OpenCloudOS-Kernel/drivers/net/dm9000.c

1235 lines
28 KiB
C
Raw Normal View History

/*
* dm9000.c: Version 1.2 03/18/2003
*
* A Davicom DM9000 ISA NIC fast Ethernet driver for Linux.
* Copyright (C) 1997 Sten Wang
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* (C)Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
*
* V0.11 06/20/2001 REG_0A bit3=1, default enable BP with DA match
* 06/22/2001 Support DM9801 progrmming
* E3: R25 = ((R24 + NF) & 0x00ff) | 0xf000
* E4: R25 = ((R24 + NF) & 0x00ff) | 0xc200
* R17 = (R17 & 0xfff0) | NF + 3
* E5: R25 = ((R24 + NF - 3) & 0x00ff) | 0xc200
* R17 = (R17 & 0xfff0) | NF
*
* v1.00 modify by simon 2001.9.5
* change for kernel 2.4.x
*
* v1.1 11/09/2001 fix force mode bug
*
* v1.2 03/18/2003 Weilun Huang <weilun_huang@davicom.com.tw>:
* Fixed phy reset.
* Added tx/rx 32 bit mode.
* Cleaned up for kernel merge.
*
* 03/03/2004 Sascha Hauer <s.hauer@pengutronix.de>
* Port to 2.6 kernel
*
* 24-Sep-2004 Ben Dooks <ben@simtec.co.uk>
* Cleanup of code to remove ifdefs
* Allowed platform device data to influence access width
* Reformatting areas of code
*
* 17-Mar-2005 Sascha Hauer <s.hauer@pengutronix.de>
* * removed 2.4 style module parameters
* * removed removed unused stat counter and fixed
* net_device_stats
* * introduced tx_timeout function
* * reworked locking
*
* 01-Jul-2005 Ben Dooks <ben@simtec.co.uk>
* * fixed spinlock call without pointer
* * ensure spinlock is initialised
*/
#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/dm9000.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <asm/delay.h>
#include <asm/irq.h>
#include <asm/io.h>
#include "dm9000.h"
/* Board/System/Debug information/definition ---------------- */
#define DM9000_PHY 0x40 /* PHY address 0x01 */
#define CARDNAME "dm9000"
#define PFX CARDNAME ": "
#define DM9000_TIMER_WUT jiffies+(HZ*2) /* timer wakeup time : 2 second */
#define DM9000_DEBUG 0
#if DM9000_DEBUG > 2
#define PRINTK3(args...) printk(CARDNAME ": " args)
#else
#define PRINTK3(args...) do { } while(0)
#endif
#if DM9000_DEBUG > 1
#define PRINTK2(args...) printk(CARDNAME ": " args)
#else
#define PRINTK2(args...) do { } while(0)
#endif
#if DM9000_DEBUG > 0
#define PRINTK1(args...) printk(CARDNAME ": " args)
#define PRINTK(args...) printk(CARDNAME ": " args)
#else
#define PRINTK1(args...) do { } while(0)
#define PRINTK(args...) printk(KERN_DEBUG args)
#endif
#ifdef CONFIG_BLACKFIN
#define readsb insb
#define readsw insw
#define readsl insl
#define writesb outsb
#define writesw outsw
#define writesl outsl
#define DM9000_IRQ_FLAGS (IRQF_SHARED | IRQF_TRIGGER_HIGH)
#else
#define DM9000_IRQ_FLAGS IRQF_SHARED
#endif
/*
* Transmit timeout, default 5 seconds.
