864 lines
21 KiB
C
864 lines
21 KiB
C
|
/*
|
||
|
* toshiba_acpi.c - Toshiba Laptop ACPI Extras
|
||
|
*
|
||
|
*
|
||
|
* Copyright (C) 2002-2004 John Belmonte
|
||
|
* Copyright (C) 2008 Philip Langdale
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
*
|
||
|
*
|
||
|
* The devolpment page for this driver is located at
|
||
|
* http://memebeam.org/toys/ToshibaAcpiDriver.
|
||
|
*
|
||
|
* Credits:
|
||
|
* Jonathan A. Buzzard - Toshiba HCI info, and critical tips on reverse
|
||
|
* engineering the Windows drivers
|
||
|
* Yasushi Nagato - changes for linux kernel 2.4 -> 2.5
|
||
|
* Rob Miller - TV out and hotkeys help
|
||
|
*
|
||
|
*
|
||
|
* TODO
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#define TOSHIBA_ACPI_VERSION "0.19"
|
||
|
#define PROC_INTERFACE_VERSION 1
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/proc_fs.h>
|
||
|
#include <linux/backlight.h>
|
||
|
#include <linux/platform_device.h>
|
||
|
#include <linux/rfkill.h>
|
||
|
#include <linux/input-polldev.h>
|
||
|
|
||
|
#include <asm/uaccess.h>
|
||
|
|
||
|
#include <acpi/acpi_drivers.h>
|
||
|
|
||
|
MODULE_AUTHOR("John Belmonte");
|
||
|
MODULE_DESCRIPTION("Toshiba Laptop ACPI Extras Driver");
|
||
|
MODULE_LICENSE("GPL");
|
||
|
|
||
|
#define MY_LOGPREFIX "toshiba_acpi: "
|
||
|
#define MY_ERR KERN_ERR MY_LOGPREFIX
|
||
|
#define MY_NOTICE KERN_NOTICE MY_LOGPREFIX
|
||
|
#define MY_INFO KERN_INFO MY_LOGPREFIX
|
||
|
|
||
|
/* Toshiba ACPI method paths */
|
||
|
#define METHOD_LCD_BRIGHTNESS "\\_SB_.PCI0.VGA_.LCD_._BCM"
|
||
|
#define METHOD_HCI_1 "\\_SB_.VALD.GHCI"
|
||
|
#define METHOD_HCI_2 "\\_SB_.VALZ.GHCI"
|
||
|
#define METHOD_VIDEO_OUT "\\_SB_.VALX.DSSX"
|
||
|
|
||
|
/* Toshiba HCI interface definitions
|
||
|
*
|
||
|
* HCI is Toshiba's "Hardware Control Interface" which is supposed to
|
||
|
* be uniform across all their models. Ideally we would just call
|
||
|
* dedicated ACPI methods instead of using this primitive interface.
|
||
|
* However the ACPI methods seem to be incomplete in some areas (for
|
||
|
* example they allow setting, but not reading, the LCD brightness value),
|
||
|
* so this is still useful.
|
||
|
*/
|
||
|
|
||
|
#define HCI_WORDS 6
|
||
|
|
||
|
/* operations */
|
||
|
#define HCI_SET 0xff00
|
||
|
#define HCI_GET 0xfe00
|
||
|
|
||
|
/* return codes */
|
||
|
#define HCI_SUCCESS 0x0000
|
||
|
#define HCI_FAILURE 0x1000
|
||
|
#define HCI_NOT_SUPPORTED 0x8000
|
||
|
#define HCI_EMPTY 0x8c00
|
||
|
|
||
|
/* registers */
|
||
|
#define HCI_FAN 0x0004
|
||
|
#define HCI_SYSTEM_EVENT 0x0016
|
||
|
#define HCI_VIDEO_OUT 0x001c
|
||
|
#define HCI_HOTKEY_EVENT 0x001e
|
||
|
#define HCI_LCD_BRIGHTNESS 0x002a
|
||
|
#define HCI_WIRELESS 0x0056
|
||
|
|
||
|
/* field definitions */
|
||
|
#define HCI_LCD_BRIGHTNESS_BITS 3
|
||
|
#define HCI_LCD_BRIGHTNESS_SHIFT (16-HCI_LCD_BRIGHTNESS_BITS)
|
||
|
#define HCI_LCD_BRIGHTNESS_LEVELS (1 << HCI_LCD_BRIGHTNESS_BITS)
|
||
|
#define HCI_VIDEO_OUT_LCD 0x1
|
||
|
#define HCI_VIDEO_OUT_CRT 0x2
|
||
|
#define HCI_VIDEO_OUT_TV 0x4
|
||
|
#define HCI_WIRELESS_KILL_SWITCH 0x01
|
||
|
