OpenCloudOS-Kernel/drivers/scsi/mpi3mr/mpi3mr_fw.c

2402 lines
68 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Driver for Broadcom MPI3 Storage Controllers
*
* Copyright (C) 2017-2021 Broadcom Inc.
* (mailto: mpi3mr-linuxdrv.pdl@broadcom.com)
*
*/
#include "mpi3mr.h"
#include <linux/io-64-nonatomic-lo-hi.h>
#if defined(writeq) && defined(CONFIG_64BIT)
static inline void mpi3mr_writeq(__u64 b, volatile void __iomem *addr)
{
writeq(b, addr);
}
#else
static inline void mpi3mr_writeq(__u64 b, volatile void __iomem *addr)
{
__u64 data_out = b;
writel((u32)(data_out), addr);
writel((u32)(data_out >> 32), (addr + 4));
}
#endif
static void mpi3mr_sync_irqs(struct mpi3mr_ioc *mrioc)
{
u16 i, max_vectors;
max_vectors = mrioc->intr_info_count;
for (i = 0; i < max_vectors; i++)
synchronize_irq(pci_irq_vector(mrioc->pdev, i));
}
void mpi3mr_ioc_disable_intr(struct mpi3mr_ioc *mrioc)
{
mrioc->intr_enabled = 0;
mpi3mr_sync_irqs(mrioc);
}
void mpi3mr_ioc_enable_intr(struct mpi3mr_ioc *mrioc)
{
mrioc->intr_enabled = 1;
}
static void mpi3mr_cleanup_isr(struct mpi3mr_ioc *mrioc)
{
u16 i;
mpi3mr_ioc_disable_intr(mrioc);
if (!mrioc->intr_info)
return;
for (i = 0; i < mrioc->intr_info_count; i++)
free_irq(pci_irq_vector(mrioc->pdev, i),
(mrioc->intr_info + i));
kfree(mrioc->intr_info);
mrioc->intr_info = NULL;
mrioc->intr_info_count = 0;
pci_free_irq_vectors(mrioc->pdev);
}
void mpi3mr_add_sg_single(void *paddr, u8 flags, u32 length,
dma_addr_t dma_addr)
{
struct mpi3_sge_common *sgel = paddr;
sgel->flags = flags;
sgel->length = cpu_to_le32(length);
sgel->address = cpu_to_le64(dma_addr);
}
void mpi3mr_build_zero_len_sge(void *paddr)
{
u8 sgl_flags = MPI3MR_SGEFLAGS_SYSTEM_SIMPLE_END_OF_LIST;
mpi3mr_add_sg_single(paddr, sgl_flags, 0, -1);
}
void *mpi3mr_get_reply_virt_addr(struct mpi3mr_ioc *mrioc,
dma_addr_t phys_addr)
{
if (!phys_addr)
return NULL;
if ((phys_addr < mrioc->reply_buf_dma) ||
(phys_addr > mrioc->reply_buf_dma_max_address))
return NULL;
return mrioc->reply_buf + (phys_addr - mrioc->reply_buf_dma);
}
void *mpi3mr_get_sensebuf_virt_addr(struct mpi3mr_ioc *mrioc,
dma_addr_t phys_addr)
{
if (!phys_addr)
return NULL;
return mrioc->sense_buf + (phys_addr - mrioc->sense_buf_dma);
}
static void mpi3mr_repost_reply_buf(struct mpi3mr_ioc *mrioc,
u64 reply_dma)
{
u32 old_idx = 0;
spin_lock(&mrioc->reply_free_queue_lock);
old_idx = mrioc->reply_free_queue_host_index;
mrioc->reply_free_queue_host_index = (
(mrioc->reply_free_queue_host_index ==
(mrioc->reply_free_qsz - 1)) ? 0 :
(mrioc->reply_free_queue_host_index + 1));
mrioc->reply_free_q[old_idx] = cpu_to_le64(reply_dma);
writel(mrioc->reply_free_queue_host_index,
&mrioc->sysif_regs->reply_free_host_index);
spin_unlock(&mrioc->reply_free_queue_lock);
}
void mpi3mr_repost_sense_buf(struct mpi3mr_ioc *mrioc,
u64 sense_buf_dma)
{
u32 old_idx = 0;
spin_lock(&mrioc->sbq_lock);
old_idx = mrioc->sbq_host_index;
mrioc->sbq_host_index = ((mrioc->sbq_host_index ==
(mrioc->sense_buf_q_sz - 1)) ? 0 :
(mrioc->sbq_host_index + 1));
mrioc->sense_buf_q[old_idx] = cpu_to_le64(sense_buf_dma);
writel(mrioc->sbq_host_index,
&mrioc->sysif_regs->sense_buffer_free_host_index);
spin_unlock(&mrioc->sbq_lock);
}
static void mpi3mr_handle_events(struct mpi3mr_ioc *mrioc,
struct mpi3_default_reply *def_reply)
{
struct mpi3_event_notification_reply *event_reply =
(struct mpi3_event_notification_reply *)def_reply;
mrioc->change_count = le16_to_cpu(event_reply->ioc_change_count);
}
static struct mpi3mr_drv_cmd *
mpi3mr_get_drv_cmd(struct mpi3mr_ioc *mrioc, u16 host_tag,
struct mpi3_default_reply *def_reply)
{
switch (host_tag) {
case MPI3MR_HOSTTAG_INITCMDS:
return &mrioc->init_cmds;
case MPI3MR_HOSTTAG_INVALID:
if (def_reply && def_reply->function ==
MPI3_FUNCTION_EVENT_NOTIFICATION)
mpi3mr_handle_events(mrioc, def_reply);
return NULL;
default:
break;
}
return NULL;
}
static void mpi3mr_process_admin_reply_desc(struct mpi3mr_ioc *mrioc,
struct mpi3_default_reply_descriptor *reply_desc, u64 *reply_dma)
{
u16 reply_desc_type, host_tag = 0;
u16 ioc_status = MPI3_IOCSTATUS_SUCCESS;
u32 ioc_loginfo = 0;
struct mpi3_status_reply_descriptor *status_desc;
struct mpi3_address_reply_descriptor *addr_desc;
struct mpi3_success_reply_descriptor *success_desc;
struct mpi3_default_reply *def_reply = NULL;
struct mpi3mr_drv_cmd *cmdptr = NULL;
struct mpi3_scsi_io_reply *scsi_reply;
u8 *sense_buf = NULL;
*reply_dma = 0;
reply_desc_type = le16_to_cpu(reply_desc->reply_flags) &
MPI3_REPLY_DESCRIPT_FLAGS_TYPE_MASK;
switch (reply_desc_type) {
case MPI3_REPLY_DESCRIPT_FLAGS_TYPE_STATUS:
status_desc = (struct mpi3_status_reply_descriptor *)reply_desc;
host_tag = le16_to_cpu(status_desc->host_tag);
ioc_status = le16_to_cpu(status_desc->ioc_status);
if (ioc_status &
MPI3_REPLY_DESCRIPT_STATUS_IOCSTATUS_LOGINFOAVAIL)
ioc_loginfo = le32_to_cpu(status_desc->ioc_log_info);
ioc_status &= MPI3_REPLY_DESCRIPT_STATUS_IOCSTATUS_STATUS_MASK;
break;
case MPI3_REPLY_DESCRIPT_FLAGS_TYPE_ADDRESS_REPLY:
addr_desc = (struct mpi3_address_reply_descriptor *)reply_desc;
*reply_dma = le64_to_cpu(addr_desc->reply_frame_address);
def_reply = mpi3mr_get_reply_virt_addr(mrioc, *reply_dma);
if (!def_reply)
goto out;
host_tag = le16_to_cpu(def_reply->host_tag);
ioc_status = le16_to_cpu(def_reply->ioc_status);
if (ioc_status &
MPI3_REPLY_DESCRIPT_STATUS_IOCSTATUS_LOGINFOAVAIL)
ioc_loginfo = le32_to_cpu(def_reply->ioc_log_info);
ioc_status &= MPI3_REPLY_DESCRIPT_STATUS_IOCSTATUS_STATUS_MASK;
if (def_reply->function == MPI3_FUNCTION_SCSI_IO) {
scsi_reply = (struct mpi3_scsi_io_reply *)def_reply;
sense_buf = mpi3mr_get_sensebuf_virt_addr(mrioc,
le64_to_cpu(scsi_reply->sense_data_buffer_address));
}
break;
case MPI3_REPLY_DESCRIPT_FLAGS_TYPE_SUCCESS:
success_desc = (struct mpi3_success_reply_descriptor *)reply_desc;
host_tag = le16_to_cpu(success_desc->host_tag);
break;
default:
break;
}
cmdptr = mpi3mr_get_drv_cmd(mrioc, host_tag, def_reply);
if (cmdptr) {
if (cmdptr->state & MPI3MR_CMD_PENDING) {
cmdptr->state |= MPI3MR_CMD_COMPLETE;
cmdptr->ioc_loginfo = ioc_loginfo;
cmdptr->ioc_status = ioc_status;
cmdptr->state &= ~MPI3MR_CMD_PENDING;
if (def_reply) {
cmdptr->state |= MPI3MR_CMD_REPLY_VALID;
memcpy((u8 *)cmdptr->reply, (u8 *)def_reply,
mrioc->facts.reply_sz);
}
if (cmdptr->is_waiting) {
complete(&cmdptr->done);
cmdptr->is_waiting = 0;
} else if (cmdptr->callback)
cmdptr->callback(mrioc, cmdptr);
}
}
out:
if (sense_buf)
mpi3mr_repost_sense_buf(mrioc,
le64_to_cpu(scsi_reply->sense_data_buffer_address));
}
static int mpi3mr_process_admin_reply_q(struct mpi3mr_ioc *mrioc)
{
u32 exp_phase = mrioc->admin_reply_ephase;
u32 admin_reply_ci = mrioc->admin_reply_ci;
u32 num_admin_replies = 0;
u64 reply_dma = 0;
struct mpi3_default_reply_descriptor *reply_desc;
reply_desc = (struct mpi3_default_reply_descriptor *)mrioc->admin_reply_base +
admin_reply_ci;
if ((le16_to_cpu(reply_desc->reply_flags) &
MPI3_REPLY_DESCRIPT_FLAGS_PHASE_MASK) != exp_phase)
return 0;
do {
mrioc->admin_req_ci = le16_to_cpu(reply_desc->request_queue_ci);
mpi3mr_process_admin_reply_desc(mrioc, reply_desc, &reply_dma);
if (reply_dma)
mpi3mr_repost_reply_buf(mrioc, reply_dma);
num_admin_replies++;
if (++admin_reply_ci == mrioc->num_admin_replies) {
admin_reply_ci = 0;
exp_phase ^= 1;
}
reply_desc =
(struct mpi3_default_reply_descriptor *)mrioc->admin_reply_base +
admin_reply_ci;
if ((le16_to_cpu(reply_desc->reply_flags) &
MPI3_REPLY_DESCRIPT_FLAGS_PHASE_MASK) != exp_phase)
break;
} while (1);
writel(admin_reply_ci, &mrioc->sysif_regs->admin_reply_queue_ci);
mrioc->admin_reply_ci = admin_reply_ci;
mrioc->admin_reply_ephase = exp_phase;
return num_admin_replies;
}
static irqreturn_t mpi3mr_isr_primary(int irq, void *privdata)
{
struct mpi3mr_intr_info *intr_info = privdata;
struct mpi3mr_ioc *mrioc;
u16 midx;
u32 num_admin_replies = 0;
if (!intr_info)
return IRQ_NONE;
mrioc = intr_info->mrioc;
if (!mrioc->intr_enabled)
return IRQ_NONE;
midx = intr_info->msix_index;
if (!midx)
num_admin_replies = mpi3mr_process_admin_reply_q(mrioc);
if (num_admin_replies)
return IRQ_HANDLED;
else
return IRQ_NONE;
}
static irqreturn_t mpi3mr_isr(int irq, void *privdata)
{
struct mpi3mr_intr_info *intr_info = privdata;
int ret;
if (!intr_info)
return IRQ_NONE;
/* Call primary ISR routine */
ret = mpi3mr_isr_primary(irq, privdata);
return ret;
}
/**
* mpi3mr_isr_poll - Reply queue polling routine
* @irq: IRQ
* @privdata: Interrupt info
*
* poll for pending I/O completions in a loop until pending I/Os
* present or controller queue depth I/Os are processed.