*/
static int watchdog = 5000;
module_param(watchdog, int, 0400);
MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
/* Structure/enum declaration ------------------------------- */
typedef struct board_info {
void __iomem *io_addr; /* Register I/O base address */
void __iomem *io_data; /* Data I/O address */
u16 irq; /* IRQ */
u16 tx_pkt_cnt;
u16 queue_pkt_len;
u16 queue_start_addr;
u16 dbug_cnt;
u8 io_mode; /* 0:word, 2:byte */
u8 phy_addr;
void (*inblk)(void __iomem *port, void *data, int length);
void (*outblk)(void __iomem *port, void *data, int length);
void (*dumpblk)(void __iomem *port, int length);
struct resource *addr_res; /* resources found */
struct resource *data_res;
struct resource *addr_req; /* resources requested */
struct resource *data_req;
struct resource *irq_res;
struct timer_list timer;
struct net_device_stats stats;
unsigned char srom[128];
spinlock_t lock;
struct mii_if_info mii;
u32 msg_enable;
} board_info_t;
/* function declaration ------------------------------------- */
static int dm9000_probe(struct platform_device *);
static int dm9000_open(struct net_device *);
static int dm9000_start_xmit(struct sk_buff *, struct net_device *);
static int dm9000_stop(struct net_device *);
static void dm9000_timer(unsigned long);
static void dm9000_init_dm9000(struct net_device *);
static struct net_device_stats *dm9000_get_stats(struct net_device *);
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t dm9000_interrupt(int, void *);
static int dm9000_phy_read(struct net_device *dev, int phyaddr_unsused, int reg);
static void dm9000_phy_write(struct net_device *dev, int phyaddr_unused, int reg,
int value);
static u16 read_srom_word(board_info_t *, int);
static void dm9000_rx(struct net_device *);
static void dm9000_hash_table(struct net_device *);
//#define DM9000_PROGRAM_EEPROM
#ifdef DM9000_PROGRAM_EEPROM
static void program_eeprom(board_info_t * db);
#endif
/* DM9000 network board routine ---------------------------- */
static void
dm9000_reset(board_info_t * db)
{
PRINTK1("dm9000x: resetting\n");
/* RESET device */
writeb(DM9000_NCR, db->io_addr);
udelay(200);
writeb(NCR_RST, db->io_data);
udelay(200);
}
/*
* Read a byte from I/O port
*/
static u8
ior(board_info_t * db, int reg)
{
writeb(reg, db->io_addr);
return readb(db->io_data);
}
/*
* Write a byte to I/O port
*/
static void
iow(board_info_t * db, int reg, int value)
{
writeb(reg, db->io_addr);
writeb(value, db->io_data);
}
/* routines for sending block to chip */
static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
{
writesb(reg, data, count);
}
static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
{
writesw(reg, data, (count+1) >> 1);
}
static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
{
writesl(reg, data, (count+3) >> 2);
}
/* input block from chip to memory */
static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
{
readsb(reg, data, count);
}
static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
{
readsw(reg, data, (count+1) >> 1);
}
static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
{
readsl(reg, data, (count+3) >> 2);
}
/* dump block from chip to null */
static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
{
int i;
int tmp;
for (i = 0; i < count; i++)
tmp = readb(reg);
}
static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
{
int i;
int tmp;
count = (count + 1) >> 1;
for (i = 0; i < count; i++)
tmp = readw(reg);
}
static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
{
int i;
int tmp;
count = (count + 3) >> 2;
for (i = 0; i < count; i++)