#define HCI_WIRELESS_BT_PRESENT 0x0f
|
||
|
#define HCI_WIRELESS_BT_ATTACH 0x40
|
||
|
#define HCI_WIRELESS_BT_POWER 0x80
|
||
|
|
||
|
static const struct acpi_device_id toshiba_device_ids[] = {
|
||
|
{"TOS6200", 0},
|
||
|
{"TOS6208", 0},
|
||
|
{"TOS1900", 0},
|
||
|
{"", 0},
|
||
|
};
|
||
|
MODULE_DEVICE_TABLE(acpi, toshiba_device_ids);
|
||
|
|
||
|
/* utility
|
||
|
*/
|
||
|
|
||
|
static __inline__ void _set_bit(u32 * word, u32 mask, int value)
|
||
|
{
|
||
|
*word = (*word & ~mask) | (mask * value);
|
||
|
}
|
||
|
|
||
|
/* acpi interface wrappers
|
||
|
*/
|
||
|
|
||
|
static int is_valid_acpi_path(const char *methodName)
|
||
|
{
|
||
|
acpi_handle handle;
|
||
|
acpi_status status;
|
||
|
|
||
|
status = acpi_get_handle(NULL, (char *)methodName, &handle);
|
||
|
return !ACPI_FAILURE(status);
|
||
|
}
|
||
|
|
||
|
static int write_acpi_int(const char *methodName, int val)
|
||
|
{
|
||
|
struct acpi_object_list params;
|
||
|
union acpi_object in_objs[1];
|
||
|
acpi_status status;
|
||
|
|
||
|
params.count = ARRAY_SIZE(in_objs);
|
||
|
params.pointer = in_objs;
|
||
|
in_objs[0].type = ACPI_TYPE_INTEGER;
|
||
|
in_objs[0].integer.value = val;
|
||
|
|
||
|
status = acpi_evaluate_object(NULL, (char *)methodName, ¶ms, NULL);
|
||
|
return (status == AE_OK);
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
static int read_acpi_int(const char *methodName, int *pVal)
|
||
|
{
|
||
|
struct acpi_buffer results;
|
||
|
union acpi_object out_objs[1];
|
||
|
acpi_status status;
|
||
|
|
||
|
results.length = sizeof(out_objs);
|
||
|
results.pointer = out_objs;
|
||
|
|
||
|
status = acpi_evaluate_object(0, (char *)methodName, 0, &results);
|
||
|
*pVal = out_objs[0].integer.value;
|
||
|
|
||
|
return (status == AE_OK) && (out_objs[0].type == ACPI_TYPE_INTEGER);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static const char *method_hci /*= 0*/ ;
|
||
|
|
||
|
/* Perform a raw HCI call. Here we don't care about input or output buffer
|
||
|
* format.
|
||
|
*/
|
||
|
static acpi_status hci_raw(const u32 in[HCI_WORDS], u32 out[HCI_WORDS])
|
||
|
{
|
||
|
struct acpi_object_list params;
|
||
|
union acpi_object in_objs[HCI_WORDS];
|
||
|
struct acpi_buffer results;
|
||
|
union acpi_object out_objs[HCI_WORDS + 1];
|
||
|
acpi_status status;
|
||
|
int i;
|
||
|
|
||
|
params.count = HCI_WORDS;
|
||
|
params.pointer = in_objs;
|
||
|
for (i = 0; i < HCI_WORDS; ++i) {
|
||
|
in_objs[i].type = ACPI_TYPE_INTEGER;
|
||
|
in_objs[i].integer.value = in[i];
|
||
|
}
|
||
|
|
||
|
results.length = sizeof(out_objs);
|
||
|
results.pointer = out_objs;
|
||
|
|
||
|
status = acpi_evaluate_object(NULL, (char *)method_hci, ¶ms,
|
||
|
&results);
|
||
|
if ((status == AE_OK) && (out_objs->package.count <= HCI_WORDS)) {
|
||
|
for (i = 0; i < out_objs->package.count; ++i) {
|
||
|
out[i] = out_objs->package.elements[i].integer.value;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/* common hci tasks (get or set one or two value)
|
||
|
*
|
||
|
* In addition to the ACPI status, the HCI system returns a result which
|
||
|
* may be useful (such as "not supported").