*
* Return: IRQ_NONE or IRQ_HANDLED
*/
static irqreturn_t mpi3mr_isr_poll(int irq, void *privdata)
{
return IRQ_HANDLED;
}
/**
* mpi3mr_request_irq - Request IRQ and register ISR
* @mrioc: Adapter instance reference
* @index: IRQ vector index
*
* Request threaded ISR with primary ISR and secondary
*
* Return: 0 on success and non zero on failures.
*/
static inline int mpi3mr_request_irq(struct mpi3mr_ioc *mrioc, u16 index)
{
struct pci_dev *pdev = mrioc->pdev;
struct mpi3mr_intr_info *intr_info = mrioc->intr_info + index;
int retval = 0;
intr_info->mrioc = mrioc;
intr_info->msix_index = index;
intr_info->op_reply_q = NULL;
snprintf(intr_info->name, MPI3MR_NAME_LENGTH, "%s%d-msix%d",
mrioc->driver_name, mrioc->id, index);
retval = request_threaded_irq(pci_irq_vector(pdev, index), mpi3mr_isr,
mpi3mr_isr_poll, IRQF_SHARED, intr_info->name, intr_info);
if (retval) {
ioc_err(mrioc, "%s: Unable to allocate interrupt %d!\n",
intr_info->name, pci_irq_vector(pdev, index));
return retval;
}
return retval;
}
/**
* mpi3mr_setup_isr - Setup ISR for the controller
* @mrioc: Adapter instance reference
* @setup_one: Request one IRQ or more
*
* Allocate IRQ vectors and call mpi3mr_request_irq to setup ISR
*
* Return: 0 on success and non zero on failures.
*/
static int mpi3mr_setup_isr(struct mpi3mr_ioc *mrioc, u8 setup_one)
{
unsigned int irq_flags = PCI_IRQ_MSIX;
u16 max_vectors = 0, i;
int retval = 0;
struct irq_affinity desc = { .pre_vectors = 1};
mpi3mr_cleanup_isr(mrioc);
if (setup_one || reset_devices)
max_vectors = 1;
else {
max_vectors =
min_t(int, mrioc->cpu_count + 1, mrioc->msix_count);
ioc_info(mrioc,
"MSI-X vectors supported: %d, no of cores: %d,",
mrioc->msix_count, mrioc->cpu_count);
ioc_info(mrioc,
"MSI-x vectors requested: %d\n", max_vectors);
}
irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
scsi: mpi3mr: Create operational request and reply queue pair Create operational request and reply queue pair. The MPI3 transport interface consists of an Administrative Request Queue, an Administrative Reply Queue, and Operational Messaging Queues. The Operational Messaging Queues are the primary communication mechanism between the host and the I/O Controller (IOC). Request messages, allocated in host memory, identify I/O operations to be performed by the IOC. These operations are queued on an Operational Request Queue by the host driver. Reply descriptors track I/O operations as they complete. The IOC queues these completions in an Operational Reply Queue. To fulfil large contiguous memory requirement, driver creates multiple segments and provide the list of segments. Each segment size should be 4K which is a hardware requirement. An element array is contiguous or segmented. A contiguous element array is located in contiguous physical memory. A contiguous element array must be aligned on an element size boundary. An element's physical address within the array may be directly calculated from the base address, the Producer/Consumer index, and the element size. Expected phased identifier bit is used to find out valid entry on reply queue. Driver sets <ephase> bit and IOC inverts the value of this bit on each pass. Link: https://lore.kernel.org/r/20210520152545.2710479-4-kashyap.desai@broadcom.com Cc: sathya.prakash@broadcom.com Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Tomas Henzl <thenzl@redhat.com> Reviewed-by: Himanshu Madhani <himanshu.madhani@oracle.com> Signed-off-by: Kashyap Desai <kashyap.desai@broadcom.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2021-05-20 23:25:24 +08:00
mrioc->op_reply_q_offset = (max_vectors > 1) ? 1 : 0;
i = pci_alloc_irq_vectors_affinity(mrioc->pdev,
1, max_vectors, irq_flags, &desc);
if (i <= 0) {
ioc_err(mrioc, "Cannot alloc irq vectors\n");
goto out_failed;
}
if (i != max_vectors) {
ioc_info(mrioc,
"allocated vectors (%d) are less than configured (%d)\n",
i, max_vectors);
scsi: mpi3mr: Create operational request and reply queue pair Create operational request and reply queue pair. The MPI3 transport interface consists of an Administrative Request Queue, an Administrative Reply Queue, and Operational Messaging Queues. The Operational Messaging Queues are the primary communication mechanism between the host and the I/O Controller (IOC). Request messages, allocated in host memory, identify I/O operations to be performed by the IOC. These operations are queued on an Operational Request Queue by the host driver. Reply descriptors track I/O operations as they complete. The IOC queues these completions in an Operational Reply Queue. To fulfil large contiguous memory requirement, driver creates multiple segments and provide the list of segments. Each segment size should be 4K which is a hardware requirement. An element array is contiguous or segmented. A contiguous element array is located in contiguous physical memory. A contiguous element array must be aligned on an element size boundary. An element's physical address within the array may be directly calculated from the base address, the Producer/Consumer index, and the element size. Expected phased identifier bit is used to find out valid entry on reply queue. Driver sets <ephase> bit and IOC inverts the value of this bit on each pass. Link: https://lore.kernel.org/r/20210520152545.2710479-4-kashyap.desai@broadcom.com Cc: sathya.prakash@broadcom.com Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Tomas Henzl <thenzl@redhat.com> Reviewed-by: Himanshu Madhani <himanshu.madhani@oracle.com> Signed-off-by: Kashyap Desai <kashyap.desai@broadcom.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2021-05-20 23:25:24 +08:00
/*
* If only one MSI-x is allocated, then MSI-x 0 will be shared
* between Admin queue and operational queue
*/
if (i == 1)
mrioc->op_reply_q_offset = 0;
max_vectors = i;
}
mrioc->intr_info = kzalloc(sizeof(struct mpi3mr_intr_info) * max_vectors,
GFP_KERNEL);
if (!mrioc->intr_info) {
retval = -1;
pci_free_irq_vectors(mrioc->pdev);
goto out_failed;
}
for (i = 0; i < max_vectors; i++) {
retval = mpi3mr_request_irq(mrioc, i);
if (retval) {
mrioc->intr_info_count = i;
goto out_failed;
}
}
mrioc->intr_info_count = max_vectors;
mpi3mr_ioc_enable_intr(mrioc);
return retval;
out_failed:
mpi3mr_cleanup_isr(mrioc);
return retval;
}
static const struct {
enum mpi3mr_iocstate value;
char *name;
} mrioc_states[] = {
{ MRIOC_STATE_READY, "ready" },
{ MRIOC_STATE_FAULT, "fault" },
{ MRIOC_STATE_RESET, "reset" },
{ MRIOC_STATE_BECOMING_READY, "becoming ready" },
{ MRIOC_STATE_RESET_REQUESTED, "reset requested" },
{ MRIOC_STATE_UNRECOVERABLE, "unrecoverable error" },
};
static const char *mpi3mr_iocstate_name(enum mpi3mr_iocstate mrioc_state)
{
int i;
char *name = NULL;
for (i = 0; i < ARRAY_SIZE(mrioc_states); i++) {
if (mrioc_states[i].value == mrioc_state) {
name = mrioc_states[i].name;
break;
}
}
return name;
}
/**
* mpi3mr_print_fault_info - Display fault information
* @mrioc: Adapter instance reference
*
* Display the controller fault information if there is a
* controller fault.
*
* Return: Nothing.
*/
static void mpi3mr_print_fault_info(struct mpi3mr_ioc *mrioc)
{
u32 ioc_status, code, code1, code2, code3;
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
if (ioc_status & MPI3_SYSIF_IOC_STATUS_FAULT) {
code = readl(&mrioc->sysif_regs->fault);
code1 = readl(&mrioc->sysif_regs->fault_info[0]);
code2 = readl(&mrioc->sysif_regs->fault_info[1]);
code3 = readl(&mrioc->sysif_regs->fault_info[2]);
ioc_info(mrioc,
"fault code(0x%08X): Additional code: (0x%08X:0x%08X:0x%08X)\n",
code, code1, code2, code3);
}
}
/**
* mpi3mr_get_iocstate - Get IOC State
* @mrioc: Adapter instance reference
*
* Return a proper IOC state enum based on the IOC status and
* IOC configuration and unrcoverable state of the controller.
*
* Return: Current IOC state.
*/
enum mpi3mr_iocstate mpi3mr_get_iocstate(struct mpi3mr_ioc *mrioc)
{
u32 ioc_status, ioc_config;
u8 ready, enabled;
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
ioc_config = readl(&mrioc->sysif_regs->ioc_configuration);
if (mrioc->unrecoverable)
return MRIOC_STATE_UNRECOVERABLE;
if (ioc_status & MPI3_SYSIF_IOC_STATUS_FAULT)
return MRIOC_STATE_FAULT;
ready = (ioc_status & MPI3_SYSIF_IOC_STATUS_READY);
enabled = (ioc_config & MPI3_SYSIF_IOC_CONFIG_ENABLE_IOC);
if (ready && enabled)
return MRIOC_STATE_READY;
if ((!ready) && (!enabled))
return MRIOC_STATE_RESET;
if ((!ready) && (enabled))
return MRIOC_STATE_BECOMING_READY;
return MRIOC_STATE_RESET_REQUESTED;
}
/**
* mpi3mr_clear_reset_history - clear reset history
* @mrioc: Adapter instance reference
*
* Write the reset history bit in IOC status to clear the bit,
* if it is already set.
*
* Return: Nothing.
*/
static inline void mpi3mr_clear_reset_history(struct mpi3mr_ioc *mrioc)
{
u32 ioc_status;
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
if (ioc_status & MPI3_SYSIF_IOC_STATUS_RESET_HISTORY)
writel(ioc_status, &mrioc->sysif_regs->ioc_status);
}
/**
* mpi3mr_issue_and_process_mur - Message unit Reset handler
* @mrioc: Adapter instance reference
* @reset_reason: Reset reason code
*
* Issue Message unit Reset to the controller and wait for it to
* be complete.
*
* Return: 0 on success, -1 on failure.
*/
static int mpi3mr_issue_and_process_mur(struct mpi3mr_ioc *mrioc,
u32 reset_reason)
{
u32 ioc_config, timeout, ioc_status;
int retval = -1;
ioc_info(mrioc, "Issuing Message unit Reset(MUR)\n");
if (mrioc->unrecoverable) {
ioc_info(mrioc, "IOC is unrecoverable MUR not issued\n");
return retval;
}
mpi3mr_clear_reset_history(mrioc);
writel(reset_reason, &mrioc->sysif_regs->scratchpad[0]);
ioc_config = readl(&mrioc->sysif_regs->ioc_configuration);
ioc_config &= ~MPI3_SYSIF_IOC_CONFIG_ENABLE_IOC;
writel(ioc_config, &mrioc->sysif_regs->ioc_configuration);
timeout = mrioc->ready_timeout * 10;
do {
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
if ((ioc_status & MPI3_SYSIF_IOC_STATUS_RESET_HISTORY)) {
mpi3mr_clear_reset_history(mrioc);
ioc_config =
readl(&mrioc->sysif_regs->ioc_configuration);
if (!((ioc_status & MPI3_SYSIF_IOC_STATUS_READY) ||
(ioc_status & MPI3_SYSIF_IOC_STATUS_FAULT) ||
(ioc_config & MPI3_SYSIF_IOC_CONFIG_ENABLE_IOC))) {
retval = 0;
break;
}
}
msleep(100);
} while (--timeout);
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
ioc_config = readl(&mrioc->sysif_regs->ioc_configuration);
ioc_info(mrioc, "Base IOC Sts/Config after %s MUR is (0x%x)/(0x%x)\n",
(!retval) ? "successful" : "failed", ioc_status, ioc_config);
return retval;
}
/**
* mpi3mr_bring_ioc_ready - Bring controller to ready state
* @mrioc: Adapter instance reference
*
* Set Enable IOC bit in IOC configuration register and wait for
* the controller to become ready.