tmp = readl(reg);
}
/* dm9000_set_io
*
* select the specified set of io routines to use with the
* device
*/
static void dm9000_set_io(struct board_info *db, int byte_width)
{
/* use the size of the data resource to work out what IO
* routines we want to use
*/
switch (byte_width) {
case 1:
db->dumpblk = dm9000_dumpblk_8bit;
db->outblk = dm9000_outblk_8bit;
db->inblk = dm9000_inblk_8bit;
break;
case 2:
db->dumpblk = dm9000_dumpblk_16bit;
db->outblk = dm9000_outblk_16bit;
db->inblk = dm9000_inblk_16bit;
break;
case 3:
printk(KERN_ERR PFX ": 3 byte IO, falling back to 16bit\n");
db->dumpblk = dm9000_dumpblk_16bit;
db->outblk = dm9000_outblk_16bit;
db->inblk = dm9000_inblk_16bit;
break;
case 4:
default:
db->dumpblk = dm9000_dumpblk_32bit;
db->outblk = dm9000_outblk_32bit;
db->inblk = dm9000_inblk_32bit;
break;
}
}
/* Our watchdog timed out. Called by the networking layer */
static void dm9000_timeout(struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;
u8 reg_save;
unsigned long flags;
/* Save previous register address */
reg_save = readb(db->io_addr);
spin_lock_irqsave(&db->lock,flags);
netif_stop_queue(dev);
dm9000_reset(db);
dm9000_init_dm9000(dev);
/* We can accept TX packets again */
dev->trans_start = jiffies;
netif_wake_queue(dev);
/* Restore previous register address */
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock,flags);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
*Used by netconsole
*/
static void dm9000_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
dm9000_interrupt(dev->irq,dev);
enable_irq(dev->irq);
}
#endif
/* dm9000_release_board
*
* release a board, and any mapped resources
*/
static void
dm9000_release_board(struct platform_device *pdev, struct board_info *db)
{
if (db->data_res == NULL) {
if (db->addr_res != NULL)
release_mem_region((unsigned long)db->io_addr, 4);
return;
}
/* unmap our resources */
iounmap(db->io_addr);
iounmap(db->io_data);
/* release the resources */
if (db->data_req != NULL) {
release_resource(db->data_req);
kfree(db->data_req);
}
if (db->addr_req != NULL) {
release_resource(db->addr_req);
kfree(db->addr_req);
}
}
#define res_size(_r) (((_r)->end - (_r)->start) + 1)
/*
* Search DM9000 board, allocate space and register it
*/
static int
dm9000_probe(struct platform_device *pdev)
{
struct dm9000_plat_data *pdata = pdev->dev.platform_data;
struct board_info *db; /* Point a board information structure */
struct net_device *ndev;
unsigned long base;
int ret = 0;
int iosize;
int i;
u32 id_val;
/* Init network device */
ndev = alloc_etherdev(sizeof (struct board_info));
if (!ndev) {
printk("%s: could not allocate device.\n", CARDNAME);
return -ENOMEM;
}
SET_MODULE_OWNER(ndev);
SET_NETDEV_DEV(ndev, &pdev->dev);
PRINTK2("dm9000_probe()");
/* setup board info structure */
db = (struct board_info *) ndev->priv;
memset(db, 0, sizeof (*db));
spin_lock_init(&db->lock);
if (pdev->num_resources < 2) {
ret = -ENODEV;
goto out;
} else if (pdev->num_resources == 2) {
base = pdev->resource[0].start;
if (!request_mem_region(base, 4, ndev->name)) {
ret = -EBUSY;
goto out;
}
ndev->base_addr = base;
ndev->irq = pdev->resource[1].start;
db->io_addr = (void __iomem *)base;
db->io_data = (void __iomem *)(base + 4);
/* ensure at least we have a default set of IO routines */
dm9000_set_io(db, 2);
} else {
db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (db->addr_res == NULL || db->data_res == NULL ||
db->irq_res == NULL) {
printk(KERN_ERR PFX "insufficient resources\n");
ret = -ENOENT;
goto out;
}
i = res_size(db->addr_res);