|
||
|
*/
|
||
|
|
||
|
static acpi_status hci_write1(u32 reg, u32 in1, u32 * result)
|
||
|
{
|
||
|
u32 in[HCI_WORDS] = { HCI_SET, reg, in1, 0, 0, 0 };
|
||
|
u32 out[HCI_WORDS];
|
||
|
acpi_status status = hci_raw(in, out);
|
||
|
*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
static acpi_status hci_read1(u32 reg, u32 * out1, u32 * result)
|
||
|
{
|
||
|
u32 in[HCI_WORDS] = { HCI_GET, reg, 0, 0, 0, 0 };
|
||
|
u32 out[HCI_WORDS];
|
||
|
acpi_status status = hci_raw(in, out);
|
||
|
*out1 = out[2];
|
||
|
*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
static acpi_status hci_write2(u32 reg, u32 in1, u32 in2, u32 *result)
|
||
|
{
|
||
|
u32 in[HCI_WORDS] = { HCI_SET, reg, in1, in2, 0, 0 };
|
||
|
u32 out[HCI_WORDS];
|
||
|
acpi_status status = hci_raw(in, out);
|
||
|
*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
static acpi_status hci_read2(u32 reg, u32 *out1, u32 *out2, u32 *result)
|
||
|
{
|
||
|
u32 in[HCI_WORDS] = { HCI_GET, reg, *out1, *out2, 0, 0 };
|
||
|
u32 out[HCI_WORDS];
|
||
|
acpi_status status = hci_raw(in, out);
|
||
|
*out1 = out[2];
|
||
|
*out2 = out[3];
|
||
|
*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
struct toshiba_acpi_dev {
|
||
|
struct platform_device *p_dev;
|
||
|
struct rfkill *rfk_dev;
|
||
|
struct input_polled_dev *poll_dev;
|
||
|
|
||
|
const char *bt_name;
|
||
|
const char *rfk_name;
|
||
|
|
||
|
bool last_rfk_state;
|
||
|
|
||
|
struct mutex mutex;
|
||
|
};
|
||
|
|
||
|
static struct toshiba_acpi_dev toshiba_acpi = {
|
||
|
.bt_name = "Toshiba Bluetooth",
|
||
|
.rfk_name = "Toshiba RFKill Switch",
|
||
|
.last_rfk_state = false,
|
||
|
};
|
||
|
|
||
|
/* Bluetooth rfkill handlers */
|
||
|
|
||
|
static u32 hci_get_bt_present(bool *present)
|
||
|
{
|
||
|
u32 hci_result;
|
||
|
u32 value, value2;
|
||
|
|
||
|
value = 0;
|
||
|
value2 = 0;
|
||
|
hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
|
||
|
if (hci_result == HCI_SUCCESS)
|
||
|
*present = (value & HCI_WIRELESS_BT_PRESENT) ? true : false;
|
||
|
|
||
|
return hci_result;
|
||
|
}
|
||
|
|
||
|
static u32 hci_get_bt_on(bool *on)
|
||
|
{
|
||
|
u32 hci_result;
|
||
|
u32 value, value2;
|
||
|
|
||
|
value = 0;
|
||
|
value2 = 0x0001;
|
||
|
hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
|
||
|
if (hci_result == HCI_SUCCESS)
|
||
|
*on = (value & HCI_WIRELESS_BT_POWER) &&
|
||
|
(value & HCI_WIRELESS_BT_ATTACH);
|
||
|
|
||
|
return hci_result;
|
||
|
}
|
||
|
|
||
|
static u32 hci_get_radio_state(bool *radio_state)
|
||
|
{
|
||
|
u32 hci_result;
|
||
|
u32 value, value2;
|
||
|
|
||
|
value = 0;
|
||
|
value2 = 0x0001;
|
||
|
hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
|
||
|
|
||
|
*radio_state = value & HCI_WIRELESS_KILL_SWITCH;
|
||
|
return hci_result;
|
||
|
}
|
||
|
|
||
|
static int bt_rfkill_toggle_radio(void *data, enum rfkill_state state)
|
||
|
{
|
||
|
u32 result1, result2;
|
||
|
u32 value;
|
||
|
bool radio_state;
|
||
|
struct toshiba_acpi_dev *dev = data;
|
||
|
|
||
|
