hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0+
|
|
|
|
/*
|
2022-04-04 21:42:11 +08:00
|
|
|
* hwmon driver for Aquacomputer devices (D5 Next, Farbwerk 360, Octo)
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
*
|
2022-02-28 04:56:25 +08:00
|
|
|
* Aquacomputer devices send HID reports (with ID 0x01) every second to report
|
|
|
|
* sensor values.
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
*
|
|
|
|
* Copyright 2021 Aleksa Savic <savicaleksa83@gmail.com>
|
|
|
|
*/
|
|
|
|
|
2022-04-04 21:42:11 +08:00
|
|
|
#include <linux/crc16.h>
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
#include <linux/debugfs.h>
|
|
|
|
#include <linux/hid.h>
|
|
|
|
#include <linux/hwmon.h>
|
|
|
|
#include <linux/jiffies.h>
|
|
|
|
#include <linux/module.h>
|
2022-04-04 21:42:11 +08:00
|
|
|
#include <linux/mutex.h>
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
#include <linux/seq_file.h>
|
2022-02-28 04:56:25 +08:00
|
|
|
#include <asm/unaligned.h>
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
#define USB_VENDOR_ID_AQUACOMPUTER 0x0c70
|
|
|
|
#define USB_PRODUCT_ID_D5NEXT 0xf00e
|
|
|
|
#define USB_PRODUCT_ID_FARBWERK360 0xf010
|
2022-04-04 21:42:11 +08:00
|
|
|
#define USB_PRODUCT_ID_OCTO 0xf011
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
2022-04-04 21:42:11 +08:00
|
|
|
enum kinds { d5next, farbwerk360, octo };
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
static const char *const aqc_device_names[] = {
|
|
|
|
[d5next] = "d5next",
|
2022-04-04 21:42:11 +08:00
|
|
|
[farbwerk360] = "farbwerk360",
|
|
|
|
[octo] = "octo"
|
2022-02-28 04:56:25 +08:00
|
|
|
};
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
#define DRIVER_NAME "aquacomputer_d5next"
|
|
|
|
|
|
|
|
#define STATUS_REPORT_ID 0x01
|
|
|
|
#define STATUS_UPDATE_INTERVAL (2 * HZ) /* In seconds */
|
|
|
|
#define SERIAL_FIRST_PART 3
|
|
|
|
#define SERIAL_SECOND_PART 5
|
|
|
|
#define FIRMWARE_VERSION 13
|
|
|
|
|
2022-04-04 21:42:11 +08:00
|
|
|
#define CTRL_REPORT_ID 0x03
|
|
|
|
|
|
|
|
/* The HID report that the official software always sends
|
|
|
|
* after writing values, currently same for all devices
|
|
|
|
*/
|
|
|
|
#define SECONDARY_CTRL_REPORT_ID 0x02
|
|
|
|
#define SECONDARY_CTRL_REPORT_SIZE 0x0B
|
|
|
|
|
|
|
|
static u8 secondary_ctrl_report[] = {
|
|
|
|
0x02, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x34, 0xC6
|
|
|
|
};
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
/* Register offsets for the D5 Next pump */
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
#define D5NEXT_POWER_CYCLES 24
|
|
|
|
|
|
|
|
#define D5NEXT_COOLANT_TEMP 87
|
|
|
|
|
|
|
|
#define D5NEXT_PUMP_SPEED 116
|
|
|
|
#define D5NEXT_FAN_SPEED 103
|
|
|
|
|
|
|
|
#define D5NEXT_PUMP_POWER 114
|
|
|
|
#define D5NEXT_FAN_POWER 101
|
|
|
|
|
|
|
|
#define D5NEXT_PUMP_VOLTAGE 110
|
|
|
|
#define D5NEXT_FAN_VOLTAGE 97
|
|
|
|
#define D5NEXT_5V_VOLTAGE 57
|
|
|
|
|
|
|
|
#define D5NEXT_PUMP_CURRENT 112
|
|
|
|
#define D5NEXT_FAN_CURRENT 99
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
/* Register offsets for the Farbwerk 360 RGB controller */
|
|
|
|
#define FARBWERK360_NUM_SENSORS 4
|
2022-04-04 21:42:11 +08:00
|
|
|