db->addr_req = request_mem_region(db->addr_res->start, i,
pdev->name);
if (db->addr_req == NULL) {
printk(KERN_ERR PFX "cannot claim address reg area\n");
ret = -EIO;
goto out;
}
db->io_addr = ioremap(db->addr_res->start, i);
if (db->io_addr == NULL) {
printk(KERN_ERR "failed to ioremap address reg\n");
ret = -EINVAL;
goto out;
}
iosize = res_size(db->data_res);
db->data_req = request_mem_region(db->data_res->start, iosize,
pdev->name);
if (db->data_req == NULL) {
printk(KERN_ERR PFX "cannot claim data reg area\n");
ret = -EIO;
goto out;
}
db->io_data = ioremap(db->data_res->start, iosize);
if (db->io_data == NULL) {
printk(KERN_ERR "failed to ioremap data reg\n");
ret = -EINVAL;
goto out;
}
/* fill in parameters for net-dev structure */
ndev->base_addr = (unsigned long)db->io_addr;
ndev->irq = db->irq_res->start;
/* ensure at least we have a default set of IO routines */
dm9000_set_io(db, iosize);
}
/* check to see if anything is being over-ridden */
if (pdata != NULL) {
/* check to see if the driver wants to over-ride the
* default IO width */
if (pdata->flags & DM9000_PLATF_8BITONLY)
dm9000_set_io(db, 1);
if (pdata->flags & DM9000_PLATF_16BITONLY)
dm9000_set_io(db, 2);
if (pdata->flags & DM9000_PLATF_32BITONLY)
dm9000_set_io(db, 4);
/* check to see if there are any IO routine
* over-rides */
if (pdata->inblk != NULL)
db->inblk = pdata->inblk;
if (pdata->outblk != NULL)
db->outblk = pdata->outblk;
if (pdata->dumpblk != NULL)
db->dumpblk = pdata->dumpblk;
}
dm9000_reset(db);
/* try two times, DM9000 sometimes gets the first read wrong */
for (i = 0; i < 2; i++) {
id_val = ior(db, DM9000_VIDL);
id_val |= (u32)ior(db, DM9000_VIDH) << 8;
id_val |= (u32)ior(db, DM9000_PIDL) << 16;
id_val |= (u32)ior(db, DM9000_PIDH) << 24;
if (id_val == DM9000_ID)
break;
printk("%s: read wrong id 0x%08x\n", CARDNAME, id_val);
}
if (id_val != DM9000_ID) {
printk("%s: wrong id: 0x%08x\n", CARDNAME, id_val);
goto release;
}
/* from this point we assume that we have found a DM9000 */
/* driver system function */
ether_setup(ndev);
ndev->open = &dm9000_open;
ndev->hard_start_xmit = &dm9000_start_xmit;
ndev->tx_timeout = &dm9000_timeout;
ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
ndev->stop = &dm9000_stop;
ndev->get_stats = &dm9000_get_stats;
ndev->set_multicast_list = &dm9000_hash_table;
#ifdef CONFIG_NET_POLL_CONTROLLER
ndev->poll_controller = &dm9000_poll_controller;
#endif
#ifdef DM9000_PROGRAM_EEPROM
program_eeprom(db);
#endif
db->msg_enable = NETIF_MSG_LINK;
db->mii.phy_id_mask = 0x1f;
db->mii.reg_num_mask = 0x1f;
db->mii.force_media = 0;
db->mii.full_duplex = 0;
db->mii.dev = ndev;
db->mii.mdio_read = dm9000_phy_read;
db->mii.mdio_write = dm9000_phy_write;
/* Read SROM content */
for (i = 0; i < 64; i++)
((u16 *) db->srom)[i] = read_srom_word(db, i);
/* Set Node Address */
for (i = 0; i < 6; i++)
ndev->dev_addr[i] = db->srom[i];
if (!is_valid_ether_addr(ndev->dev_addr)) {
/* try reading from mac */
for (i = 0; i < 6; i++)
ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
}
if (!is_valid_ether_addr(ndev->dev_addr))
printk("%s: Invalid ethernet MAC address. Please "
"set using ifconfig\n", ndev->name);
platform_set_drvdata(pdev, ndev);
ret = register_netdev(ndev);
if (ret == 0) {
printk("%s: dm9000 at %p,%p IRQ %d MAC: ",
ndev->name, db->io_addr, db->io_data, ndev->irq);
for (i = 0; i < 5; i++)
printk("%02x:", ndev->dev_addr[i]);
printk("%02x\n", ndev->dev_addr[5]);
}
return 0;
release:
out:
printk("%s: not found (%d).\n", CARDNAME, ret);
dm9000_release_board(pdev, db);
free_netdev(ndev);
return ret;
}
/*
* Open the interface.