value = (state == RFKILL_STATE_UNBLOCKED);
|
||
|
|
||
|
if (hci_get_radio_state(&radio_state) != HCI_SUCCESS)
|
||
|
return -EFAULT;
|
||
|
|
||
|
switch (state) {
|
||
|
case RFKILL_STATE_UNBLOCKED:
|
||
|
if (!radio_state)
|
||
|
return -EPERM;
|
||
|
break;
|
||
|
case RFKILL_STATE_SOFT_BLOCKED:
|
||
|
break;
|
||
|
default:
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
mutex_lock(&dev->mutex);
|
||
|
hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_POWER, &result1);
|
||
|
hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_ATTACH, &result2);
|
||
|
mutex_unlock(&dev->mutex);
|
||
|
|
||
|
if (result1 != HCI_SUCCESS || result2 != HCI_SUCCESS)
|
||
|
return -EFAULT;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void bt_poll_rfkill(struct input_polled_dev *poll_dev)
|
||
|
{
|
||
|
bool state_changed;
|
||
|
bool new_rfk_state;
|
||
|
bool value;
|
||
|
u32 hci_result;
|
||
|
struct toshiba_acpi_dev *dev = poll_dev->private;
|
||
|
|
||
|
hci_result = hci_get_radio_state(&value);
|
||
|
if (hci_result != HCI_SUCCESS)
|
||
|
return; /* Can't do anything useful */
|
||
|
|
||
|
new_rfk_state = value;
|
||
|
|
||
|
mutex_lock(&dev->mutex);
|
||
|
state_changed = new_rfk_state != dev->last_rfk_state;
|
||
|
dev->last_rfk_state = new_rfk_state;
|
||
|
mutex_unlock(&dev->mutex);
|
||
|
|
||
|
if (unlikely(state_changed)) {
|
||
|
rfkill_force_state(dev->rfk_dev,
|
||
|
new_rfk_state ?
|
||
|
RFKILL_STATE_SOFT_BLOCKED :
|
||
|
RFKILL_STATE_HARD_BLOCKED);
|
||
|
input_report_switch(poll_dev->input, SW_RFKILL_ALL,
|
||
|
new_rfk_state);
|
||
|
input_sync(poll_dev->input);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static struct proc_dir_entry *toshiba_proc_dir /*= 0*/ ;
|
||
|
static struct backlight_device *toshiba_backlight_device;
|
||
|
static int force_fan;
|
||
|
static int last_key_event;
|
||
|
static int key_event_valid;
|
||
|
|
||
|
typedef struct _ProcItem {
|
||
|
const char *name;
|
||
|
char *(*read_func) (char *);
|
||
|
unsigned long (*write_func) (const char *, unsigned long);
|
||
|
} ProcItem;
|
||
|
|
||
|
/* proc file handlers
|
||
|
*/
|
||
|
|
||
|
static int
|
||
|
dispatch_read(char *page, char **start, off_t off, int count, int *eof,
|
||
|
ProcItem * item)
|
||
|
{
|
||
|
char *p = page;
|
||
|
int len;
|
||
|
|
||
|
if (off == 0)
|
||
|
p = item->read_func(p);
|
||
|
|
||
|
/* ISSUE: I don't understand this code */
|
||
|
len = (p - page);
|
||
|
if (len <= off + count)
|
||
|
*eof = 1;
|
||
|
*start = page + off;
|
||
|
len -= off;
|
||
|
if (len > count)
|
||
|
len = count;
|
||
|
if (len < 0)
|
||
|
len = 0;
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
dispatch_write(struct file *file, const char __user * buffer,
|
||
|
unsigned long count, ProcItem * item)
|
||
|
{
|
||
|
int result;
|
||
|
char *tmp_buffer;
|
||
|
|
||
|
/* Arg buffer points to userspace memory, which can't be accessed
|
||
|
* directly. Since we're making a copy, zero-terminate the
|
||
|
* destination so that sscanf can be used on it safely.
