EINVAL;
|
|
|
|
|
2022-05-24 23:21:53 +08:00
|
|
|
dw = devm_kzalloc(dev, sizeof(*dw), GFP_KERNEL);
|
|
|
|
if (!dw)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
dw->chip = chip;
|
2020-04-16 01:27:09 +08:00
|
|
|
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
raw_spin_lock_init(&dw->lock);
|
|
|
|
|
2022-05-24 23:21:55 +08:00
|
|
|
dw->wr_ch_cnt = min_t(u16, chip->ll_wr_cnt,
|
2021-02-19 03:04:01 +08:00
|
|
|
dw_edma_v0_core_ch_count(dw, EDMA_DIR_WRITE));
|
|
|
|
dw->wr_ch_cnt = min_t(u16, dw->wr_ch_cnt, EDMA_MAX_WR_CH);
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
2022-05-24 23:21:55 +08:00
|
|
|
dw->rd_ch_cnt = min_t(u16, chip->ll_rd_cnt,
|
2021-02-19 03:04:01 +08:00
|
|
|
dw_edma_v0_core_ch_count(dw, EDMA_DIR_READ));
|
|
|
|
dw->rd_ch_cnt = min_t(u16, dw->rd_ch_cnt, EDMA_MAX_RD_CH);
|
|
|
|
|
|
|
|
if (!dw->wr_ch_cnt && !dw->rd_ch_cnt)
|
|
|
|
return -EINVAL;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
|
|
|
dev_vdbg(dev, "Channels:\twrite=%d, read=%d\n",
|
|
|
|
dw->wr_ch_cnt, dw->rd_ch_cnt);
|
|
|
|
|
|
|
|
/* Allocate channels */
|
|
|
|
dw->chan = devm_kcalloc(dev, dw->wr_ch_cnt + dw->rd_ch_cnt,
|
|
|
|
sizeof(*dw->chan), GFP_KERNEL);
|
|
|
|
if (!dw->chan)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
2023-01-14 01:14:03 +08:00
|
|
|
snprintf(dw->name, sizeof(dw->name), "dw-edma-core:%s",
|
|
|
|
dev_name(chip->dev));
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
|
|
|
/* Disable eDMA, only to establish the ideal initial conditions */
|
|
|
|
dw_edma_v0_core_off(dw);
|
|
|
|
|
|
|
|
/* Request IRQs */
|
2022-05-24 23:21:53 +08:00
|
|
|
err = dw_edma_irq_request(dw, &wr_alloc, &rd_alloc);
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
2023-01-14 01:13:59 +08:00
|
|
|
/* Setup write/read channels */
|
|
|
|
err = dw_edma_channel_setup(dw, wr_alloc, rd_alloc);
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
if (err)
|
|
|
|
goto err_irq_free;
|
|
|
|
|
|
|
|
/* Turn debugfs on */
|
2022-05-24 23:21:53 +08:00
|
|
|
dw_edma_v0_core_debugfs_on(dw);
|
|
|
|
|
|
|
|
chip->dw = dw;
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err_irq_free:
|
|
|
|
for (i = (dw->nr_irqs - 1); i >= 0; i--)
|
2022-05-24 23:21:53 +08:00
|
|
|
free_irq(chip->ops->irq_vector(dev, i), &dw->irq[i]);
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(dw_edma_probe);
|
|
|
|
|
|
|
|
int dw_edma_remove(struct dw_edma_chip *chip)
|
|
|
|
{
|
|
|
|
struct dw_edma_chan *chan, *_chan;
|
|
|
|
struct device *dev = chip->dev;
|
|
|
|
struct dw_edma *dw = chip->dw;
|
|
|
|
int i;
|
|
|
|
|
2023-01-14 01:14:04 +08:00
|
|
|
/* Skip removal if no private data found */
|
|
|
|
if (!dw)
|
|
|
|
return -ENODEV;
|
|
|
|
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
/* Disable eDMA */
|
|
|
|
dw_edma_v0_core_off(dw);
|
|
|
|
|
|
|
|
/* Free irqs */
|
|
|
|
for (i = (dw->nr_irqs - 1); i >= 0; i--)
|
2022-05-24 23:21:53 +08:00
|
|
|
free_irq(chip->ops->irq_vector(dev, i), &dw->irq[i]);
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
|
2021-02-19 03:04:06 +08:00
|
|
|
/* Deregister eDMA device */
|
2023-01-14 01:13:59 +08:00
|
|
|
dma_async_device_unregister(&dw->dma);
|
|
|
|
list_for_each_entry_safe(chan, _chan, &dw->dma.channels,
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
vc.chan.device_node) {
|
|
|
|
tasklet_kill(&chan->vc.task);
|
2021-02-19 03:04:06 +08:00
|
|
|
list_del(&chan->vc.chan.device_node);
|
dmaengine: Add Synopsys eDMA IP core driver
Add Synopsys PCIe Endpoint eDMA IP core driver to kernel.