* The interface is opened whenever "ifconfig" actives it.
*/
static int
dm9000_open(struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;
PRINTK2("entering dm9000_open\n");
if (request_irq(dev->irq, &dm9000_interrupt, DM9000_IRQ_FLAGS, dev->name, dev))
return -EAGAIN;
/* Initialize DM9000 board */
dm9000_reset(db);
dm9000_init_dm9000(dev);
/* Init driver variable */
db->dbug_cnt = 0;
/* set and active a timer process */
init_timer(&db->timer);
db->timer.expires = DM9000_TIMER_WUT;
db->timer.data = (unsigned long) dev;
db->timer.function = &dm9000_timer;
add_timer(&db->timer);
mii_check_media(&db->mii, netif_msg_link(db), 1);
netif_start_queue(dev);
return 0;
}
/*
* Initilize dm9000 board
*/
static void
dm9000_init_dm9000(struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;
PRINTK1("entering %s\n",__FUNCTION__);
/* I/O mode */
db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
/* GPIO0 on pre-activate PHY */
iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
iow(db, DM9000_GPR, 0); /* Enable PHY */
/* Program operating register */
iow(db, DM9000_TCR, 0); /* TX Polling clear */
iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
iow(db, DM9000_FCR, 0xff); /* Flow Control */
iow(db, DM9000_SMCR, 0); /* Special Mode */
/* clear TX status */
iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
/* Set address filter table */
dm9000_hash_table(dev);
/* Activate DM9000 */
iow(db, DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN);
/* Enable TX/RX interrupt mask */
iow(db, DM9000_IMR, IMR_PAR | IMR_PTM | IMR_PRM);
/* Init Driver variable */
db->tx_pkt_cnt = 0;
db->queue_pkt_len = 0;
dev->trans_start = 0;
}
/*
* Hardware start transmission.
* Send a packet to media from the upper layer.
*/
static int
dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
unsigned long flags;
board_info_t *db = (board_info_t *) dev->priv;
PRINTK3("dm9000_start_xmit\n");
if (db->tx_pkt_cnt > 1)
return 1;
spin_lock_irqsave(&db->lock, flags);
/* Move data to DM9000 TX RAM */
writeb(DM9000_MWCMD, db->io_addr);
(db->outblk)(db->io_data, skb->data, skb->len);
db->stats.tx_bytes += skb->len;
db->tx_pkt_cnt++;
/* TX control: First packet immediately send, second packet queue */
if (db->tx_pkt_cnt == 1) {
/* Set TX length to DM9000 */
iow(db, DM9000_TXPLL, skb->len & 0xff);
iow(db, DM9000_TXPLH, (skb->len >> 8) & 0xff);
/* Issue TX polling command */
iow(db, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
dev->trans_start = jiffies; /* save the time stamp */
} else {
/* Second packet */
db->queue_pkt_len = skb->len;
netif_stop_queue(dev);
}
spin_unlock_irqrestore(&db->lock, flags);
/* free this SKB */
dev_kfree_skb(skb);
return 0;
}
static void
dm9000_shutdown(struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;
/* RESET device */
dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
iow(db, DM9000_IMR, IMR_PAR); /* Disable all interrupt */
iow(db, DM9000_RCR, 0x00); /* Disable RX */
}
/*
* Stop the interface.
* The interface is stopped when it is brought.