#define FARBWERK360_SENSOR_START 0x32
|
2022-02-28 04:56:25 +08:00
|
|
|
#define FARBWERK360_SENSOR_SIZE 0x02
|
|
|
|
#define FARBWERK360_SENSOR_DISCONNECTED 0x7FFF
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
2022-04-04 21:42:11 +08:00
|
|
|
/* Register offsets for the Octo fan controller */
|
|
|
|
#define OCTO_POWER_CYCLES 0x18
|
|
|
|
#define OCTO_NUM_FANS 8
|
|
|
|
#define OCTO_FAN_PERCENT_OFFSET 0x00
|
|
|
|
#define OCTO_FAN_VOLTAGE_OFFSET 0x02
|
|
|
|
#define OCTO_FAN_CURRENT_OFFSET 0x04
|
|
|
|
#define OCTO_FAN_POWER_OFFSET 0x06
|
|
|
|
#define OCTO_FAN_SPEED_OFFSET 0x08
|
|
|
|
|
|
|
|
static u8 octo_sensor_fan_offsets[] = { 0x7D, 0x8A, 0x97, 0xA4, 0xB1, 0xBE, 0xCB, 0xD8 };
|
|
|
|
|
|
|
|
#define OCTO_NUM_SENSORS 4
|
|
|
|
#define OCTO_SENSOR_START 0x3D
|
|
|
|
#define OCTO_SENSOR_SIZE 0x02
|
|
|
|
#define OCTO_SENSOR_DISCONNECTED 0x7FFF
|
|
|
|
|
|
|
|
#define OCTO_CTRL_REPORT_SIZE 0x65F
|
|
|
|
#define OCTO_CTRL_REPORT_CHECKSUM_OFFSET 0x65D
|
|
|
|
#define OCTO_CTRL_REPORT_CHECKSUM_START 0x01
|
|
|
|
#define OCTO_CTRL_REPORT_CHECKSUM_LENGTH 0x65C
|
|
|
|
|
|
|
|
/* Fan speed registers in Octo control report (from 0-100%) */
|
|
|
|
static u16 octo_ctrl_fan_offsets[] = { 0x5B, 0xB0, 0x105, 0x15A, 0x1AF, 0x204, 0x259, 0x2AE };
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
/* Labels for D5 Next */
|
2022-04-04 21:42:11 +08:00
|
|
|
static const char *const label_d5next_temp[] = {
|
|
|
|
"Coolant temp"
|
|
|
|
};
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
static const char *const label_d5next_speeds[] = {
|
|
|
|
"Pump speed",
|
|
|
|
"Fan speed"
|
|
|
|
};
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
static const char *const label_d5next_power[] = {
|
|
|
|
"Pump power",
|
|
|
|
"Fan power"
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
};
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
static const char *const label_d5next_voltages[] = {
|
|
|
|
"Pump voltage",
|
|
|
|
"Fan voltage",
|
|
|
|
"+5V voltage"
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
};
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
static const char *const label_d5next_current[] = {
|
|
|
|
"Pump current",
|
|
|
|
"Fan current"
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
};
|
|
|
|
|
2022-04-04 21:42:11 +08:00
|
|
|
/* Labels for Farbwerk 360 and Octo temperature sensors */
|
2022-02-28 04:56:25 +08:00
|
|
|
static const char *const label_temp_sensors[] = {
|
|
|
|
"Sensor 1",
|
|
|
|
"Sensor 2",
|
|
|
|
"Sensor 3",
|
|
|
|
"Sensor 4"
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
};
|
|
|
|
|
2022-04-04 21:42:11 +08:00
|
|
|
/* Labels for Octo */
|
|
|
|
static const char *const label_fan_speed[] = {
|
|
|
|
"Fan 1 speed",
|
|
|
|
"Fan 2 speed",
|
|
|
|
"Fan 3 speed",
|
|
|
|
"Fan 4 speed",
|
|
|
|
"Fan 5 speed",
|
|
|
|
"Fan 6 speed",
|
|
|
|
"Fan 7 speed",
|
|
|
|
"Fan 8 speed"
|
|
|
|
};
|
|
|
|
|
|
|
|
static const char *const label_fan_power[] = {
|
|
|
|
"Fan 1 power",
|
|
|
|
"Fan 2 power",
|
|
|
|
"Fan 3 power",
|
|
|
|
"Fan 4 power",
|
|
|
|
"Fan 5 power",
|
|
|
|
"Fan 6 power",
|
|
|
|
"Fan 7 power",
|
|
|
|
"Fan 8 power"
|
|
|
|
};
|
|
|
|
|
|
|
|
static const char *const label_fan_voltage[] = {
|
|