*
* Return: 0 on success, -1 on failure.
*/
static int mpi3mr_bring_ioc_ready(struct mpi3mr_ioc *mrioc)
{
u32 ioc_config, timeout;
enum mpi3mr_iocstate current_state;
ioc_config = readl(&mrioc->sysif_regs->ioc_configuration);
ioc_config |= MPI3_SYSIF_IOC_CONFIG_ENABLE_IOC;
writel(ioc_config, &mrioc->sysif_regs->ioc_configuration);
timeout = mrioc->ready_timeout * 10;
do {
current_state = mpi3mr_get_iocstate(mrioc);
if (current_state == MRIOC_STATE_READY)
return 0;
msleep(100);
} while (--timeout);
return -1;
}
/**
* mpi3mr_set_diagsave - Set diag save bit for snapdump
* @mrioc: Adapter reference
*
* Set diag save bit in IOC configuration register to enable
* snapdump.
*
* Return: Nothing.
*/
static inline void mpi3mr_set_diagsave(struct mpi3mr_ioc *mrioc)
{
u32 ioc_config;
ioc_config = readl(&mrioc->sysif_regs->ioc_configuration);
ioc_config |= MPI3_SYSIF_IOC_CONFIG_DIAG_SAVE;
writel(ioc_config, &mrioc->sysif_regs->ioc_configuration);
}
/**
* mpi3mr_issue_reset - Issue reset to the controller
* @mrioc: Adapter reference
* @reset_type: Reset type
* @reset_reason: Reset reason code
*
* TBD
*
* Return: 0 on success, non-zero on failure.
*/
static int mpi3mr_issue_reset(struct mpi3mr_ioc *mrioc, u16 reset_type,
u32 reset_reason)
{
return 0;
}
/**
* mpi3mr_admin_request_post - Post request to admin queue
* @mrioc: Adapter reference
* @admin_req: MPI3 request
* @admin_req_sz: Request size
* @ignore_reset: Ignore reset in process
*
* Post the MPI3 request into admin request queue and
* inform the controller, if the queue is full return
* appropriate error.
*
* Return: 0 on success, non-zero on failure.
*/
int mpi3mr_admin_request_post(struct mpi3mr_ioc *mrioc, void *admin_req,
u16 admin_req_sz, u8 ignore_reset)
{
u16 areq_pi = 0, areq_ci = 0, max_entries = 0;
int retval = 0;
unsigned long flags;
u8 *areq_entry;
if (mrioc->unrecoverable) {
ioc_err(mrioc, "%s : Unrecoverable controller\n", __func__);
return -EFAULT;
}
spin_lock_irqsave(&mrioc->admin_req_lock, flags);
areq_pi = mrioc->admin_req_pi;
areq_ci = mrioc->admin_req_ci;
max_entries = mrioc->num_admin_req;
if ((areq_ci == (areq_pi + 1)) || ((!areq_ci) &&
(areq_pi == (max_entries - 1)))) {
ioc_err(mrioc, "AdminReqQ full condition detected\n");
retval = -EAGAIN;
goto out;
}
if (!ignore_reset && mrioc->reset_in_progress) {
ioc_err(mrioc, "AdminReqQ submit reset in progress\n");
retval = -EAGAIN;
goto out;
}
areq_entry = (u8 *)mrioc->admin_req_base +
(areq_pi * MPI3MR_ADMIN_REQ_FRAME_SZ);
memset(areq_entry, 0, MPI3MR_ADMIN_REQ_FRAME_SZ);
memcpy(areq_entry, (u8 *)admin_req, admin_req_sz);
if (++areq_pi == max_entries)
areq_pi = 0;
mrioc->admin_req_pi = areq_pi;
writel(mrioc->admin_req_pi, &mrioc->sysif_regs->admin_request_queue_pi);
out:
spin_unlock_irqrestore(&mrioc->admin_req_lock, flags);
return retval;
}
scsi: mpi3mr: Create operational request and reply queue pair Create operational request and reply queue pair. The MPI3 transport interface consists of an Administrative Request Queue, an Administrative Reply Queue, and Operational Messaging Queues. The Operational Messaging Queues are the primary communication mechanism between the host and the I/O Controller (IOC). Request messages, allocated in host memory, identify I/O operations to be performed by the IOC. These operations are queued on an Operational Request Queue by the host driver. Reply descriptors track I/O operations as they complete. The IOC queues these completions in an Operational Reply Queue. To fulfil large contiguous memory requirement, driver creates multiple segments and provide the list of segments. Each segment size should be 4K which is a hardware requirement. An element array is contiguous or segmented. A contiguous element array is located in contiguous physical memory. A contiguous element array must be aligned on an element size boundary. An element's physical address within the array may be directly calculated from the base address, the Producer/Consumer index, and the element size. Expected phased identifier bit is used to find out valid entry on reply queue. Driver sets <ephase> bit and IOC inverts the value of this bit on each pass. Link: https://lore.kernel.org/r/20210520152545.2710479-4-kashyap.desai@broadcom.com Cc: sathya.prakash@broadcom.com Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Tomas Henzl <thenzl@redhat.com> Reviewed-by: Himanshu Madhani <himanshu.madhani@oracle.com> Signed-off-by: Kashyap Desai <kashyap.desai@broadcom.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2021-05-20 23:25:24 +08:00
/**
* mpi3mr_free_op_req_q_segments - free request memory segments
* @mrioc: Adapter instance reference
* @q_idx: operational request queue index
*
* Free memory segments allocated for operational request queue
*
* Return: Nothing.
*/
static void mpi3mr_free_op_req_q_segments(struct mpi3mr_ioc *mrioc, u16 q_idx)
{
u16 j;
int size;
struct segments *segments;
segments = mrioc->req_qinfo[q_idx].q_segments;
if (!segments)
return;
if (mrioc->enable_segqueue) {
size = MPI3MR_OP_REQ_Q_SEG_SIZE;
if (mrioc->req_qinfo[q_idx].q_segment_list) {
dma_free_coherent(&mrioc->pdev->dev,
MPI3MR_MAX_SEG_LIST_SIZE,
mrioc->req_qinfo[q_idx].q_segment_list,
mrioc->req_qinfo[q_idx].q_segment_list_dma);
mrioc->op_reply_qinfo[q_idx].q_segment_list = NULL;
}
} else
size = mrioc->req_qinfo[q_idx].num_requests *
mrioc->facts.op_req_sz;
for (j = 0; j < mrioc->req_qinfo[q_idx].num_segments; j++) {
if (!segments[j].segment)
continue;
dma_free_coherent(&mrioc->pdev->dev,
size, segments[j].segment, segments[j].segment_dma);
segments[j].segment = NULL;
}
kfree(mrioc->req_qinfo[q_idx].q_segments);
mrioc->req_qinfo[q_idx].q_segments = NULL;
mrioc->req_qinfo[q_idx].qid = 0;
}
/**
* mpi3mr_free_op_reply_q_segments - free reply memory segments
* @mrioc: Adapter instance reference
* @q_idx: operational reply queue index
*
* Free memory segments allocated for operational reply queue
*
* Return: Nothing.
*/
static void mpi3mr_free_op_reply_q_segments(struct mpi3mr_ioc *mrioc, u16 q_idx)
{
u16 j;
int size;
struct segments *segments;
segments = mrioc->op_reply_qinfo[q_idx].q_segments;
if (!segments)
return;
if (mrioc->enable_segqueue) {
size = MPI3MR_OP_REP_Q_SEG_SIZE;
if (mrioc->op_reply_qinfo[q_idx].q_segment_list) {
dma_free_coherent(&mrioc->pdev->dev,
MPI3MR_MAX_SEG_LIST_SIZE,
mrioc->op_reply_qinfo[q_idx].q_segment_list,
mrioc->op_reply_qinfo[q_idx].q_segment_list_dma);
mrioc->op_reply_qinfo[q_idx].q_segment_list = NULL;
}
} else
size = mrioc->op_reply_qinfo[q_idx].segment_qd *
mrioc->op_reply_desc_sz;
for (j = 0; j < mrioc->op_reply_qinfo[q_idx].num_segments; j++) {
if (!segments[j].segment)
continue;
dma_free_coherent(&mrioc->pdev->dev,
size, segments[j].segment, segments[j].segment_dma);
segments[j].segment = NULL;
}
kfree(mrioc->op_reply_qinfo[q_idx].q_segments);
mrioc->op_reply_qinfo[q_idx].q_segments = NULL;
mrioc->op_reply_qinfo[q_idx].qid = 0;
}
/**
* mpi3mr_delete_op_reply_q - delete operational reply queue
* @mrioc: Adapter instance reference
* @qidx: operational reply queue index
*
* Delete operatinal reply queue by issuing MPI request
* through admin queue.
*
* Return: 0 on success, non-zero on failure.
*/
static int mpi3mr_delete_op_reply_q(struct mpi3mr_ioc *mrioc, u16 qidx)
{
struct mpi3_delete_reply_queue_request delq_req;
int retval = 0;
u16 reply_qid = 0, midx;
reply_qid = mrioc->op_reply_qinfo[qidx].qid;
midx = REPLY_QUEUE_IDX_TO_MSIX_IDX(qidx, mrioc->op_reply_q_offset);
if (!reply_qid) {
retval = -1;
ioc_err(mrioc, "Issue DelRepQ: called with invalid ReqQID\n");
goto out;
}
memset(&delq_req, 0, sizeof(delq_req));
mutex_lock(&mrioc->init_cmds.mutex);
if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
retval = -1;
ioc_err(mrioc, "Issue DelRepQ: Init command is in use\n");
mutex_unlock(&mrioc->init_cmds.mutex);
goto out;
}
mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
mrioc->init_cmds.is_waiting = 1;
mrioc->init_cmds.callback = NULL;
delq_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
delq_req.function = MPI3_FUNCTION_DELETE_REPLY_QUEUE;
delq_req.queue_id = cpu_to_le16(reply_qid);
init_completion(&mrioc->init_cmds.done);
retval = mpi3mr_admin_request_post(mrioc, &delq_req, sizeof(delq_req),
1);
if (retval) {
ioc_err(mrioc, "Issue DelRepQ: Admin Post failed\n");
goto out_unlock;
}
wait_for_completion_timeout(&mrioc->init_cmds.done,
(MPI3MR_INTADMCMD_TIMEOUT * HZ));
if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
ioc_err(mrioc, "Issue DelRepQ: command timed out\n");
mpi3mr_set_diagsave(mrioc);
mpi3mr_issue_reset(mrioc,
MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT,
MPI3MR_RESET_FROM_DELREPQ_TIMEOUT);
mrioc->unrecoverable = 1;
retval = -1;
goto out_unlock;
}
if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
!= MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc,
"Issue DelRepQ: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n",
(mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
mrioc->init_cmds.ioc_loginfo);
retval = -1;
goto out_unlock;
}
mrioc->intr_info[midx].op_reply_q = NULL;
mpi3mr_free_op_reply_q_segments(mrioc, qidx);
out_unlock:
mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
mutex_unlock(&mrioc->init_cmds.mutex);
out:
return retval;
}
/**
* mpi3mr_alloc_op_reply_q_segments -Alloc segmented reply pool
* @mrioc: Adapter instance reference
* @qidx: request queue index
*
* Allocate segmented memory pools for operational reply
* queue.
*
* Return: 0 on success, non-zero on failure.