|
||
|
*/
|
||
|
tmp_buffer = kmalloc(count + 1, GFP_KERNEL);
|
||
|
if (!tmp_buffer)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
if (copy_from_user(tmp_buffer, buffer, count)) {
|
||
|
result = -EFAULT;
|
||
|
} else {
|
||
|
tmp_buffer[count] = 0;
|
||
|
result = item->write_func(tmp_buffer, count);
|
||
|
}
|
||
|
kfree(tmp_buffer);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static int get_lcd(struct backlight_device *bd)
|
||
|
{
|
||
|
u32 hci_result;
|
||
|
u32 value;
|
||
|
|
||
|
hci_read1(HCI_LCD_BRIGHTNESS, &value, &hci_result);
|
||
|
if (hci_result == HCI_SUCCESS) {
|
||
|
return (value >> HCI_LCD_BRIGHTNESS_SHIFT);
|
||
|
} else
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
|
||
|
static char *read_lcd(char *p)
|
||
|
{
|
||
|
int value = get_lcd(NULL);
|
||
|
|
||
|
if (value >= 0) {
|
||
|
p += sprintf(p, "brightness: %d\n", value);
|
||
|
p += sprintf(p, "brightness_levels: %d\n",
|
||
|
HCI_LCD_BRIGHTNESS_LEVELS);
|
||
|
} else {
|
||
|
printk(MY_ERR "Error reading LCD brightness\n");
|
||
|
}
|
||
|
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
static int set_lcd(int value)
|
||
|
{
|
||
|
u32 hci_result;
|
||
|
|
||
|
value = value << HCI_LCD_BRIGHTNESS_SHIFT;
|
||
|
hci_write1(HCI_LCD_BRIGHTNESS, value, &hci_result);
|
||
|
if (hci_result != HCI_SUCCESS)
|
||
|
return -EFAULT;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int set_lcd_status(struct backlight_device *bd)
|
||
|
{
|
||
|
return set_lcd(bd->props.brightness);
|
||
|
}
|
||
|
|
||
|
static unsigned long write_lcd(const char *buffer, unsigned long count)
|
||
|
{
|
||
|
int value;
|
||
|
int ret;
|
||
|
|
||
|
if (sscanf(buffer, " brightness : %i", &value) == 1 &&
|
||
|
value >= 0 && value < HCI_LCD_BRIGHTNESS_LEVELS) {
|
||
|
ret = set_lcd(value);
|
||
|
if (ret == 0)
|
||
|
ret = count;
|
||
|
} else {
|
||
|
ret = -EINVAL;
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static char *read_video(char *p)
|
||
|
{
|
||
|
u32 hci_result;
|
||
|
u32 value;
|
||
|
|
||
|
hci_read1(HCI_VIDEO_OUT, &value, &hci_result);
|
||
|
if (hci_result == HCI_SUCCESS) {
|
||
|
int is_lcd = (value & HCI_VIDEO_OUT_LCD) ? 1 : 0;
|
||
|
int is_crt = (value & HCI_VIDEO_OUT_CRT) ? 1 : 0;
|
||
|
int is_tv = (value & HCI_VIDEO_OUT_TV) ? 1 : 0;
|
||
|
p += sprintf(p, "lcd_out: %d\n", is_lcd);
|
||
|
p += sprintf(p, "crt_out: %d\n", is_crt);
|
||
|
p += sprintf(p, "tv_out: %d\n", is_tv);
|
||
|
} else {
|
||
|
printk(MY_ERR "Error reading video out status\n");
|
||
|
}
|
||
|
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
static unsigned long write_video(const char *buffer, unsigned long count)
|
||
|
{
|
||
|
int value;
|
||
|
int remain = count;
|
||
|
int lcd_out = -1;
|
||
|
int crt_out = -1;
|
||
|
int tv_out = -1;
|
||
|
u32 hci_result;
|
||
|
u32 video_out;
|
||
|
|
||
|
/* scan expression. Multiple expressions may be delimited with ;
|
||
|
*
|
||
|
* NOTE: to keep scanning simple, invalid fields are ignored
|
||
|
*/
|
||
|
while (remain) {
|
||
|
if (sscanf(buffer, " lcd_out : %i", &value) == 1)
|
||
|
lcd_out = value & 1;
|
||
|
else if (sscanf(buffer, " crt_out : %i", &value) == 1)
|
||
|
crt_out = value & 1;
|
||
|
else if (sscanf(buffer, " tv_out : %i", &value) == 1)
|
||
|