This IP is generally distributed with Synopsys PCIe Endpoint IP (depends
of the use and licensing agreement).
This core driver, initializes and configures the eDMA IP using vma-helpers
functions and dma-engine subsystem.
This driver can be compile as built-in or external module in kernel.
To enable this driver just select DW_EDMA option in kernel configuration,
however it requires and selects automatically DMA_ENGINE and
DMA_VIRTUAL_CHANNELS option too.
In order to transfer data from point A to B as fast as possible this IP
requires a dedicated memory space containing linked list of elements.
All elements of this linked list are continuous and each one describes a
data transfer (source and destination addresses, length and a control
variable).
For the sake of simplicity, lets assume a memory space for channel write
0 which allows about 42 elements.
+---------+
| Desc #0 |-+
+---------+ |
V
+----------+
| Chunk #0 |-+
| CB = 1 | | +----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #0 |->| ... |->| Burst #41 |->| llp |
| +----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #1 |-+
| CB = 0 | | +-----------+ +-----+ +-----------+ +-----+
+----------+ +->| Burst #42 |->| ... |->| Burst #83 |->| llp |
| +-----------+ +-----+ +-----------+ +-----+
V
+----------+
| Chunk #2 |-+
| CB = 1 | | +-----------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #84 |->| ... |->| Burst #125 |->| llp |
| +-----------+ +-----+ +------------+ +-----+
V
+----------+
| Chunk #3 |-+
| CB = 0 | | +------------+ +-----+ +------------+ +-----+
+----------+ +->| Burst #126 |->| ... |->| Burst #129 |->| llp |
+------------+ +-----+ +------------+ +-----+
Legend:
- Linked list, also know as Chunk
- Linked list element*, also know as Burst *CB*, also know as Change Bit,
it's a control bit (and typically is toggled) that allows to easily
identify and differentiate between the current linked list and the
previous or the next one.
- LLP, is a special element that indicates the end of the linked list
element stream also informs that the next CB should be toggle
On every last Burst of the Chunk (Burst #41, Burst #83, Burst #125 or
even Burst #129) is set some flags on their control variable (RIE and
LIE bits) that will trigger the send of "done" interruption.
On the interruptions callback, is decided whether to recycle the linked
list memory space by writing a new set of Bursts elements (if still
exists Chunks to transfer) or is considered completed (if there is no
Chunks available to transfer).
On scatter-gather transfer mode, the client will submit a scatter-gather
list of n (on this case 130) elements, that will be divide in multiple
Chunks, each Chunk will have (on this case 42) a limited number of
Bursts and after transferring all Bursts, an interrupt will be
triggered, which will allow to recycle the all linked list dedicated
memory again with the new information relative to the next Chunk and
respective Burst associated and repeat the whole cycle again.
On cyclic transfer mode, the client will submit a buffer pointer, length
of it and number of repetitions, in this case each burst will correspond
directly to each repetition.
Each Burst can describes a data transfer from point A(source) to point
B(destination) with a length that can be from 1 byte up to 4 GB. Since
dedicated the memory space where the linked list will reside is limited,
the whole n burst elements will be organized in several Chunks, that
will be used later to recycle the dedicated memory space to initiate a
new sequence of data transfers.
The whole transfer is considered has completed when it was transferred
all bursts.
Currently this IP has a set well-known register map, which includes
support for legacy and unroll modes. Legacy mode is version of this
register map that has multiplexer register that allows to switch
registers between all write and read channels and the unroll modes
repeats all write and read channels registers with an offset between
them. This register map is called v0.
The IP team is creating a new register map more suitable to the latest
PCIe features, that very likely will change the map register, which this
version will be called v1. As soon as this new version is released by
the IP team the support for this version in be included on this driver.
According to the logic, patches 1, 2 and 3 should be squashed into 1
unique patch, but for the sake of simplicity of review, it was divided
in this 3 patches files.
Signed-off-by: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
Cc: Vinod Koul <vkoul@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Joao Pinto <jpinto@synopsys.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2019-06-04 21:29:22 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(dw_edma_remove);
|
|
|
|
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
|
|
MODULE_DESCRIPTION("Synopsys DesignWare eDMA controller core driver");
|
|
|
|
MODULE_AUTHOR("Gustavo Pimentel <gustavo.pimentel@synopsys.com>");
|