*/
static int mpi3mr_alloc_op_reply_q_segments(struct mpi3mr_ioc *mrioc, u16 qidx)
{
struct op_reply_qinfo *op_reply_q = mrioc->op_reply_qinfo + qidx;
int i, size;
u64 *q_segment_list_entry = NULL;
struct segments *segments;
if (mrioc->enable_segqueue) {
op_reply_q->segment_qd =
MPI3MR_OP_REP_Q_SEG_SIZE / mrioc->op_reply_desc_sz;
size = MPI3MR_OP_REP_Q_SEG_SIZE;
op_reply_q->q_segment_list = dma_alloc_coherent(&mrioc->pdev->dev,
MPI3MR_MAX_SEG_LIST_SIZE, &op_reply_q->q_segment_list_dma,
GFP_KERNEL);
if (!op_reply_q->q_segment_list)
return -ENOMEM;
q_segment_list_entry = (u64 *)op_reply_q->q_segment_list;
} else {
op_reply_q->segment_qd = op_reply_q->num_replies;
size = op_reply_q->num_replies * mrioc->op_reply_desc_sz;
}
op_reply_q->num_segments = DIV_ROUND_UP(op_reply_q->num_replies,
op_reply_q->segment_qd);
op_reply_q->q_segments = kcalloc(op_reply_q->num_segments,
sizeof(struct segments), GFP_KERNEL);
if (!op_reply_q->q_segments)
return -ENOMEM;
segments = op_reply_q->q_segments;
for (i = 0; i < op_reply_q->num_segments; i++) {
segments[i].segment =
dma_alloc_coherent(&mrioc->pdev->dev,
size, &segments[i].segment_dma, GFP_KERNEL);
if (!segments[i].segment)
return -ENOMEM;
if (mrioc->enable_segqueue)
q_segment_list_entry[i] =
(unsigned long)segments[i].segment_dma;
}
return 0;
}
/**
* mpi3mr_alloc_op_req_q_segments - Alloc segmented req pool.
* @mrioc: Adapter instance reference
* @qidx: request queue index
*
* Allocate segmented memory pools for operational request
* queue.
*
* Return: 0 on success, non-zero on failure.
*/
static int mpi3mr_alloc_op_req_q_segments(struct mpi3mr_ioc *mrioc, u16 qidx)
{
struct op_req_qinfo *op_req_q = mrioc->req_qinfo + qidx;
int i, size;
u64 *q_segment_list_entry = NULL;
struct segments *segments;
if (mrioc->enable_segqueue) {
op_req_q->segment_qd =
MPI3MR_OP_REQ_Q_SEG_SIZE / mrioc->facts.op_req_sz;
size = MPI3MR_OP_REQ_Q_SEG_SIZE;
op_req_q->q_segment_list = dma_alloc_coherent(&mrioc->pdev->dev,
MPI3MR_MAX_SEG_LIST_SIZE, &op_req_q->q_segment_list_dma,
GFP_KERNEL);
if (!op_req_q->q_segment_list)
return -ENOMEM;
q_segment_list_entry = (u64 *)op_req_q->q_segment_list;
} else {
op_req_q->segment_qd = op_req_q->num_requests;
size = op_req_q->num_requests * mrioc->facts.op_req_sz;
}
op_req_q->num_segments = DIV_ROUND_UP(op_req_q->num_requests,
op_req_q->segment_qd);
op_req_q->q_segments = kcalloc(op_req_q->num_segments,
sizeof(struct segments), GFP_KERNEL);
if (!op_req_q->q_segments)
return -ENOMEM;
segments = op_req_q->q_segments;
for (i = 0; i < op_req_q->num_segments; i++) {
segments[i].segment =
dma_alloc_coherent(&mrioc->pdev->dev,
size, &segments[i].segment_dma, GFP_KERNEL);
if (!segments[i].segment)
return -ENOMEM;
if (mrioc->enable_segqueue)
q_segment_list_entry[i] =
(unsigned long)segments[i].segment_dma;
}
return 0;
}
/**
* mpi3mr_create_op_reply_q - create operational reply queue
* @mrioc: Adapter instance reference
* @qidx: operational reply queue index
*
* Create operatinal reply queue by issuing MPI request
* through admin queue.
*
* Return: 0 on success, non-zero on failure.
*/
static int mpi3mr_create_op_reply_q(struct mpi3mr_ioc *mrioc, u16 qidx)
{
struct mpi3_create_reply_queue_request create_req;
struct op_reply_qinfo *op_reply_q = mrioc->op_reply_qinfo + qidx;
int retval = 0;
u16 reply_qid = 0, midx;
reply_qid = op_reply_q->qid;
midx = REPLY_QUEUE_IDX_TO_MSIX_IDX(qidx, mrioc->op_reply_q_offset);
if (reply_qid) {
retval = -1;
ioc_err(mrioc, "CreateRepQ: called for duplicate qid %d\n",
reply_qid);
return retval;
}
reply_qid = qidx + 1;
op_reply_q->num_replies = MPI3MR_OP_REP_Q_QD;
op_reply_q->ci = 0;
op_reply_q->ephase = 1;
if (!op_reply_q->q_segments) {
retval = mpi3mr_alloc_op_reply_q_segments(mrioc, qidx);
if (retval) {
mpi3mr_free_op_reply_q_segments(mrioc, qidx);
goto out;
}
}
memset(&create_req, 0, sizeof(create_req));
mutex_lock(&mrioc->init_cmds.mutex);
if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
retval = -1;
ioc_err(mrioc, "CreateRepQ: Init command is in use\n");
goto out;
}
mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
mrioc->init_cmds.is_waiting = 1;
mrioc->init_cmds.callback = NULL;
create_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
create_req.function = MPI3_FUNCTION_CREATE_REPLY_QUEUE;
create_req.queue_id = cpu_to_le16(reply_qid);
create_req.flags = MPI3_CREATE_REPLY_QUEUE_FLAGS_INT_ENABLE_ENABLE;
create_req.msix_index = cpu_to_le16(mrioc->intr_info[midx].msix_index);
if (mrioc->enable_segqueue) {
create_req.flags |=
MPI3_CREATE_REQUEST_QUEUE_FLAGS_SEGMENTED_SEGMENTED;
create_req.base_address = cpu_to_le64(
op_reply_q->q_segment_list_dma);
} else
create_req.base_address = cpu_to_le64(
op_reply_q->q_segments[0].segment_dma);
create_req.size = cpu_to_le16(op_reply_q->num_replies);
init_completion(&mrioc->init_cmds.done);
retval = mpi3mr_admin_request_post(mrioc, &create_req,
sizeof(create_req), 1);
if (retval) {
ioc_err(mrioc, "CreateRepQ: Admin Post failed\n");
goto out_unlock;
}
wait_for_completion_timeout(&mrioc->init_cmds.done,
(MPI3MR_INTADMCMD_TIMEOUT * HZ));
if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
ioc_err(mrioc, "CreateRepQ: command timed out\n");
mpi3mr_set_diagsave(mrioc);
mpi3mr_issue_reset(mrioc,
MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT,
MPI3MR_RESET_FROM_CREATEREPQ_TIMEOUT);
mrioc->unrecoverable = 1;
retval = -1;
goto out_unlock;
}
if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
!= MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc,
"CreateRepQ: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n",
(mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
mrioc->init_cmds.ioc_loginfo);
retval = -1;
goto out_unlock;
}
op_reply_q->qid = reply_qid;
mrioc->intr_info[midx].op_reply_q = op_reply_q;
out_unlock:
mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
mutex_unlock(&mrioc->init_cmds.mutex);
out:
return retval;
}
/**
* mpi3mr_create_op_req_q - create operational request queue
* @mrioc: Adapter instance reference
* @idx: operational request queue index
* @reply_qid: Reply queue ID
*
* Create operatinal request queue by issuing MPI request
* through admin queue.
*
* Return: 0 on success, non-zero on failure.
*/
static int mpi3mr_create_op_req_q(struct mpi3mr_ioc *mrioc, u16 idx,
u16 reply_qid)
{
struct mpi3_create_request_queue_request create_req;
struct op_req_qinfo *op_req_q = mrioc->req_qinfo + idx;
int retval = 0;
u16 req_qid = 0;
req_qid = op_req_q->qid;
if (req_qid) {
retval = -1;
ioc_err(mrioc, "CreateReqQ: called for duplicate qid %d\n",
req_qid);
return retval;
}
req_qid = idx + 1;
op_req_q->num_requests = MPI3MR_OP_REQ_Q_QD;
op_req_q->ci = 0;
op_req_q->pi = 0;
op_req_q->reply_qid = reply_qid;
spin_lock_init(&op_req_q->q_lock);
if (!op_req_q->q_segments) {
retval = mpi3mr_alloc_op_req_q_segments(mrioc, idx);
if (retval) {
mpi3mr_free_op_req_q_segments(mrioc, idx);
goto out;
}
}
memset(&create_req, 0, sizeof(create_req));
mutex_lock(&mrioc->init_cmds.mutex);
if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
retval = -1;
ioc_err(mrioc, "CreateReqQ: Init command is in use\n");
goto out;
}
mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
mrioc->init_cmds.is_waiting = 1;
mrioc->init_cmds.callback = NULL;
create_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
create_req.function = MPI3_FUNCTION_CREATE_REQUEST_QUEUE;
create_req.queue_id = cpu_to_le16(req_qid);
if (mrioc->enable_segqueue) {
create_req.flags =
MPI3_CREATE_REQUEST_QUEUE_FLAGS_SEGMENTED_SEGMENTED;
create_req.base_address = cpu_to_le64(
op_req_q->q_segment_list_dma);
} else
create_req.base_address = cpu_to_le64(
op_req_q->q_segments[0].segment_dma);
create_req.reply_queue_id = cpu_to_le16(reply_qid);
create_req.size = cpu_to_le16(op_req_q->num_requests);
init_completion(&mrioc->init_cmds.done);
retval = mpi3mr_admin_request_post(mrioc, &create_req,
sizeof(create_req), 1);
if (retval) {
ioc_err(mrioc, "CreateReqQ: Admin Post failed\n");
goto out_unlock;
}
wait_for_completion_timeout(&mrioc->init_cmds.done,
(MPI3MR_INTADMCMD_TIMEOUT * HZ));
if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
ioc_err(mrioc, "CreateReqQ: command timed out\n");
mpi3mr_set_diagsave(mrioc);
if (mpi3mr_issue_reset(mrioc,
MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT,
MPI3MR_RESET_FROM_CREATEREQQ_TIMEOUT))
mrioc->unrecoverable = 1;
retval = -1;
goto out_unlock;
}
if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
!= MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc,
"CreateReqQ: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n",
(mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
mrioc->init_cmds.ioc_loginfo);
retval = -1;
goto out_unlock;
}
op_req_q->qid = req_qid;
out_unlock:
mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
mutex_unlock(&mrioc->init_cmds.mutex);
out:
return retval;
}
/**
* mpi3mr_create_op_queues - create operational queue pairs
* @mrioc: Adapter instance reference
*
* Allocate memory for operational queue meta data and call
* create request and reply queue functions.
*
* Return: 0 on success, non-zero on failures.