*/
static int
dm9000_stop(struct net_device *ndev)
{
board_info_t *db = (board_info_t *) ndev->priv;
PRINTK1("entering %s\n",__FUNCTION__);
/* deleted timer */
del_timer(&db->timer);
netif_stop_queue(ndev);
netif_carrier_off(ndev);
/* free interrupt */
free_irq(ndev->irq, ndev);
dm9000_shutdown(ndev);
return 0;
}
/*
* DM9000 interrupt handler
* receive the packet to upper layer, free the transmitted packet
*/
static void
dm9000_tx_done(struct net_device *dev, board_info_t * db)
{
int tx_status = ior(db, DM9000_NSR); /* Got TX status */
if (tx_status & (NSR_TX2END | NSR_TX1END)) {
/* One packet sent complete */
db->tx_pkt_cnt--;
db->stats.tx_packets++;
/* Queue packet check & send */
if (db->tx_pkt_cnt > 0) {
iow(db, DM9000_TXPLL, db->queue_pkt_len & 0xff);
iow(db, DM9000_TXPLH, (db->queue_pkt_len >> 8) & 0xff);
iow(db, DM9000_TCR, TCR_TXREQ);
dev->trans_start = jiffies;
}
netif_wake_queue(dev);
}
}
static irqreturn_t
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
dm9000_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
board_info_t *db;
int int_status;
u8 reg_save;
PRINTK3("entering %s\n",__FUNCTION__);
if (!dev) {
PRINTK1("dm9000_interrupt() without DEVICE arg\n");
return IRQ_HANDLED;
}
/* A real interrupt coming */
db = (board_info_t *) dev->priv;
spin_lock(&db->lock);
/* Save previous register address */
reg_save = readb(db->io_addr);
/* Disable all interrupts */
iow(db, DM9000_IMR, IMR_PAR);
/* Got DM9000 interrupt status */
int_status = ior(db, DM9000_ISR); /* Got ISR */
iow(db, DM9000_ISR, int_status); /* Clear ISR status */
/* Received the coming packet */
if (int_status & ISR_PRS)
dm9000_rx(dev);
/* Trnasmit Interrupt check */
if (int_status & ISR_PTS)
dm9000_tx_done(dev, db);
/* Re-enable interrupt mask */
iow(db, DM9000_IMR, IMR_PAR | IMR_PTM | IMR_PRM);
/* Restore previous register address */
writeb(reg_save, db->io_addr);
spin_unlock(&db->lock);
return IRQ_HANDLED;
}
/*
* Get statistics from driver.
*/
static struct net_device_stats *
dm9000_get_stats(struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;
return &db->stats;
}
/*
* A periodic timer routine
* Dynamic media sense, allocated Rx buffer...
*/
static void
dm9000_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *) data;
board_info_t *db = (board_info_t *) dev->priv;
PRINTK3("dm9000_timer()\n");
mii_check_media(&db->mii, netif_msg_link(db), 0);
/* Set timer again */
db->timer.expires = DM9000_TIMER_WUT;
add_timer(&db->timer);
}
struct dm9000_rxhdr {
u16 RxStatus;
u16 RxLen;
} __attribute__((__packed__));
/*
* Received a packet and pass to upper layer
*/
static void
dm9000_rx(struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;
struct dm9000_rxhdr rxhdr;
struct sk_buff *skb;
u8 rxbyte, *rdptr;
bool GoodPacket;
int RxLen;
/* Check packet ready or not */
do {
ior(db, DM9000_MRCMDX); /* Dummy read */
/* Get most updated data */
rxbyte = readb(db->io_data);
/* Status check: this byte must be 0 or 1 */
if (rxbyte > DM9000_PKT_RDY) {
printk("status check failed: %d\n", rxbyte);
iow(db, DM9000_RCR, 0x00); /* Stop Device */
iow(db, DM9000_ISR, IMR_PAR); /* Stop INT request */
return;
}
if (rxbyte != DM9000_PKT_RDY)
return;
/* A packet ready now & Get status/length */
GoodPacket = true;
writeb(DM9000_MRCMD, db->io_addr);