|
|
"Fan 1 voltage",
|
|
|
|
"Fan 2 voltage",
|
|
|
|
"Fan 3 voltage",
|
|
|
|
"Fan 4 voltage",
|
|
|
|
"Fan 5 voltage",
|
|
|
|
"Fan 6 voltage",
|
|
|
|
"Fan 7 voltage",
|
|
|
|
"Fan 8 voltage"
|
|
|
|
};
|
|
|
|
|
|
|
|
static const char *const label_fan_current[] = {
|
|
|
|
"Fan 1 current",
|
|
|
|
"Fan 2 current",
|
|
|
|
"Fan 3 current",
|
|
|
|
"Fan 4 current",
|
|
|
|
"Fan 5 current",
|
|
|
|
"Fan 6 current",
|
|
|
|
"Fan 7 current",
|
|
|
|
"Fan 8 current"
|
|
|
|
};
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
struct aqc_data {
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
struct hid_device *hdev;
|
|
|
|
struct device *hwmon_dev;
|
|
|
|
struct dentry *debugfs;
|
2022-04-04 21:42:11 +08:00
|
|
|
struct mutex mutex; /* Used for locking access when reading and writing PWM values */
|
2022-02-28 04:56:25 +08:00
|
|
|
enum kinds kind;
|
|
|
|
const char *name;
|
|
|
|
|
2022-04-04 21:42:11 +08:00
|
|
|
int buffer_size;
|
|
|
|
u8 *buffer;
|
|
|
|
int checksum_start;
|
|
|
|
int checksum_length;
|
|
|
|
int checksum_offset;
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
/* General info, same across all devices */
|
|
|
|
u32 serial_number[2];
|
|
|
|
u16 firmware_version;
|
|
|
|
|
2022-04-04 21:42:11 +08:00
|
|
|
/* How many times the device was powered on */
|
2022-02-28 04:56:25 +08:00
|
|
|
u32 power_cycles;
|
|
|
|
|
|
|
|
/* Sensor values */
|
|
|
|
s32 temp_input[4];
|
2022-04-04 21:42:11 +08:00
|
|
|
u16 speed_input[8];
|
|
|
|
u32 power_input[8];
|
|
|
|
u16 voltage_input[8];
|
|
|
|
u16 current_input[8];
|
|
|
|
|
|
|
|
/* Label values */
|
|
|
|
const char *const *temp_label;
|
|
|
|
const char *const *speed_label;
|
|
|
|
const char *const *power_label;
|
|
|
|
const char *const *voltage_label;
|
|
|
|
const char *const *current_label;
|
2022-02-28 04:56:25 +08:00
|
|
|
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
unsigned long updated;
|
|
|
|
};
|
|
|
|
|
2022-04-04 21:42:11 +08:00
|
|
|
/* Converts from centi-percent */
|
|
|
|
static int aqc_percent_to_pwm(u16 val)
|
|
|
|
{
|
|
|
|
return DIV_ROUND_CLOSEST(val * 255, 100 * 100);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Converts to centi-percent */
|
|
|
|
static int aqc_pwm_to_percent(long val)
|
|
|
|
{
|
|
|
|
if (val < 0 || val > 255)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
return DIV_ROUND_CLOSEST(val * 100 * 100, 255);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Expects the mutex to be locked */
|
|
|
|
static int aqc_get_ctrl_data(struct aqc_data *priv)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
memset(priv->buffer, 0x00, priv->buffer_size);
|
|
|
|
ret = hid_hw_raw_request(priv->hdev, CTRL_REPORT_ID, priv->buffer, priv->buffer_size,
|
|
|
|
HID_FEATURE_REPORT, HID_REQ_GET_REPORT);
|
|
|
|
if (ret < 0)
|
|
|
|
ret = -ENODATA;
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Expects the mutex to be locked */
|
|
|
|
static int aqc_send_ctrl_data(struct aqc_data *priv)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
u16 checksum;
|
|
|
|
|
|
|
|
/* Init and xorout value for CRC-16/USB is 0xffff */
|
|
|
|
checksum = crc16(0xffff, priv->buffer + priv->checksum_start, priv->checksum_length);
|
|
|