*/
static int mpi3mr_create_op_queues(struct mpi3mr_ioc *mrioc)
{
int retval = 0;
u16 num_queues = 0, i = 0, msix_count_op_q = 1;
num_queues = min_t(int, mrioc->facts.max_op_reply_q,
mrioc->facts.max_op_req_q);
msix_count_op_q =
mrioc->intr_info_count - mrioc->op_reply_q_offset;
if (!mrioc->num_queues)
mrioc->num_queues = min_t(int, num_queues, msix_count_op_q);
num_queues = mrioc->num_queues;
ioc_info(mrioc, "Trying to create %d Operational Q pairs\n",
num_queues);
if (!mrioc->req_qinfo) {
mrioc->req_qinfo = kcalloc(num_queues,
sizeof(struct op_req_qinfo), GFP_KERNEL);
if (!mrioc->req_qinfo) {
retval = -1;
goto out_failed;
}
mrioc->op_reply_qinfo = kzalloc(sizeof(struct op_reply_qinfo) *
num_queues, GFP_KERNEL);
if (!mrioc->op_reply_qinfo) {
retval = -1;
goto out_failed;
}
}
if (mrioc->enable_segqueue)
ioc_info(mrioc,
"allocating operational queues through segmented queues\n");
for (i = 0; i < num_queues; i++) {
if (mpi3mr_create_op_reply_q(mrioc, i)) {
ioc_err(mrioc, "Cannot create OP RepQ %d\n", i);
break;
}
if (mpi3mr_create_op_req_q(mrioc, i,
mrioc->op_reply_qinfo[i].qid)) {
ioc_err(mrioc, "Cannot create OP ReqQ %d\n", i);
mpi3mr_delete_op_reply_q(mrioc, i);
break;
}
}
if (i == 0) {
/* Not even one queue is created successfully*/
retval = -1;
goto out_failed;
}
mrioc->num_op_reply_q = mrioc->num_op_req_q = i;
ioc_info(mrioc, "Successfully created %d Operational Q pairs\n",
mrioc->num_op_reply_q);
return retval;
out_failed:
kfree(mrioc->req_qinfo);
mrioc->req_qinfo = NULL;
kfree(mrioc->op_reply_qinfo);
mrioc->op_reply_qinfo = NULL;
return retval;
}
/**
* mpi3mr_setup_admin_qpair - Setup admin queue pair
* @mrioc: Adapter instance reference
*
* Allocate memory for admin queue pair if required and register
* the admin queue with the controller.
*
* Return: 0 on success, non-zero on failures.
*/
static int mpi3mr_setup_admin_qpair(struct mpi3mr_ioc *mrioc)
{
int retval = 0;
u32 num_admin_entries = 0;
mrioc->admin_req_q_sz = MPI3MR_ADMIN_REQ_Q_SIZE;
mrioc->num_admin_req = mrioc->admin_req_q_sz /
MPI3MR_ADMIN_REQ_FRAME_SZ;
mrioc->admin_req_ci = mrioc->admin_req_pi = 0;
mrioc->admin_req_base = NULL;
mrioc->admin_reply_q_sz = MPI3MR_ADMIN_REPLY_Q_SIZE;
mrioc->num_admin_replies = mrioc->admin_reply_q_sz /
MPI3MR_ADMIN_REPLY_FRAME_SZ;
mrioc->admin_reply_ci = 0;
mrioc->admin_reply_ephase = 1;
mrioc->admin_reply_base = NULL;
if (!mrioc->admin_req_base) {
mrioc->admin_req_base = dma_alloc_coherent(&mrioc->pdev->dev,
mrioc->admin_req_q_sz, &mrioc->admin_req_dma, GFP_KERNEL);
if (!mrioc->admin_req_base) {
retval = -1;
goto out_failed;
}
mrioc->admin_reply_base = dma_alloc_coherent(&mrioc->pdev->dev,
mrioc->admin_reply_q_sz, &mrioc->admin_reply_dma,
GFP_KERNEL);
if (!mrioc->admin_reply_base) {
retval = -1;
goto out_failed;
}
}
num_admin_entries = (mrioc->num_admin_replies << 16) |
(mrioc->num_admin_req);
writel(num_admin_entries, &mrioc->sysif_regs->admin_queue_num_entries);
mpi3mr_writeq(mrioc->admin_req_dma,
&mrioc->sysif_regs->admin_request_queue_address);
mpi3mr_writeq(mrioc->admin_reply_dma,
&mrioc->sysif_regs->admin_reply_queue_address);
writel(mrioc->admin_req_pi, &mrioc->sysif_regs->admin_request_queue_pi);
writel(mrioc->admin_reply_ci, &mrioc->sysif_regs->admin_reply_queue_ci);
return retval;
out_failed:
if (mrioc->admin_reply_base) {
dma_free_coherent(&mrioc->pdev->dev, mrioc->admin_reply_q_sz,
mrioc->admin_reply_base, mrioc->admin_reply_dma);
mrioc->admin_reply_base = NULL;
}
if (mrioc->admin_req_base) {
dma_free_coherent(&mrioc->pdev->dev, mrioc->admin_req_q_sz,
mrioc->admin_req_base, mrioc->admin_req_dma);
mrioc->admin_req_base = NULL;
}
return retval;
}
/**
* mpi3mr_issue_iocfacts - Send IOC Facts
* @mrioc: Adapter instance reference
* @facts_data: Cached IOC facts data
*
* Issue IOC Facts MPI request through admin queue and wait for
* the completion of it or time out.
*
* Return: 0 on success, non-zero on failures.
*/
static int mpi3mr_issue_iocfacts(struct mpi3mr_ioc *mrioc,
struct mpi3_ioc_facts_data *facts_data)
{
struct mpi3_ioc_facts_request iocfacts_req;
void *data = NULL;
dma_addr_t data_dma;
u32 data_len = sizeof(*facts_data);
int retval = 0;
u8 sgl_flags = MPI3MR_SGEFLAGS_SYSTEM_SIMPLE_END_OF_LIST;
data = dma_alloc_coherent(&mrioc->pdev->dev, data_len, &data_dma,
GFP_KERNEL);
if (!data) {
retval = -1;
goto out;
}
memset(&iocfacts_req, 0, sizeof(iocfacts_req));
mutex_lock(&mrioc->init_cmds.mutex);
if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
retval = -1;
ioc_err(mrioc, "Issue IOCFacts: Init command is in use\n");
mutex_unlock(&mrioc->init_cmds.mutex);
goto out;
}
mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
mrioc->init_cmds.is_waiting = 1;
mrioc->init_cmds.callback = NULL;
iocfacts_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
iocfacts_req.function = MPI3_FUNCTION_IOC_FACTS;
mpi3mr_add_sg_single(&iocfacts_req.sgl, sgl_flags, data_len,
data_dma);
init_completion(&mrioc->init_cmds.done);
retval = mpi3mr_admin_request_post(mrioc, &iocfacts_req,
sizeof(iocfacts_req), 1);
if (retval) {
ioc_err(mrioc, "Issue IOCFacts: Admin Post failed\n");
goto out_unlock;
}
wait_for_completion_timeout(&mrioc->init_cmds.done,
(MPI3MR_INTADMCMD_TIMEOUT * HZ));
if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
ioc_err(mrioc, "Issue IOCFacts: command timed out\n");
mpi3mr_set_diagsave(mrioc);
mpi3mr_issue_reset(mrioc,
MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT,
MPI3MR_RESET_FROM_IOCFACTS_TIMEOUT);
mrioc->unrecoverable = 1;
retval = -1;
goto out_unlock;
}
if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
!= MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc,
"Issue IOCFacts: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n",
(mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
mrioc->init_cmds.ioc_loginfo);
retval = -1;
goto out_unlock;
}
memcpy(facts_data, (u8 *)data, data_len);
out_unlock:
mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
mutex_unlock(&mrioc->init_cmds.mutex);
out:
if (data)
dma_free_coherent(&mrioc->pdev->dev, data_len, data, data_dma);
return retval;
}
/**
* mpi3mr_check_reset_dma_mask - Process IOC facts data
* @mrioc: Adapter instance reference
*
* Check whether the new DMA mask requested through IOCFacts by
* firmware needs to be set, if so set it .
*
* Return: 0 on success, non-zero on failure.
*/
static inline int mpi3mr_check_reset_dma_mask(struct mpi3mr_ioc *mrioc)
{
struct pci_dev *pdev = mrioc->pdev;
int r;
u64 facts_dma_mask = DMA_BIT_MASK(mrioc->facts.dma_mask);
if (!mrioc->facts.dma_mask || (mrioc->dma_mask <= facts_dma_mask))
return 0;
ioc_info(mrioc, "Changing DMA mask from 0x%016llx to 0x%016llx\n",
mrioc->dma_mask, facts_dma_mask);
r = dma_set_mask_and_coherent(&pdev->dev, facts_dma_mask);
if (r) {
ioc_err(mrioc, "Setting DMA mask to 0x%016llx failed: %d\n",
facts_dma_mask, r);
return r;
}
mrioc->dma_mask = facts_dma_mask;
return r;
}
/**
* mpi3mr_process_factsdata - Process IOC facts data
* @mrioc: Adapter instance reference
* @facts_data: Cached IOC facts data
*
* Convert IOC facts data into cpu endianness and cache it in
* the driver .
*
* Return: Nothing.
*/
static void mpi3mr_process_factsdata(struct mpi3mr_ioc *mrioc,
struct mpi3_ioc_facts_data *facts_data)
{
u32 ioc_config, req_sz, facts_flags;
if ((le16_to_cpu(facts_data->ioc_facts_data_length)) !=
(sizeof(*facts_data) / 4)) {
ioc_warn(mrioc,
"IOCFactsdata length mismatch driver_sz(%zu) firmware_sz(%d)\n",
sizeof(*facts_data),
le16_to_cpu(facts_data->ioc_facts_data_length) * 4);
}
ioc_config = readl(&mrioc->sysif_regs->ioc_configuration);
req_sz = 1 << ((ioc_config & MPI3_SYSIF_IOC_CONFIG_OPER_REQ_ENT_SZ) >>
MPI3_SYSIF_IOC_CONFIG_OPER_REQ_ENT_SZ_SHIFT);
if (le16_to_cpu(facts_data->ioc_request_frame_size) != (req_sz / 4)) {
ioc_err(mrioc,
"IOCFacts data reqFrameSize mismatch hw_size(%d) firmware_sz(%d)\n",
req_sz / 4, le16_to_cpu(facts_data->ioc_request_frame_size));
}
memset(&mrioc->facts, 0, sizeof(mrioc->facts));
facts_flags = le32_to_cpu(facts_data->flags);
mrioc->facts.op_req_sz = req_sz;
mrioc->op_reply_desc_sz = 1 << ((ioc_config &
MPI3_SYSIF_IOC_CONFIG_OPER_RPY_ENT_SZ) >>
MPI3_SYSIF_IOC_CONFIG_OPER_RPY_ENT_SZ_SHIFT);
mrioc->facts.ioc_num = facts_data->ioc_number;
mrioc->facts.who_init = facts_data->who_init;
mrioc->facts.max_msix_vectors = le16_to_cpu(facts_data->max_msix_vectors);
mrioc->facts.personality = (facts_flags &
MPI3_IOCFACTS_FLAGS_PERSONALITY_MASK);
mrioc->facts.dma_mask = (facts_flags &
MPI3_IOCFACTS_FLAGS_DMA_ADDRESS_WIDTH_MASK) >>
MPI3_IOCFACTS_FLAGS_DMA_ADDRESS_WIDTH_SHIFT;
mrioc->facts.protocol_flags = facts_data->protocol_flags;
mrioc->facts.mpi_version = le32_to_cpu(facts_data->mpi_version.word);
mrioc->facts.max_reqs = le16_to_cpu(facts_data->max_outstanding_request);
mrioc->facts.product_id = le16_to_cpu(facts_data->product_id);
mrioc->facts.reply_sz = le16_to_cpu(facts_data->reply_frame_size) * 4;
mrioc->facts.exceptions = le16_to_cpu(facts_data->ioc_exceptions);
mrioc->facts.max_perids = le16_to_cpu(facts_data->max_persistent_id);
mrioc->facts.max_pds = le16_to_cpu(facts_data->max_pds);
mrioc->facts.max_vds = le16_to_cpu(facts_data->max_vds);
mrioc->facts.max_hpds = le16_to_cpu(facts_data->max_host_pds);
mrioc->facts.max_advhpds = le16_to_cpu(facts_data->max_advanced_host_pds);
mrioc->facts.max_raidpds = le16_to_cpu(facts_data->max_raid_pds);
mrioc->facts.max_nvme = le16_to_cpu(facts_data->max_nvme);
mrioc->facts.max_pcie_switches =
le16_to_cpu(facts_data->max_pc_ie_switches);
mrioc->facts.max_sasexpanders =
le16_to_cpu(facts_data->max_sas_expanders);
mrioc->facts.max_sasinitiators =
le16_to_cpu(facts_data->max_sas_initiators);
mrioc->facts.max_enclosures = le16_to_cpu(facts_data->max_enclosures);
mrioc->facts.min_devhandle = le16_to_cpu(facts_data->min_dev_handle);
mrioc->facts.max_devhandle = le16_to_cpu(facts_data->max_dev_handle);
mrioc->facts.max_op_req_q =
le16_to_cpu(facts_data->max_operational_request_queues);
mrioc->facts.max_op_reply_q =
le16_to_cpu(facts_data->max_operational_reply_queues);
mrioc->facts.ioc_capabilities =
le32_to_cpu(facts_data->ioc_capabilities);
mrioc->facts.fw_ver.build_num =
le16_to_cpu(facts_data->fw_version.build_num);
mrioc->facts.fw_ver.cust_id =
le16_to_cpu(facts_data->fw_version.customer_id);
mrioc->facts.fw_ver.ph_minor = facts_data->fw_version.phase_minor;
mrioc->facts.fw_ver.ph_major = facts_data->fw_version.phase_major;
mrioc->facts.fw_ver.gen_minor = facts_data->fw_version.gen_minor;
mrioc->facts.fw_ver.gen_major = facts_data->fw_version.gen_major;
mrioc->msix_count = min_t(int, mrioc->msix_count,
mrioc->facts.max_msix_vectors);
mrioc->facts.sge_mod_mask = facts_data->sge_modifier_mask;
mrioc->facts.sge_mod_value = facts_data->sge_modifier_value;
mrioc->facts.sge_mod_shift = facts_data->sge_modifier_shift;
mrioc->facts.shutdown_timeout =
le16_to_cpu(facts_data->shutdown_timeout);
ioc_info(mrioc, "ioc_num(%d), maxopQ(%d), maxopRepQ(%d), maxdh(%d),",
mrioc->facts.ioc_num, mrioc->facts.max_op_req_q,
mrioc->facts.max_op_reply_q, mrioc->facts.max_devhandle);
ioc_info(mrioc,
"maxreqs(%d), mindh(%d) maxPDs(%d) maxvectors(%d) maxperids(%d)\n",
mrioc->facts.max_reqs, mrioc->facts.min_devhandle,
mrioc->facts.max_pds, mrioc->facts.max_msix_vectors,
mrioc->facts.max_perids);
ioc_info(mrioc, "SGEModMask 0x%x SGEModVal 0x%x SGEModShift 0x%x ",
mrioc->facts.sge_mod_mask, mrioc->facts.sge_mod_value,
mrioc->facts.sge_mod_shift);
ioc_info(mrioc, "DMA mask %d InitialPE status 0x%x\n",
mrioc->facts.dma_mask, (facts_flags &
MPI3_IOCFACTS_FLAGS_INITIAL_PORT_ENABLE_MASK));
mrioc->max_host_ios = mrioc->facts.max_reqs - MPI3MR_INTERNAL_CMDS_RESVD;
if (reset_devices)
mrioc->max_host_ios = min_t(int, mrioc->max_host_ios,
MPI3MR_HOST_IOS_KDUMP);
}
/**
* mpi3mr_alloc_reply_sense_bufs - Send IOC Init
* @mrioc: Adapter instance reference
*
* Allocate and initialize the reply free buffers, sense
* buffers, reply free queue and sense buffer queue.