(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
RxLen = rxhdr.RxLen;
/* Packet Status check */
if (RxLen < 0x40) {
GoodPacket = false;
PRINTK1("Bad Packet received (runt)\n");
}
if (RxLen > DM9000_PKT_MAX) {
PRINTK1("RST: RX Len:%x\n", RxLen);
}
if (rxhdr.RxStatus & 0xbf00) {
GoodPacket = false;
if (rxhdr.RxStatus & 0x100) {
PRINTK1("fifo error\n");
db->stats.rx_fifo_errors++;
}
if (rxhdr.RxStatus & 0x200) {
PRINTK1("crc error\n");
db->stats.rx_crc_errors++;
}
if (rxhdr.RxStatus & 0x8000) {
PRINTK1("length error\n");
db->stats.rx_length_errors++;
}
}
/* Move data from DM9000 */
if (GoodPacket
&& ((skb = dev_alloc_skb(RxLen + 4)) != NULL)) {
skb_reserve(skb, 2);
rdptr = (u8 *) skb_put(skb, RxLen - 4);
/* Read received packet from RX SRAM */
(db->inblk)(db->io_data, rdptr, RxLen);
db->stats.rx_bytes += RxLen;
/* Pass to upper layer */
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
db->stats.rx_packets++;
} else {
/* need to dump the packet's data */
(db->dumpblk)(db->io_data, RxLen);
}
} while (rxbyte == DM9000_PKT_RDY);
}
/*
* Read a word data from SROM
*/
static u16
read_srom_word(board_info_t * db, int offset)
{
iow(db, DM9000_EPAR, offset);
iow(db, DM9000_EPCR, EPCR_ERPRR);
mdelay(8); /* according to the datasheet 200us should be enough,
but it doesn't work */
iow(db, DM9000_EPCR, 0x0);
return (ior(db, DM9000_EPDRL) + (ior(db, DM9000_EPDRH) << 8));
}
#ifdef DM9000_PROGRAM_EEPROM
/*
* Write a word data to SROM
*/
static void
write_srom_word(board_info_t * db, int offset, u16 val)
{
iow(db, DM9000_EPAR, offset);
iow(db, DM9000_EPDRH, ((val >> 8) & 0xff));
iow(db, DM9000_EPDRL, (val & 0xff));
iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
mdelay(8); /* same shit */
iow(db, DM9000_EPCR, 0);
}
/*
* Only for development:
* Here we write static data to the eeprom in case
* we don't have valid content on a new board
*/
static void
program_eeprom(board_info_t * db)
{
u16 eeprom[] = { 0x0c00, 0x007f, 0x1300, /* MAC Address */
0x0000, /* Autoload: accept nothing */
0x0a46, 0x9000, /* Vendor / Product ID */
0x0000, /* pin control */
0x0000,
}; /* Wake-up mode control */
int i;
for (i = 0; i < 8; i++)
write_srom_word(db, i, eeprom[i]);
}
#endif
/*
* Calculate the CRC valude of the Rx packet
* flag = 1 : return the reverse CRC (for the received packet CRC)
* 0 : return the normal CRC (for Hash Table index)
*/
static unsigned long
cal_CRC(unsigned char *Data, unsigned int Len, u8 flag)
{
u32 crc = ether_crc_le(Len, Data);
if (flag)
return ~crc;
return crc;
}
/*
* Set DM9000 multicast address
*/
static void
dm9000_hash_table(struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;
struct dev_mc_list *mcptr = dev->mc_list;
int mc_cnt = dev->mc_count;
u32 hash_val;
u16 i, oft, hash_table[4];
unsigned long flags;
PRINTK2("dm9000_hash_table()\n");
spin_lock_irqsave(&db->lock,flags);
for (i = 0, oft = 0x10; i < 6; i++, oft++)
iow(db, oft, dev->dev_addr[i]);
/* Clear Hash Table */
for (i = 0; i < 4; i++)
hash_table[i] = 0x0;
/* broadcast address */
hash_table[3] = 0x8000;
/* the multicast address in Hash Table : 64 bits */
for (i = 0; i < mc_cnt; i++, mcptr = mcptr->next) {
hash_val = cal_CRC((char *) mcptr->dmi_addr, 6, 0) & 0x3f;
hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