|
checksum ^= 0xffff;
|
|
|
|
|
|
|
|
/* Place the new checksum at the end of the report */
|
|
|
|
put_unaligned_be16(checksum, priv->buffer + priv->checksum_offset);
|
|
|
|
|
|
|
|
/* Send the patched up report back to the device */
|
|
|
|
ret = hid_hw_raw_request(priv->hdev, CTRL_REPORT_ID, priv->buffer, priv->buffer_size,
|
|
|
|
HID_FEATURE_REPORT, HID_REQ_SET_REPORT);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
/* The official software sends this report after every change, so do it here as well */
|
|
|
|
ret = hid_hw_raw_request(priv->hdev, SECONDARY_CTRL_REPORT_ID, secondary_ctrl_report,
|
|
|
|
SECONDARY_CTRL_REPORT_SIZE, HID_FEATURE_REPORT,
|
|
|
|
HID_REQ_SET_REPORT);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Refreshes the control buffer and returns value at offset */
|
|
|
|
static int aqc_get_ctrl_val(struct aqc_data *priv, int offset)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
mutex_lock(&priv->mutex);
|
|
|
|
|
|
|
|
ret = aqc_get_ctrl_data(priv);
|
|
|
|
if (ret < 0)
|
|
|
|
goto unlock_and_return;
|
|
|
|
|
|
|
|
ret = get_unaligned_be16(priv->buffer + offset);
|
|
|
|
|
|
|
|
unlock_and_return:
|
|
|
|
mutex_unlock(&priv->mutex);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int aqc_set_ctrl_val(struct aqc_data *priv, int offset, long val)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
mutex_lock(&priv->mutex);
|
|
|
|
|
|
|
|
ret = aqc_get_ctrl_data(priv);
|
|
|
|
if (ret < 0)
|
|
|
|
goto unlock_and_return;
|
|
|
|
|
|
|
|
put_unaligned_be16((u16)val, priv->buffer + offset);
|
|
|
|
|
|
|
|
ret = aqc_send_ctrl_data(priv);
|
|
|
|
|
|
|
|
unlock_and_return:
|
|
|
|
mutex_unlock(&priv->mutex);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static umode_t aqc_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel)
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
{
|
2022-02-28 04:56:25 +08:00
|
|
|
const struct aqc_data *priv = data;
|
|
|
|
|
|
|
|
switch (type) {
|
|
|
|
case hwmon_temp:
|
|
|
|
switch (priv->kind) {
|
|
|
|
case d5next:
|
|
|
|
if (channel == 0)
|
|
|
|
return 0444;
|
|
|
|
break;
|
|
|
|
case farbwerk360:
|
2022-04-04 21:42:11 +08:00
|
|
|
case octo:
|
2022-02-28 04:56:25 +08:00
|
|
|
return 0444;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
2022-04-04 21:42:11 +08:00
|
|
|
case hwmon_pwm:
|
|
|
|
switch (priv->kind) {
|
|
|
|
case octo:
|
|
|
|
switch (attr) {
|
|
|
|
case hwmon_pwm_input:
|
|
|
|
return 0644;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
2022-02-28 04:56:25 +08:00
|
|
|
case hwmon_fan:
|
|
|
|
case hwmon_power:
|
|
|
|
case hwmon_curr:
|
|
|
|
switch (priv->kind) {
|
|
|
|
case d5next:
|
2022-04-04 21:42:11 +08:00
|
|
|
if (channel < 2)
|
|
|
|
return 0444;
|
|
|
|
break;
|
|
|
|
case octo:
|
|
|
|
return 0444;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case hwmon_in:
|
|
|
|
switch (priv->kind) {
|
|
|
|
case d5next:
|
|
|
|
if (channel < 3)
|
|
|
|
return 0444;
|
|
|
|
break;
|
|
|
|
case octo:
|
2022-02-28 04:56:25 +08:00
|
|
|
return 0444;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
}
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
static int aqc_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
|
|