*
* Return: 0 on success, non-zero on failures.
*/
static int mpi3mr_alloc_reply_sense_bufs(struct mpi3mr_ioc *mrioc)
{
int retval = 0;
u32 sz, i;
dma_addr_t phy_addr;
if (mrioc->init_cmds.reply)
goto post_reply_sbuf;
mrioc->init_cmds.reply = kzalloc(mrioc->facts.reply_sz, GFP_KERNEL);
if (!mrioc->init_cmds.reply)
goto out_failed;
mrioc->num_reply_bufs = mrioc->facts.max_reqs + MPI3MR_NUM_EVT_REPLIES;
mrioc->reply_free_qsz = mrioc->num_reply_bufs + 1;
mrioc->num_sense_bufs = mrioc->facts.max_reqs / MPI3MR_SENSEBUF_FACTOR;
mrioc->sense_buf_q_sz = mrioc->num_sense_bufs + 1;
/* reply buffer pool, 16 byte align */
sz = mrioc->num_reply_bufs * mrioc->facts.reply_sz;
mrioc->reply_buf_pool = dma_pool_create("reply_buf pool",
&mrioc->pdev->dev, sz, 16, 0);
if (!mrioc->reply_buf_pool) {
ioc_err(mrioc, "reply buf pool: dma_pool_create failed\n");
goto out_failed;
}
mrioc->reply_buf = dma_pool_zalloc(mrioc->reply_buf_pool, GFP_KERNEL,
&mrioc->reply_buf_dma);
if (!mrioc->reply_buf)
goto out_failed;
mrioc->reply_buf_dma_max_address = mrioc->reply_buf_dma + sz;
/* reply free queue, 8 byte align */
sz = mrioc->reply_free_qsz * 8;
mrioc->reply_free_q_pool = dma_pool_create("reply_free_q pool",
&mrioc->pdev->dev, sz, 8, 0);
if (!mrioc->reply_free_q_pool) {
ioc_err(mrioc, "reply_free_q pool: dma_pool_create failed\n");
goto out_failed;
}
mrioc->reply_free_q = dma_pool_zalloc(mrioc->reply_free_q_pool,
GFP_KERNEL, &mrioc->reply_free_q_dma);
if (!mrioc->reply_free_q)
goto out_failed;
/* sense buffer pool, 4 byte align */
sz = mrioc->num_sense_bufs * MPI3MR_SENSEBUF_SZ;
mrioc->sense_buf_pool = dma_pool_create("sense_buf pool",
&mrioc->pdev->dev, sz, 4, 0);
if (!mrioc->sense_buf_pool) {
ioc_err(mrioc, "sense_buf pool: dma_pool_create failed\n");
goto out_failed;
}
mrioc->sense_buf = dma_pool_zalloc(mrioc->sense_buf_pool, GFP_KERNEL,
&mrioc->sense_buf_dma);
if (!mrioc->sense_buf)
goto out_failed;
/* sense buffer queue, 8 byte align */
sz = mrioc->sense_buf_q_sz * 8;
mrioc->sense_buf_q_pool = dma_pool_create("sense_buf_q pool",
&mrioc->pdev->dev, sz, 8, 0);
if (!mrioc->sense_buf_q_pool) {
ioc_err(mrioc, "sense_buf_q pool: dma_pool_create failed\n");
goto out_failed;
}
mrioc->sense_buf_q = dma_pool_zalloc(mrioc->sense_buf_q_pool,
GFP_KERNEL, &mrioc->sense_buf_q_dma);
if (!mrioc->sense_buf_q)
goto out_failed;
post_reply_sbuf:
sz = mrioc->num_reply_bufs * mrioc->facts.reply_sz;
ioc_info(mrioc,
"reply buf pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB), reply_dma(0x%llx)\n",
mrioc->reply_buf, mrioc->num_reply_bufs, mrioc->facts.reply_sz,
(sz / 1024), (unsigned long long)mrioc->reply_buf_dma);
sz = mrioc->reply_free_qsz * 8;
ioc_info(mrioc,
"reply_free_q pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB), reply_dma(0x%llx)\n",
mrioc->reply_free_q, mrioc->reply_free_qsz, 8, (sz / 1024),
(unsigned long long)mrioc->reply_free_q_dma);
sz = mrioc->num_sense_bufs * MPI3MR_SENSEBUF_SZ;
ioc_info(mrioc,
"sense_buf pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB), sense_dma(0x%llx)\n",
mrioc->sense_buf, mrioc->num_sense_bufs, MPI3MR_SENSEBUF_SZ,
(sz / 1024), (unsigned long long)mrioc->sense_buf_dma);
sz = mrioc->sense_buf_q_sz * 8;
ioc_info(mrioc,
"sense_buf_q pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB), sense_dma(0x%llx)\n",
mrioc->sense_buf_q, mrioc->sense_buf_q_sz, 8, (sz / 1024),
(unsigned long long)mrioc->sense_buf_q_dma);
/* initialize Reply buffer Queue */
for (i = 0, phy_addr = mrioc->reply_buf_dma;
i < mrioc->num_reply_bufs; i++, phy_addr += mrioc->facts.reply_sz)
mrioc->reply_free_q[i] = cpu_to_le64(phy_addr);
mrioc->reply_free_q[i] = cpu_to_le64(0);
/* initialize Sense Buffer Queue */
for (i = 0, phy_addr = mrioc->sense_buf_dma;
i < mrioc->num_sense_bufs; i++, phy_addr += MPI3MR_SENSEBUF_SZ)
mrioc->sense_buf_q[i] = cpu_to_le64(phy_addr);
mrioc->sense_buf_q[i] = cpu_to_le64(0);
return retval;
out_failed:
retval = -1;
return retval;
}
/**
* mpi3mr_issue_iocinit - Send IOC Init
* @mrioc: Adapter instance reference
*
* Issue IOC Init MPI request through admin queue and wait for
* the completion of it or time out.
*
* Return: 0 on success, non-zero on failures.
*/
static int mpi3mr_issue_iocinit(struct mpi3mr_ioc *mrioc)
{
struct mpi3_ioc_init_request iocinit_req;
struct mpi3_driver_info_layout *drv_info;
dma_addr_t data_dma;
u32 data_len = sizeof(*drv_info);
int retval = 0;
ktime_t current_time;
drv_info = dma_alloc_coherent(&mrioc->pdev->dev, data_len, &data_dma,
GFP_KERNEL);
if (!drv_info) {
retval = -1;
goto out;
}
drv_info->information_length = cpu_to_le32(data_len);
strncpy(drv_info->driver_signature, "Broadcom", sizeof(drv_info->driver_signature));
strncpy(drv_info->os_name, utsname()->sysname, sizeof(drv_info->os_name));
drv_info->os_name[sizeof(drv_info->os_name) - 1] = 0;
strncpy(drv_info->os_version, utsname()->release, sizeof(drv_info->os_version));
drv_info->os_version[sizeof(drv_info->os_version) - 1] = 0;
strncpy(drv_info->driver_name, MPI3MR_DRIVER_NAME, sizeof(drv_info->driver_name));
strncpy(drv_info->driver_version, MPI3MR_DRIVER_VERSION, sizeof(drv_info->driver_version));
strncpy(drv_info->driver_release_date, MPI3MR_DRIVER_RELDATE, sizeof(drv_info->driver_release_date));
drv_info->driver_capabilities = 0;
memcpy((u8 *)&mrioc->driver_info, (u8 *)drv_info,
sizeof(mrioc->driver_info));
memset(&iocinit_req, 0, sizeof(iocinit_req));
mutex_lock(&mrioc->init_cmds.mutex);
if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
retval = -1;
ioc_err(mrioc, "Issue IOCInit: Init command is in use\n");
mutex_unlock(&mrioc->init_cmds.mutex);
goto out;
}
mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
mrioc->init_cmds.is_waiting = 1;
mrioc->init_cmds.callback = NULL;
iocinit_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
iocinit_req.function = MPI3_FUNCTION_IOC_INIT;
iocinit_req.mpi_version.mpi3_version.dev = MPI3_VERSION_DEV;
iocinit_req.mpi_version.mpi3_version.unit = MPI3_VERSION_UNIT;
iocinit_req.mpi_version.mpi3_version.major = MPI3_VERSION_MAJOR;
iocinit_req.mpi_version.mpi3_version.minor = MPI3_VERSION_MINOR;
iocinit_req.who_init = MPI3_WHOINIT_HOST_DRIVER;
iocinit_req.reply_free_queue_depth = cpu_to_le16(mrioc->reply_free_qsz);
iocinit_req.reply_free_queue_address =
cpu_to_le64(mrioc->reply_free_q_dma);
iocinit_req.sense_buffer_length = cpu_to_le16(MPI3MR_SENSEBUF_SZ);
iocinit_req.sense_buffer_free_queue_depth =
cpu_to_le16(mrioc->sense_buf_q_sz);
iocinit_req.sense_buffer_free_queue_address =
cpu_to_le64(mrioc->sense_buf_q_dma);
iocinit_req.driver_information_address = cpu_to_le64(data_dma);
current_time = ktime_get_real();
iocinit_req.time_stamp = cpu_to_le64(ktime_to_ms(current_time));
init_completion(&mrioc->init_cmds.done);
retval = mpi3mr_admin_request_post(mrioc, &iocinit_req,
sizeof(iocinit_req), 1);
if (retval) {
ioc_err(mrioc, "Issue IOCInit: Admin Post failed\n");
goto out_unlock;
}
wait_for_completion_timeout(&mrioc->init_cmds.done,
(MPI3MR_INTADMCMD_TIMEOUT * HZ));
if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
mpi3mr_set_diagsave(mrioc);
mpi3mr_issue_reset(mrioc,
MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT,
MPI3MR_RESET_FROM_IOCINIT_TIMEOUT);
mrioc->unrecoverable = 1;
ioc_err(mrioc, "Issue IOCInit: command timed out\n");
retval = -1;
goto out_unlock;
}
if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
!= MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc,
"Issue IOCInit: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n",
(mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
mrioc->init_cmds.ioc_loginfo);
retval = -1;
goto out_unlock;
}
out_unlock:
mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
mutex_unlock(&mrioc->init_cmds.mutex);
out:
if (drv_info)
dma_free_coherent(&mrioc->pdev->dev, data_len, drv_info,
data_dma);
return retval;
}
/**
* mpi3mr_alloc_chain_bufs - Allocate chain buffers
* @mrioc: Adapter instance reference
*
* Allocate chain buffers and set a bitmap to indicate free
* chain buffers. Chain buffers are used to pass the SGE
* information along with MPI3 SCSI IO requests for host I/O.
