OpenCloudOS-Kernel/drivers/pinctrl/intel/pinctrl-intel.h

255 lines
8.0 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Core pinctrl/GPIO driver for Intel GPIO controllers
*
* Copyright (C) 2015, Intel Corporation
* Authors: Mathias Nyman <mathias.nyman@linux.intel.com>
* Mika Westerberg <mika.westerberg@linux.intel.com>
*/
#ifndef PINCTRL_INTEL_H
#define PINCTRL_INTEL_H
#include <linux/gpio/driver.h>
#include <linux/irq.h>
#include <linux/pm.h>
#include <linux/spinlock_types.h>
struct pinctrl_pin_desc;
struct platform_device;
struct device;
/**
* struct intel_pingroup - Description about group of pins
* @name: Name of the groups
* @pins: All pins in this group
* @npins: Number of pins in this groups
* @mode: Native mode in which the group is muxed out @pins. Used if @modes
* is %NULL.
* @modes: If not %NULL this will hold mode for each pin in @pins
*/
struct intel_pingroup {
const char *name;
const unsigned int *pins;
size_t npins;
unsigned short mode;
const unsigned int *modes;
};
/**
* struct intel_function - Description about a function
* @name: Name of the function
* @groups: An array of groups for this function
* @ngroups: Number of groups in @groups
*/
struct intel_function {
const char *name;
const char * const *groups;
size_t ngroups;
};
/**
* struct intel_padgroup - Hardware pad group information
* @reg_num: GPI_IS register number
* @base: Starting pin of this group
* @size: Size of this group (maximum is 32).
* @gpio_base: Starting GPIO base of this group
* @padown_num: PAD_OWN register number (assigned by the core driver)
*
* If pad groups of a community are not the same size, use this structure
* to specify them.
*/
struct intel_padgroup {
unsigned int reg_num;
unsigned int base;
unsigned int size;
int gpio_base;
unsigned int padown_num;
};
/**
* enum - Special treatment for GPIO base in pad group
*
* @INTEL_GPIO_BASE_ZERO: force GPIO base to be 0
* @INTEL_GPIO_BASE_NOMAP: no GPIO mapping should be created
* @INTEL_GPIO_BASE_MATCH: matches with starting pin number
*/
enum {
INTEL_GPIO_BASE_ZERO = -2,
INTEL_GPIO_BASE_NOMAP = -1,
INTEL_GPIO_BASE_MATCH = 0,
};
/**
* struct intel_community - Intel pin community description
* @barno: MMIO BAR number where registers for this community reside
* @padown_offset: Register offset of PAD_OWN register from @regs. If %0
* then there is no support for owner.
* @padcfglock_offset: Register offset of PADCFGLOCK from @regs. If %0 then
* locking is not supported.
* @hostown_offset: Register offset of HOSTSW_OWN from @regs. If %0 then it
* is assumed that the host owns the pin (rather than
* ACPI).
* @is_offset: Register offset of GPI_IS from @regs.
* @ie_offset: Register offset of GPI_IE from @regs.
* @features: Additional features supported by the hardware
* @pin_base: Starting pin of pins in this community
* @npins: Number of pins in this community
* @gpp_size: Maximum number of pads in each group, such as PADCFGLOCK,
* HOSTSW_OWN, GPI_IS, GPI_IE. Used when @gpps is %NULL.
* @gpp_num_padown_regs: Number of pad registers each pad group consumes at
* minimum. Use %0 if the number of registers can be
* determined by the size of the group.
* @gpps: Pad groups if the controller has variable size pad groups
* @ngpps: Number of pad groups in this community
* @pad_map: Optional non-linear mapping of the pads
* @nirqs: Optional total number of IRQs this community can generate
* @acpi_space_id: Optional address space ID for ACPI OpRegion handler
* @regs: Community specific common registers (reserved for core driver)
* @pad_regs: Community specific pad registers (reserved for core driver)
*
* In some of Intel GPIO host controllers this driver supports each pad group
* is of equal size (except the last one). In that case the driver can just
* fill in @gpp_size field and let the core driver to handle the rest. If
* the controller has pad groups of variable size the client driver can
* pass custom @gpps and @ngpps instead.