|
|
int channel, long *val)
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
{
|
2022-04-04 21:42:11 +08:00
|
|
|
int ret;
|
2022-02-28 04:56:25 +08:00
|
|
|
struct aqc_data *priv = dev_get_drvdata(dev);
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
if (time_after(jiffies, priv->updated + STATUS_UPDATE_INTERVAL))
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
return -ENODATA;
|
|
|
|
|
|
|
|
switch (type) {
|
|
|
|
case hwmon_temp:
|
2022-02-28 04:56:25 +08:00
|
|
|
if (priv->temp_input[channel] == -ENODATA)
|
|
|
|
return -ENODATA;
|
|
|
|
|
|
|
|
*val = priv->temp_input[channel];
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
break;
|
|
|
|
case hwmon_fan:
|
|
|
|
*val = priv->speed_input[channel];
|
|
|
|
break;
|
|
|
|
case hwmon_power:
|
|
|
|
*val = priv->power_input[channel];
|
|
|
|
break;
|
2022-04-04 21:42:11 +08:00
|
|
|
case hwmon_pwm:
|
|
|
|
switch (priv->kind) {
|
|
|
|
case octo:
|
|
|
|
ret = aqc_get_ctrl_val(priv, octo_ctrl_fan_offsets[channel]);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
*val = aqc_percent_to_pwm(ret);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
case hwmon_in:
|
|
|
|
*val = priv->voltage_input[channel];
|
|
|
|
break;
|
|
|
|
case hwmon_curr:
|
|
|
|
*val = priv->current_input[channel];
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
static int aqc_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr,
|
|
|
|
int channel, const char **str)
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
{
|
2022-02-28 04:56:25 +08:00
|
|
|
struct aqc_data *priv = dev_get_drvdata(dev);
|
|
|
|
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
switch (type) {
|
|
|
|
case hwmon_temp:
|
2022-04-04 21:42:11 +08:00
|
|
|
*str = priv->temp_label[channel];
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
break;
|
|
|
|
case hwmon_fan:
|
2022-04-04 21:42:11 +08:00
|
|
|
*str = priv->speed_label[channel];
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
break;
|
|
|
|
case hwmon_power:
|
2022-04-04 21:42:11 +08:00
|
|
|
*str = priv->power_label[channel];
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
break;
|
|
|
|
case hwmon_in:
|
2022-04-04 21:42:11 +08:00
|
|
|
*str = priv->voltage_label[channel];
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
break;
|
|
|
|
case hwmon_curr:
|
2022-04-04 21:42:11 +08:00
|
|
|
*str = priv->current_label[channel];
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int aqc_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel,
|
|
|
|
long val)
|
|
|
|
{
|
|
|
|
int ret, pwm_value;
|
|
|
|
struct aqc_data *priv = dev_get_drvdata(dev);
|
|
|
|
|
|
|
|
switch (type) {
|
|
|
|
case hwmon_pwm:
|
|
|
|
switch (attr) {
|
|
|
|
case hwmon_pwm_input:
|
|
|
|
switch (priv->kind) {
|
|
|
|
case octo:
|
|
|
|
pwm_value = aqc_pwm_to_percent(val);
|
|
|
|
if (pwm_value < 0)
|
|
|
|
return pwm_value;
|
|
|
|
|
|
|
|
ret = aqc_set_ctrl_val(priv, octo_ctrl_fan_offsets[channel],
|
|
|
|
pwm_value);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
2022-02-28 04:56:25 +08:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
static const struct hwmon_ops aqc_hwmon_ops = {
|
|
|
|
.is_visible = aqc_is_visible,
|
|
|
|
.read = aqc_read,
|