tv_out = value & 1;
|
||
|
/* advance to one character past the next ; */
|
||
|
do {
|
||
|
++buffer;
|
||
|
--remain;
|
||
|
}
|
||
|
while (remain && *(buffer - 1) != ';');
|
||
|
}
|
||
|
|
||
|
hci_read1(HCI_VIDEO_OUT, &video_out, &hci_result);
|
||
|
if (hci_result == HCI_SUCCESS) {
|
||
|
unsigned int new_video_out = video_out;
|
||
|
if (lcd_out != -1)
|
||
|
_set_bit(&new_video_out, HCI_VIDEO_OUT_LCD, lcd_out);
|
||
|
if (crt_out != -1)
|
||
|
_set_bit(&new_video_out, HCI_VIDEO_OUT_CRT, crt_out);
|
||
|
if (tv_out != -1)
|
||
|
_set_bit(&new_video_out, HCI_VIDEO_OUT_TV, tv_out);
|
||
|
/* To avoid unnecessary video disruption, only write the new
|
||
|
* video setting if something changed. */
|
||
|
if (new_video_out != video_out)
|
||
|
write_acpi_int(METHOD_VIDEO_OUT, new_video_out);
|
||
|
} else {
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
static char *read_fan(char *p)
|
||
|
{
|
||
|
u32 hci_result;
|
||
|
u32 value;
|
||
|
|
||
|
hci_read1(HCI_FAN, &value, &hci_result);
|
||
|
if (hci_result == HCI_SUCCESS) {
|
||
|
p += sprintf(p, "running: %d\n", (value > 0));
|
||
|
p += sprintf(p, "force_on: %d\n", force_fan);
|
||
|
} else {
|
||
|
printk(MY_ERR "Error reading fan status\n");
|
||
|
}
|
||
|
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
static unsigned long write_fan(const char *buffer, unsigned long count)
|
||
|
{
|
||
|
int value;
|
||
|
u32 hci_result;
|
||
|
|
||
|
if (sscanf(buffer, " force_on : %i", &value) == 1 &&
|
||
|
value >= 0 && value <= 1) {
|
||
|
hci_write1(HCI_FAN, value, &hci_result);
|
||
|
if (hci_result != HCI_SUCCESS)
|
||
|
return -EFAULT;
|
||
|
else
|
||
|
force_fan = value;
|
||
|
} else {
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
static char *read_keys(char *p)
|
||
|
{
|
||
|
u32 hci_result;
|
||
|
u32 value;
|
||
|
|
||
|
if (!key_event_valid) {
|
||
|
hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result);
|
||
|
if (hci_result == HCI_SUCCESS) {
|
||
|
key_event_valid = 1;
|
||
|
last_key_event = value;
|
||
|
} else if (hci_result == HCI_EMPTY) {
|
||
|
/* better luck next time */
|
||
|
} else if (hci_result == HCI_NOT_SUPPORTED) {
|
||
|
/* This is a workaround for an unresolved issue on
|
||
|
* some machines where system events sporadically
|
||
|
* become disabled. */
|
||
|
hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
|
||
|
printk(MY_NOTICE "Re-enabled hotkeys\n");
|
||
|
} else {
|
||
|
printk(MY_ERR "Error reading hotkey status\n");
|
||
|
goto end;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
p += sprintf(p, "hotkey_ready: %d\n", key_event_valid);
|
||
|
p += sprintf(p, "hotkey: 0x%04x\n", last_key_event);
|
||
|
|
||
|
end:
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
static unsigned long write_keys(const char *buffer, unsigned long count)
|
||
|
{
|
||
|
int value;
|
||
|
|
||
|
if (sscanf(buffer, " hotkey_ready : %i", &value) == 1 && value == 0) {
|
||
|
key_event_valid = 0;
|
||
|
} else {
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
static char *read_version(char *p)
|
||
|
{
|
||
|
p += sprintf(p, "driver: %s\n", TOSHIBA_ACPI_VERSION);
|
||
|
p += sprintf(p, "proc_interface: %d\n",
|
||
|
PROC_INTERFACE_VERSION);
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