*
* Return: 0 on success, non-zero on failure
*/
static int mpi3mr_alloc_chain_bufs(struct mpi3mr_ioc *mrioc)
{
int retval = 0;
u32 sz, i;
u16 num_chains;
num_chains = mrioc->max_host_ios / MPI3MR_CHAINBUF_FACTOR;
mrioc->chain_buf_count = num_chains;
sz = sizeof(struct chain_element) * num_chains;
mrioc->chain_sgl_list = kzalloc(sz, GFP_KERNEL);
if (!mrioc->chain_sgl_list)
goto out_failed;
sz = MPI3MR_PAGE_SIZE_4K;
mrioc->chain_buf_pool = dma_pool_create("chain_buf pool",
&mrioc->pdev->dev, sz, 16, 0);
if (!mrioc->chain_buf_pool) {
ioc_err(mrioc, "chain buf pool: dma_pool_create failed\n");
goto out_failed;
}
for (i = 0; i < num_chains; i++) {
mrioc->chain_sgl_list[i].addr =
dma_pool_zalloc(mrioc->chain_buf_pool, GFP_KERNEL,
&mrioc->chain_sgl_list[i].dma_addr);
if (!mrioc->chain_sgl_list[i].addr)
goto out_failed;
}
mrioc->chain_bitmap_sz = num_chains / 8;
if (num_chains % 8)
mrioc->chain_bitmap_sz++;
mrioc->chain_bitmap = kzalloc(mrioc->chain_bitmap_sz, GFP_KERNEL);
if (!mrioc->chain_bitmap)
goto out_failed;
return retval;
out_failed:
retval = -1;
return retval;
}
/**
* mpi3mr_cleanup_resources - Free PCI resources
* @mrioc: Adapter instance reference
*
* Unmap PCI device memory and disable PCI device.
*
* Return: 0 on success and non-zero on failure.
*/
void mpi3mr_cleanup_resources(struct mpi3mr_ioc *mrioc)
{
struct pci_dev *pdev = mrioc->pdev;
mpi3mr_cleanup_isr(mrioc);
if (mrioc->sysif_regs) {
iounmap((void __iomem *)mrioc->sysif_regs);
mrioc->sysif_regs = NULL;
}
if (pci_is_enabled(pdev)) {
if (mrioc->bars)
pci_release_selected_regions(pdev, mrioc->bars);
pci_disable_device(pdev);
}
}
/**
* mpi3mr_setup_resources - Enable PCI resources
* @mrioc: Adapter instance reference
*
* Enable PCI device memory, MSI-x registers and set DMA mask.
*
* Return: 0 on success and non-zero on failure.
*/
int mpi3mr_setup_resources(struct mpi3mr_ioc *mrioc)
{
struct pci_dev *pdev = mrioc->pdev;
u32 memap_sz = 0;
int i, retval = 0, capb = 0;
u16 message_control;
u64 dma_mask = mrioc->dma_mask ? mrioc->dma_mask :
(((dma_get_required_mask(&pdev->dev) > DMA_BIT_MASK(32)) &&
(sizeof(dma_addr_t) > 4)) ? DMA_BIT_MASK(64) : DMA_BIT_MASK(32));
if (pci_enable_device_mem(pdev)) {
ioc_err(mrioc, "pci_enable_device_mem: failed\n");
retval = -ENODEV;
goto out_failed;
}
capb = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
if (!capb) {
ioc_err(mrioc, "Unable to find MSI-X Capabilities\n");
retval = -ENODEV;
goto out_failed;
}
mrioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
if (pci_request_selected_regions(pdev, mrioc->bars,
mrioc->driver_name)) {
ioc_err(mrioc, "pci_request_selected_regions: failed\n");
retval = -ENODEV;
goto out_failed;
}
for (i = 0; (i < DEVICE_COUNT_RESOURCE); i++) {
if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
mrioc->sysif_regs_phys = pci_resource_start(pdev, i);
memap_sz = pci_resource_len(pdev, i);
mrioc->sysif_regs =
ioremap(mrioc->sysif_regs_phys, memap_sz);
break;
}
}
pci_set_master(pdev);
retval = dma_set_mask_and_coherent(&pdev->dev, dma_mask);
if (retval) {
if (dma_mask != DMA_BIT_MASK(32)) {
ioc_warn(mrioc, "Setting 64 bit DMA mask failed\n");
dma_mask = DMA_BIT_MASK(32);
retval = dma_set_mask_and_coherent(&pdev->dev,
dma_mask);
}
if (retval) {
mrioc->dma_mask = 0;
ioc_err(mrioc, "Setting 32 bit DMA mask also failed\n");
goto out_failed;
}
}
mrioc->dma_mask = dma_mask;
if (!mrioc->sysif_regs) {
ioc_err(mrioc,
"Unable to map adapter memory or resource not found\n");
retval = -EINVAL;
goto out_failed;
}
pci_read_config_word(pdev, capb + 2, &message_control);
mrioc->msix_count = (message_control & 0x3FF) + 1;
pci_save_state(pdev);
pci_set_drvdata(pdev, mrioc->shost);
mpi3mr_ioc_disable_intr(mrioc);
ioc_info(mrioc, "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
(unsigned long long)mrioc->sysif_regs_phys,
mrioc->sysif_regs, memap_sz);
ioc_info(mrioc, "Number of MSI-X vectors found in capabilities: (%d)\n",
mrioc->msix_count);
return retval;
out_failed:
mpi3mr_cleanup_resources(mrioc);
return retval;
}
/**
* mpi3mr_init_ioc - Initialize the controller
* @mrioc: Adapter instance reference
*
* This the controller initialization routine, executed either
* after soft reset or from pci probe callback.
* Setup the required resources, memory map the controller
* registers, create admin and operational reply queue pairs,
* allocate required memory for reply pool, sense buffer pool,
* issue IOC init request to the firmware, unmask the events and
* issue port enable to discover SAS/SATA/NVMe devies and RAID
* volumes.
*
* Return: 0 on success and non-zero on failure.
*/
int mpi3mr_init_ioc(struct mpi3mr_ioc *mrioc)
{
int retval = 0;
enum mpi3mr_iocstate ioc_state;
u64 base_info;
u32 timeout;
u32 ioc_status, ioc_config;
struct mpi3_ioc_facts_data facts_data;
mrioc->change_count = 0;
mrioc->cpu_count = num_online_cpus();
retval = mpi3mr_setup_resources(mrioc);
if (retval) {
ioc_err(mrioc, "Failed to setup resources:error %d\n",
retval);
goto out_nocleanup;
}
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
ioc_config = readl(&mrioc->sysif_regs->ioc_configuration);
ioc_info(mrioc, "SOD status %x configuration %x\n",
ioc_status, ioc_config);
base_info = lo_hi_readq(&mrioc->sysif_regs->ioc_information);
ioc_info(mrioc, "SOD base_info %llx\n", base_info);
/*The timeout value is in 2sec unit, changing it to seconds*/
mrioc->ready_timeout =
((base_info & MPI3_SYSIF_IOC_INFO_LOW_TIMEOUT_MASK) >>
MPI3_SYSIF_IOC_INFO_LOW_TIMEOUT_SHIFT) * 2;
ioc_info(mrioc, "IOC ready timeout %d\n", mrioc->ready_timeout);
ioc_state = mpi3mr_get_iocstate(mrioc);
ioc_info(mrioc, "IOC in %s state during detection\n",
mpi3mr_iocstate_name(ioc_state));
if (ioc_state == MRIOC_STATE_BECOMING_READY ||
ioc_state == MRIOC_STATE_RESET_REQUESTED) {
timeout = mrioc->ready_timeout * 10;
do {
msleep(100);
} while (--timeout);
ioc_state = mpi3mr_get_iocstate(mrioc);
ioc_info(mrioc,
"IOC in %s state after waiting for reset time\n",
mpi3mr_iocstate_name(ioc_state));
}
if (ioc_state == MRIOC_STATE_READY) {
retval = mpi3mr_issue_and_process_mur(mrioc,
MPI3MR_RESET_FROM_BRINGUP);
if (retval) {
ioc_err(mrioc, "Failed to MU reset IOC error %d\n",
retval);
}
ioc_state = mpi3mr_get_iocstate(mrioc);
}
if (ioc_state != MRIOC_STATE_RESET) {
mpi3mr_print_fault_info(mrioc);
retval = mpi3mr_issue_reset(mrioc,
MPI3_SYSIF_HOST_DIAG_RESET_ACTION_SOFT_RESET,
MPI3MR_RESET_FROM_BRINGUP);
if (retval) {
ioc_err(mrioc,
"%s :Failed to soft reset IOC error %d\n",
__func__, retval);
goto out_failed;
}
}
ioc_state = mpi3mr_get_iocstate(mrioc);
if (ioc_state != MRIOC_STATE_RESET) {
ioc_err(mrioc, "Cannot bring IOC to reset state\n");
goto out_failed;
}
retval = mpi3mr_setup_admin_qpair(mrioc);
if (retval) {
ioc_err(mrioc, "Failed to setup admin Qs: error %d\n",
retval);
goto out_failed;
}
retval = mpi3mr_bring_ioc_ready(mrioc);
if (retval) {
ioc_err(mrioc, "Failed to bring ioc ready: error %d\n",
retval);
goto out_failed;
}
retval = mpi3mr_setup_isr(mrioc, 1);
if (retval) {
ioc_err(mrioc, "Failed to setup ISR error %d\n",
retval);
goto out_failed;
}
retval = mpi3mr_issue_iocfacts(mrioc, &facts_data);
if (retval) {
ioc_err(mrioc, "Failed to Issue IOC Facts %d\n",
retval);
goto out_failed;
}
mpi3mr_process_factsdata(mrioc, &facts_data);
retval = mpi3mr_check_reset_dma_mask(mrioc);
if (retval) {
ioc_err(mrioc, "Resetting dma mask failed %d\n",
retval);
goto out_failed;
}
retval = mpi3mr_alloc_reply_sense_bufs(mrioc);
if (retval) {
ioc_err(mrioc,
"%s :Failed to allocated reply sense buffers %d\n",
__func__, retval);
goto out_failed;
}
retval = mpi3mr_alloc_chain_bufs(mrioc);
if (retval) {
ioc_err(mrioc, "Failed to allocated chain buffers %d\n",
retval);
goto out_failed;
}
retval = mpi3mr_issue_iocinit(mrioc);
if (retval) {
ioc_err(mrioc, "Failed to Issue IOC Init %d\n",
retval);
goto out_failed;
}
mrioc->reply_free_queue_host_index = mrioc->num_reply_bufs;
writel(mrioc->reply_free_queue_host_index,
&mrioc->sysif_regs->reply_free_host_index);
mrioc->sbq_host_index = mrioc->num_sense_bufs;
writel(mrioc->sbq_host_index,
&mrioc->sysif_regs->sense_buffer_free_host_index);
retval = mpi3mr_setup_isr(mrioc, 0);
if (retval) {
ioc_err(mrioc, "Failed to re-setup ISR, error %d\n",
retval);
goto out_failed;
}
scsi: mpi3mr: Create operational request and reply queue pair Create operational request and reply queue pair. The MPI3 transport interface consists of an Administrative Request Queue, an Administrative Reply Queue, and Operational Messaging Queues. The Operational Messaging Queues are the primary communication mechanism between the host and the I/O Controller (IOC). Request messages, allocated in host memory, identify I/O operations to be performed by the IOC. These operations are queued on an Operational Request Queue by the host driver. Reply descriptors track I/O operations as they complete. The IOC queues these completions in an Operational Reply Queue. To fulfil large contiguous memory requirement, driver creates multiple segments and provide the list of segments. Each segment size should be 4K which is a hardware requirement. An element array is contiguous or segmented. A contiguous element array is located in contiguous physical memory. A contiguous element array must be aligned on an element size boundary. An element's physical address within the array may be directly calculated from the base address, the Producer/Consumer index, and the element size. Expected phased identifier bit is used to find out valid entry on reply queue. Driver sets <ephase> bit and IOC inverts the value of this bit on each pass. Link: https://lore.kernel.org/r/20210520152545.2710479-4-kashyap.desai@broadcom.com Cc: sathya.prakash@broadcom.com Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Tomas Henzl <thenzl@redhat.com> Reviewed-by: Himanshu Madhani <himanshu.madhani@oracle.com> Signed-off-by: Kashyap Desai <kashyap.desai@broadcom.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2021-05-20 23:25:24 +08:00
retval = mpi3mr_create_op_queues(mrioc);
if (retval) {
ioc_err(mrioc, "Failed to create OpQueues error %d\n",
retval);
goto out_failed;
}
return retval;
out_failed:
mpi3mr_cleanup_ioc(mrioc);
out_nocleanup:
return retval;
}
/**
* mpi3mr_free_mem - Free memory allocated for a controller
* @mrioc: Adapter instance reference
*
* Free all the memory allocated for a controller.