*/
struct intel_community {
unsigned int barno;
unsigned int padown_offset;
unsigned int padcfglock_offset;
unsigned int hostown_offset;
unsigned int is_offset;
unsigned int ie_offset;
unsigned int features;
unsigned int pin_base;
size_t npins;
unsigned int gpp_size;
unsigned int gpp_num_padown_regs;
const struct intel_padgroup *gpps;
size_t ngpps;
const unsigned int *pad_map;
unsigned short nirqs;
unsigned short acpi_space_id;
/* Reserved for the core driver */
void __iomem *regs;
void __iomem *pad_regs;
};
/* Additional features supported by the hardware */
#define PINCTRL_FEATURE_DEBOUNCE BIT(0)
#define PINCTRL_FEATURE_1K_PD BIT(1)
/**
* PIN_GROUP - Declare a pin group
* @n: Name of the group
* @p: An array of pins this group consists
* @m: Mode which the pins are put when this group is active. Can be either
* a single integer or an array of integers in which case mode is per
* pin.
*/
#define PIN_GROUP(n, p, m) \
{ \
.name = (n), \
.pins = (p), \
.npins = ARRAY_SIZE((p)), \
.mode = __builtin_choose_expr( \
__builtin_constant_p((m)), (m), 0), \
.modes = __builtin_choose_expr( \
__builtin_constant_p((m)), NULL, (m)), \
}
#define FUNCTION(n, g) \
{ \
.name = (n), \
.groups = (g), \
.ngroups = ARRAY_SIZE((g)), \
}
/**
* struct intel_pinctrl_soc_data - Intel pin controller per-SoC configuration
* @uid: ACPI _UID for the probe driver use if needed
* @pins: Array if pins this pinctrl controls
* @npins: Number of pins in the array
* @groups: Array of pin groups
* @ngroups: Number of groups in the array
* @functions: Array of functions
* @nfunctions: Number of functions in the array
* @communities: Array of communities this pinctrl handles
* @ncommunities: Number of communities in the array
*
* The @communities is used as a template by the core driver. It will make
* copy of all communities and fill in rest of the information.
*/
struct intel_pinctrl_soc_data {
const char *uid;
const struct pinctrl_pin_desc *pins;
size_t npins;
const struct intel_pingroup *groups;
size_t ngroups;
const struct intel_function *functions;
size_t nfunctions;
const struct intel_community *communities;
size_t ncommunities;
};
const struct intel_pinctrl_soc_data *intel_pinctrl_get_soc_data(struct platform_device *pdev);
struct intel_pad_context;
struct intel_community_context;
/**
* struct intel_pinctrl_context - context to be saved during suspend-resume
* @pads: Opaque context per pad (driver dependent)
* @communities: Opaque context per community (driver dependent)
*/
struct intel_pinctrl_context {
struct intel_pad_context *pads;
struct intel_community_context *communities;
};
/**
* struct intel_pinctrl - Intel pinctrl private structure
* @dev: Pointer to the device structure
* @lock: Lock to serialize register access
* @pctldesc: Pin controller description
* @pctldev: Pointer to the pin controller device
* @chip: GPIO chip in this pin controller
* @irqchip: IRQ chip in this pin controller
* @soc: SoC/PCH specific pin configuration data
* @communities: All communities in this pin controller
* @ncommunities: Number of communities in this pin controller
* @context: Configuration saved over system sleep
* @irq: pinctrl/GPIO chip irq number
*/
struct intel_pinctrl {
struct device *dev;
raw_spinlock_t lock;
struct pinctrl_desc pctldesc;
struct pinctrl_dev *pctldev;
struct gpio_chip chip;
struct irq_chip irqchip;
const struct intel_pinctrl_soc_data *soc;
struct intel_community *communities;
size_t ncommunities;
struct intel_pinctrl_context context;
int irq;
};
int intel_pinctrl_probe_by_hid(struct platform_device *pdev);
int intel_pinctrl_probe_by_uid(struct platform_device *pdev);
#ifdef CONFIG_PM_SLEEP
int intel_pinctrl_suspend_noirq(struct device *dev);
int intel_pinctrl_resume_noirq(struct device *dev);
#endif
#define INTEL_PINCTRL_PM_OPS(_name) \
const struct dev_pm_ops _name = { \
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(intel_pinctrl_suspend_noirq, \
intel_pinctrl_resume_noirq) \
}
#endif /* PINCTRL_INTEL_H */