}
/* Write the hash table to MAC MD table */
for (i = 0, oft = 0x16; i < 4; i++) {
iow(db, oft++, hash_table[i] & 0xff);
iow(db, oft++, (hash_table[i] >> 8) & 0xff);
}
spin_unlock_irqrestore(&db->lock,flags);
}
/*
* Read a word from phyxcer
*/
static int
dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
{
board_info_t *db = (board_info_t *) dev->priv;
unsigned long flags;
unsigned int reg_save;
int ret;
spin_lock_irqsave(&db->lock,flags);
/* Save previous register address */
reg_save = readb(db->io_addr);
/* Fill the phyxcer register into REG_0C */
iow(db, DM9000_EPAR, DM9000_PHY | reg);
iow(db, DM9000_EPCR, 0xc); /* Issue phyxcer read command */
udelay(100); /* Wait read complete */
iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
/* The read data keeps on REG_0D & REG_0E */
ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
/* restore the previous address */
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock,flags);
return ret;
}
/*
* Write a word to phyxcer
*/
static void
dm9000_phy_write(struct net_device *dev, int phyaddr_unused, int reg, int value)
{
board_info_t *db = (board_info_t *) dev->priv;
unsigned long flags;
unsigned long reg_save;
spin_lock_irqsave(&db->lock,flags);
/* Save previous register address */
reg_save = readb(db->io_addr);
/* Fill the phyxcer register into REG_0C */
iow(db, DM9000_EPAR, DM9000_PHY | reg);
/* Fill the written data into REG_0D & REG_0E */
iow(db, DM9000_EPDRL, (value & 0xff));
iow(db, DM9000_EPDRH, ((value >> 8) & 0xff));
iow(db, DM9000_EPCR, 0xa); /* Issue phyxcer write command */
udelay(500); /* Wait write complete */
iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
/* restore the previous address */
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock,flags);
}
static int
dm9000_drv_suspend(struct platform_device *dev, pm_message_t state)
{
struct net_device *ndev = platform_get_drvdata(dev);
if (ndev) {
if (netif_running(ndev)) {
netif_device_detach(ndev);
dm9000_shutdown(ndev);
}
}
return 0;
}
static int
dm9000_drv_resume(struct platform_device *dev)
{
struct net_device *ndev = platform_get_drvdata(dev);
board_info_t *db = (board_info_t *) ndev->priv;
if (ndev) {
if (netif_running(ndev)) {
dm9000_reset(db);
dm9000_init_dm9000(ndev);
netif_device_attach(ndev);
}
}
return 0;
}
static int
dm9000_drv_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
platform_set_drvdata(pdev, NULL);
unregister_netdev(ndev);
dm9000_release_board(pdev, (board_info_t *) ndev->priv);
free_netdev(ndev); /* free device structure */
PRINTK1("clean_module() exit\n");
return 0;
}
static struct platform_driver dm9000_driver = {
.driver = {
.name = "dm9000",
.owner = THIS_MODULE,
},
.probe = dm9000_probe,
.remove = dm9000_drv_remove,
.suspend = dm9000_drv_suspend,
.resume = dm9000_drv_resume,
};
static int __init
dm9000_init(void)
{
printk(KERN_INFO "%s Ethernet Driver\n", CARDNAME);
return platform_driver_register(&dm9000_driver); /* search board and register */
}
static void __exit
dm9000_cleanup(void)
{
platform_driver_unregister(&dm9000_driver);
}
module_init(dm9000_init);
module_exit(dm9000_cleanup);
MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
MODULE_DESCRIPTION("Davicom DM9000 network driver");
MODULE_LICENSE("GPL");