*
* Return: Nothing.
*/
static void mpi3mr_free_mem(struct mpi3mr_ioc *mrioc)
{
u16 i;
struct mpi3mr_intr_info *intr_info;
if (mrioc->sense_buf_pool) {
if (mrioc->sense_buf)
dma_pool_free(mrioc->sense_buf_pool, mrioc->sense_buf,
mrioc->sense_buf_dma);
dma_pool_destroy(mrioc->sense_buf_pool);
mrioc->sense_buf = NULL;
mrioc->sense_buf_pool = NULL;
}
if (mrioc->sense_buf_q_pool) {
if (mrioc->sense_buf_q)
dma_pool_free(mrioc->sense_buf_q_pool,
mrioc->sense_buf_q, mrioc->sense_buf_q_dma);
dma_pool_destroy(mrioc->sense_buf_q_pool);
mrioc->sense_buf_q = NULL;
mrioc->sense_buf_q_pool = NULL;
}
if (mrioc->reply_buf_pool) {
if (mrioc->reply_buf)
dma_pool_free(mrioc->reply_buf_pool, mrioc->reply_buf,
mrioc->reply_buf_dma);
dma_pool_destroy(mrioc->reply_buf_pool);
mrioc->reply_buf = NULL;
mrioc->reply_buf_pool = NULL;
}
if (mrioc->reply_free_q_pool) {
if (mrioc->reply_free_q)
dma_pool_free(mrioc->reply_free_q_pool,
mrioc->reply_free_q, mrioc->reply_free_q_dma);
dma_pool_destroy(mrioc->reply_free_q_pool);
mrioc->reply_free_q = NULL;
mrioc->reply_free_q_pool = NULL;
}
scsi: mpi3mr: Create operational request and reply queue pair Create operational request and reply queue pair. The MPI3 transport interface consists of an Administrative Request Queue, an Administrative Reply Queue, and Operational Messaging Queues. The Operational Messaging Queues are the primary communication mechanism between the host and the I/O Controller (IOC). Request messages, allocated in host memory, identify I/O operations to be performed by the IOC. These operations are queued on an Operational Request Queue by the host driver. Reply descriptors track I/O operations as they complete. The IOC queues these completions in an Operational Reply Queue. To fulfil large contiguous memory requirement, driver creates multiple segments and provide the list of segments. Each segment size should be 4K which is a hardware requirement. An element array is contiguous or segmented. A contiguous element array is located in contiguous physical memory. A contiguous element array must be aligned on an element size boundary. An element's physical address within the array may be directly calculated from the base address, the Producer/Consumer index, and the element size. Expected phased identifier bit is used to find out valid entry on reply queue. Driver sets <ephase> bit and IOC inverts the value of this bit on each pass. Link: https://lore.kernel.org/r/20210520152545.2710479-4-kashyap.desai@broadcom.com Cc: sathya.prakash@broadcom.com Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Tomas Henzl <thenzl@redhat.com> Reviewed-by: Himanshu Madhani <himanshu.madhani@oracle.com> Signed-off-by: Kashyap Desai <kashyap.desai@broadcom.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2021-05-20 23:25:24 +08:00
for (i = 0; i < mrioc->num_op_req_q; i++)
mpi3mr_free_op_req_q_segments(mrioc, i);
for (i = 0; i < mrioc->num_op_reply_q; i++)
mpi3mr_free_op_reply_q_segments(mrioc, i);
for (i = 0; i < mrioc->intr_info_count; i++) {
intr_info = mrioc->intr_info + i;
if (intr_info)
intr_info->op_reply_q = NULL;
}
kfree(mrioc->req_qinfo);
mrioc->req_qinfo = NULL;
mrioc->num_op_req_q = 0;
kfree(mrioc->op_reply_qinfo);
mrioc->op_reply_qinfo = NULL;
mrioc->num_op_reply_q = 0;
kfree(mrioc->init_cmds.reply);
mrioc->init_cmds.reply = NULL;
kfree(mrioc->chain_bitmap);
mrioc->chain_bitmap = NULL;
if (mrioc->chain_buf_pool) {
for (i = 0; i < mrioc->chain_buf_count; i++) {
if (mrioc->chain_sgl_list[i].addr) {
dma_pool_free(mrioc->chain_buf_pool,
mrioc->chain_sgl_list[i].addr,
mrioc->chain_sgl_list[i].dma_addr);
mrioc->chain_sgl_list[i].addr = NULL;
}
}
dma_pool_destroy(mrioc->chain_buf_pool);
mrioc->chain_buf_pool = NULL;
}
kfree(mrioc->chain_sgl_list);
mrioc->chain_sgl_list = NULL;
if (mrioc->admin_reply_base) {
dma_free_coherent(&mrioc->pdev->dev, mrioc->admin_reply_q_sz,
mrioc->admin_reply_base, mrioc->admin_reply_dma);
mrioc->admin_reply_base = NULL;
}
if (mrioc->admin_req_base) {
dma_free_coherent(&mrioc->pdev->dev, mrioc->admin_req_q_sz,
mrioc->admin_req_base, mrioc->admin_req_dma);
mrioc->admin_req_base = NULL;
}
}
/**
* mpi3mr_issue_ioc_shutdown - shutdown controller
* @mrioc: Adapter instance reference
*
* Send shutodwn notification to the controller and wait for the
* shutdown_timeout for it to be completed.
*
* Return: Nothing.
*/
static void mpi3mr_issue_ioc_shutdown(struct mpi3mr_ioc *mrioc)
{
u32 ioc_config, ioc_status;
u8 retval = 1;
u32 timeout = MPI3MR_DEFAULT_SHUTDOWN_TIME * 10;
ioc_info(mrioc, "Issuing shutdown Notification\n");
if (mrioc->unrecoverable) {
ioc_warn(mrioc,
"IOC is unrecoverable shutdown is not issued\n");
return;
}
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
if ((ioc_status & MPI3_SYSIF_IOC_STATUS_SHUTDOWN_MASK)
== MPI3_SYSIF_IOC_STATUS_SHUTDOWN_IN_PROGRESS) {
ioc_info(mrioc, "shutdown already in progress\n");
return;
}
ioc_config = readl(&mrioc->sysif_regs->ioc_configuration);
ioc_config |= MPI3_SYSIF_IOC_CONFIG_SHUTDOWN_NORMAL;
ioc_config |= MPI3_SYSIF_IOC_CONFIG_DEVICE_SHUTDOWN;
writel(ioc_config, &mrioc->sysif_regs->ioc_configuration);
if (mrioc->facts.shutdown_timeout)
timeout = mrioc->facts.shutdown_timeout * 10;
do {
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
if ((ioc_status & MPI3_SYSIF_IOC_STATUS_SHUTDOWN_MASK)
== MPI3_SYSIF_IOC_STATUS_SHUTDOWN_COMPLETE) {
retval = 0;
break;
}
msleep(100);
} while (--timeout);
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
ioc_config = readl(&mrioc->sysif_regs->ioc_configuration);
if (retval) {
if ((ioc_status & MPI3_SYSIF_IOC_STATUS_SHUTDOWN_MASK)
== MPI3_SYSIF_IOC_STATUS_SHUTDOWN_IN_PROGRESS)
ioc_warn(mrioc,
"shutdown still in progress after timeout\n");
}
ioc_info(mrioc,
"Base IOC Sts/Config after %s shutdown is (0x%x)/(0x%x)\n",
(!retval) ? "successful" : "failed", ioc_status,
ioc_config);
}
/**
* mpi3mr_cleanup_ioc - Cleanup controller
* @mrioc: Adapter instance reference
*
* controller cleanup handler, Message unit reset or soft reset
* and shutdown notification is issued to the controller and the
* associated memory resources are freed.
*
* Return: Nothing.
*/
void mpi3mr_cleanup_ioc(struct mpi3mr_ioc *mrioc)
{
enum mpi3mr_iocstate ioc_state;
mpi3mr_ioc_disable_intr(mrioc);
ioc_state = mpi3mr_get_iocstate(mrioc);
if ((!mrioc->unrecoverable) && (!mrioc->reset_in_progress) &&
(ioc_state == MRIOC_STATE_READY)) {
if (mpi3mr_issue_and_process_mur(mrioc,
MPI3MR_RESET_FROM_CTLR_CLEANUP))
mpi3mr_issue_reset(mrioc,
MPI3_SYSIF_HOST_DIAG_RESET_ACTION_SOFT_RESET,
MPI3MR_RESET_FROM_MUR_FAILURE);
mpi3mr_issue_ioc_shutdown(mrioc);
}
mpi3mr_free_mem(mrioc);
mpi3mr_cleanup_resources(mrioc);
}
/**
* mpi3mr_soft_reset_handler - Reset the controller
* @mrioc: Adapter instance reference
* @reset_reason: Reset reason code
* @snapdump: Flag to generate snapdump in firmware or not
*
* TBD
*
* Return: 0 on success, non-zero on failure.
*/
int mpi3mr_soft_reset_handler(struct mpi3mr_ioc *mrioc,
u32 reset_reason, u8 snapdump)
{
return 0;
}