/* proc and module init
|
||
|
*/
|
||
|
|
||
|
#define PROC_TOSHIBA "toshiba"
|
||
|
|
||
|
static ProcItem proc_items[] = {
|
||
|
{"lcd", read_lcd, write_lcd},
|
||
|
{"video", read_video, write_video},
|
||
|
{"fan", read_fan, write_fan},
|
||
|
{"keys", read_keys, write_keys},
|
||
|
{"version", read_version, NULL},
|
||
|
{NULL}
|
||
|
};
|
||
|
|
||
|
static acpi_status __init add_device(void)
|
||
|
{
|
||
|
struct proc_dir_entry *proc;
|
||
|
ProcItem *item;
|
||
|
|
||
|
for (item = proc_items; item->name; ++item) {
|
||
|
proc = create_proc_read_entry(item->name,
|
||
|
S_IFREG | S_IRUGO | S_IWUSR,
|
||
|
toshiba_proc_dir,
|
||
|
(read_proc_t *) dispatch_read,
|
||
|
item);
|
||
|
if (proc)
|
||
|
proc->owner = THIS_MODULE;
|
||
|
if (proc && item->write_func)
|
||
|
proc->write_proc = (write_proc_t *) dispatch_write;
|
||
|
}
|
||
|
|
||
|
return AE_OK;
|
||
|
}
|
||
|
|
||
|
static acpi_status remove_device(void)
|
||
|
{
|
||
|
ProcItem *item;
|
||
|
|
||
|
for (item = proc_items; item->name; ++item)
|
||
|
remove_proc_entry(item->name, toshiba_proc_dir);
|
||
|
return AE_OK;
|
||
|
}
|
||
|
|
||
|
static struct backlight_ops toshiba_backlight_data = {
|
||
|
.get_brightness = get_lcd,
|
||
|
.update_status = set_lcd_status,
|
||
|
};
|
||
|
|
||
|
static void toshiba_acpi_exit(void)
|
||
|
{
|
||
|
if (toshiba_acpi.poll_dev) {
|
||
|
input_unregister_polled_device(toshiba_acpi.poll_dev);
|
||
|
input_free_polled_device(toshiba_acpi.poll_dev);
|
||
|
}
|
||
|
|
||
|
if (toshiba_acpi.rfk_dev)
|
||
|
rfkill_unregister(toshiba_acpi.rfk_dev);
|
||
|
|
||
|
if (toshiba_backlight_device)
|
||
|
backlight_device_unregister(toshiba_backlight_device);
|
||
|
|
||
|
remove_device();
|
||
|
|
||
|
if (toshiba_proc_dir)
|
||
|
remove_proc_entry(PROC_TOSHIBA, acpi_root_dir);
|
||
|
|
||
|
platform_device_unregister(toshiba_acpi.p_dev);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static int __init toshiba_acpi_init(void)
|
||
|
{
|
||
|
acpi_status status = AE_OK;
|
||
|
u32 hci_result;
|
||
|
bool bt_present;
|
||
|
bool bt_on;
|
||
|
bool radio_on;
|
||
|
int ret = 0;
|
||
|
|
||
|
if (acpi_disabled)
|
||
|
return -ENODEV;
|
||
|
|
||
|
/* simple device detection: look for HCI method */
|
||
|
if (is_valid_acpi_path(METHOD_HCI_1))
|
||
|
method_hci = METHOD_HCI_1;
|
||
|
else if (is_valid_acpi_path(METHOD_HCI_2))
|
||
|
method_hci = METHOD_HCI_2;
|
||
|
else
|
||
|
return -ENODEV;
|
||
|
|
||
|
printk(MY_INFO "Toshiba Laptop ACPI Extras version %s\n",
|
||
|
TOSHIBA_ACPI_VERSION);
|
||
|
printk(MY_INFO " HCI method: %s\n", method_hci);
|
||
|
|
||
|
mutex_init(&toshiba_acpi.mutex);
|
||
|
|
||
|
toshiba_acpi.p_dev = platform_device_register_simple("toshiba_acpi",
|
||
|
-1, NULL, 0);
|
||
|
if (IS_ERR(toshiba_acpi.p_dev)) {
|
||
|
ret = PTR_ERR(toshiba_acpi.p_dev);
|
||
|
printk(MY_ERR "unable to register platform device\n");
|
||
|
toshiba_acpi.p_dev = NULL;
|
||
|
toshiba_acpi_exit();
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
force_fan = 0;
|
||
|
key_event_valid = 0;
|
||
|
|
||
|
/* enable event fifo */
|
||
|
hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
|
||
|
|
||
|
toshiba_proc_dir = proc_mkdir(PROC_TOSHIBA, acpi_root_dir);
|
||
|
if (!toshiba_proc_dir) {
|
||
|
toshiba_acpi_exit();
|
||
|
return -ENODEV;
|
||
|
} else {
|
||
|
toshiba_proc_dir->owner = THIS_MODULE;
|
||
|
status = add_device();
|
||
|
if (ACPI_FAILURE(status)) {
|
||
|
toshiba_acpi_exit();
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
toshiba_backlight_device = backlight_device_register("toshiba",
|
||
|
&toshiba_acpi.p_dev->dev,
|
||
|
NULL,
|
||
|
&toshiba_backlight_data);
|
||
|
if (IS_ERR(toshiba_backlight_device)) {
|
||
|
ret = PTR_ERR(toshiba_backlight_device);
|
||
|
|
||
|
printk(KERN_ERR "Could not register toshiba backlight device\n");
|
||
|
toshiba_backlight_device = NULL;
|
||
|
toshiba_acpi_exit();
|
||
|
return ret;
|
||
|
}
|
||
|
toshiba_backlight_device->props.max_brightness = HCI_LCD_BRIGHTNESS_LEVELS - 1;
|
||
|
|
||
|
/* Register rfkill switch for Bluetooth */
|
||
|
if (hci_get_bt_present(&bt_present) == HCI_SUCCESS && bt_present) {
|
||
|
toshiba_acpi.rfk_dev = rfkill_allocate(&toshiba_acpi.p_dev->dev,
|
||
|
RFKILL_TYPE_BLUETOOTH);
|
||
|
if (!toshiba_acpi.rfk_dev) {
|
||
|
printk(MY_ERR "unable to allocate rfkill device\n");
|
||
|
toshiba_acpi_exit();
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
toshiba_acpi.rfk_dev->name = toshiba_acpi.bt_name;
|
||
|
toshiba_acpi.rfk_dev->toggle_radio = bt_rfkill_toggle_radio;
|
||
|
toshiba_acpi.rfk_dev->user_claim_unsupported = 1;
|
||
|
toshiba_acpi.rfk_dev->data = &toshiba_acpi;
|
||
|
|
||
|
if (hci_get_bt_on(&bt_on) == HCI_SUCCESS && bt_on) {
|
||
|
toshiba_acpi.rfk_dev->state = RFKILL_STATE_UNBLOCKED;
|
||
|
} else if (hci_get_radio_state(&radio_on) == HCI_SUCCESS &&
|
||
|
radio_on) {
|
||
|
toshiba_acpi.rfk_dev->state = RFKILL_STATE_SOFT_BLOCKED;
|
||
|
} else {
|
||
|
toshiba_acpi.rfk_dev->state = RFKILL_STATE_HARD_BLOCKED;
|
||
|
}
|
||
|
|
||
|
ret = rfkill_register(toshiba_acpi.rfk_dev);
|
||
|
if (ret) {
|
||
|
printk(MY_ERR "unable to register rfkill device\n");
|
||
|
toshiba_acpi_exit();
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
/* Register input device for kill switch */
|
||
|
toshiba_acpi.poll_dev = input_allocate_polled_device();
|
||
|
if (!toshiba_acpi.poll_dev) {
|
||
|
printk(MY_ERR
|
||
|
"unable to allocate kill-switch input device\n");
|
||
|
toshiba_acpi_exit();
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
toshiba_acpi.poll_dev->private = &toshiba_acpi;
|
||
|
toshiba_acpi.poll_dev->poll = bt_poll_rfkill;
|
||
|
toshiba_acpi.poll_dev->poll_interval = 1000; /* msecs */
|
||
|
|
||
|
toshiba_acpi.poll_dev->input->name = toshiba_acpi.rfk_name;
|
||
|
toshiba_acpi.poll_dev->input->id.bustype = BUS_HOST;
|
||
|
/* Toshiba USB ID */
|
||
|
toshiba_acpi.poll_dev->input->id.vendor = 0x0930;
|
||
|
set_bit(EV_SW, toshiba_acpi.poll_dev->input->evbit);
|
||
|
set_bit(SW_RFKILL_ALL, toshiba_acpi.poll_dev->input->swbit);
|
||
|
input_report_switch(toshiba_acpi.poll_dev->input,
|
||
|
SW_RFKILL_ALL, TRUE);
|
||
|
input_sync(toshiba_acpi.poll_dev->input);
|
||
|
|
||
|
ret = input_register_polled_device(toshiba_acpi.poll_dev);
|
||
|
if (ret) {
|
||
|
printk(MY_ERR
|
||
|
"unable to register kill-switch input device\n");
|
||
|
toshiba_acpi_exit();
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
module_init(toshiba_acpi_init);
|
||
|
module_exit(toshiba_acpi_exit);
|