|
|
|
.read_string = aqc_read_string,
|
2022-04-04 21:42:11 +08:00
|
|
|
.write = aqc_write
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
};
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
static const struct hwmon_channel_info *aqc_info[] = {
|
|
|
|
HWMON_CHANNEL_INFO(temp,
|
|
|
|
HWMON_T_INPUT | HWMON_T_LABEL,
|
|
|
|
HWMON_T_INPUT | HWMON_T_LABEL,
|
|
|
|
HWMON_T_INPUT | HWMON_T_LABEL,
|
|
|
|
HWMON_T_INPUT | HWMON_T_LABEL),
|
|
|
|
HWMON_CHANNEL_INFO(fan,
|
2022-04-04 21:42:11 +08:00
|
|
|
HWMON_F_INPUT | HWMON_F_LABEL,
|
|
|
|
HWMON_F_INPUT | HWMON_F_LABEL,
|
|
|
|
HWMON_F_INPUT | HWMON_F_LABEL,
|
|
|
|
HWMON_F_INPUT | HWMON_F_LABEL,
|
|
|
|
HWMON_F_INPUT | HWMON_F_LABEL,
|
|
|
|
HWMON_F_INPUT | HWMON_F_LABEL,
|
2022-02-28 04:56:25 +08:00
|
|
|
HWMON_F_INPUT | HWMON_F_LABEL,
|
|
|
|
HWMON_F_INPUT | HWMON_F_LABEL),
|
|
|
|
HWMON_CHANNEL_INFO(power,
|
2022-04-04 21:42:11 +08:00
|
|
|
HWMON_P_INPUT | HWMON_P_LABEL,
|
|
|
|
HWMON_P_INPUT | HWMON_P_LABEL,
|
|
|
|
HWMON_P_INPUT | HWMON_P_LABEL,
|
|
|
|
HWMON_P_INPUT | HWMON_P_LABEL,
|
|
|
|
HWMON_P_INPUT | HWMON_P_LABEL,
|
|
|
|
HWMON_P_INPUT | HWMON_P_LABEL,
|
2022-02-28 04:56:25 +08:00
|
|
|
HWMON_P_INPUT | HWMON_P_LABEL,
|
|
|
|
HWMON_P_INPUT | HWMON_P_LABEL),
|
2022-04-04 21:42:11 +08:00
|
|
|
HWMON_CHANNEL_INFO(pwm,
|
|
|
|
HWMON_PWM_INPUT,
|
|
|
|
HWMON_PWM_INPUT,
|
|
|
|
HWMON_PWM_INPUT,
|
|
|
|
HWMON_PWM_INPUT,
|
|
|
|
HWMON_PWM_INPUT,
|
|
|
|
HWMON_PWM_INPUT,
|
|
|
|
HWMON_PWM_INPUT,
|
|
|
|
HWMON_PWM_INPUT),
|
2022-02-28 04:56:25 +08:00
|
|
|
HWMON_CHANNEL_INFO(in,
|
2022-04-04 21:42:11 +08:00
|
|
|
HWMON_I_INPUT | HWMON_I_LABEL,
|
|
|
|
HWMON_I_INPUT | HWMON_I_LABEL,
|
|
|
|
HWMON_I_INPUT | HWMON_I_LABEL,
|
|
|
|
HWMON_I_INPUT | HWMON_I_LABEL,
|
|
|
|
HWMON_I_INPUT | HWMON_I_LABEL,
|
2022-02-28 04:56:25 +08:00
|
|
|
HWMON_I_INPUT | HWMON_I_LABEL,
|
|
|
|
HWMON_I_INPUT | HWMON_I_LABEL,
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
HWMON_I_INPUT | HWMON_I_LABEL),
|
2022-02-28 04:56:25 +08:00
|
|
|
HWMON_CHANNEL_INFO(curr,
|
2022-04-04 21:42:11 +08:00
|
|
|
HWMON_C_INPUT | HWMON_C_LABEL,
|
|
|
|
HWMON_C_INPUT | HWMON_C_LABEL,
|
|
|
|
HWMON_C_INPUT | HWMON_C_LABEL,
|
|
|
|
HWMON_C_INPUT | HWMON_C_LABEL,
|
|
|
|
HWMON_C_INPUT | HWMON_C_LABEL,
|
|
|
|
HWMON_C_INPUT | HWMON_C_LABEL,
|
2022-02-28 04:56:25 +08:00
|
|
|
HWMON_C_INPUT | HWMON_C_LABEL,
|
|
|
|
HWMON_C_INPUT | HWMON_C_LABEL),
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
static const struct hwmon_chip_info aqc_chip_info = {
|
|
|
|
.ops = &aqc_hwmon_ops,
|
|
|
|
.info = aqc_info,
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
};
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
static int aqc_raw_event(struct hid_device *hdev, struct hid_report *report, u8 *data,
|
|
|
|
int size)
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
{
|
2022-02-28 04:56:25 +08:00
|
|
|
int i, sensor_value;
|
|
|
|
struct aqc_data *priv;
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
if (report->id != STATUS_REPORT_ID)
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
priv = hid_get_drvdata(hdev);
|
|
|
|
|
|
|
|
/* Info provided with every report */
|
2022-02-28 04:56:25 +08:00
|
|
|
priv->serial_number[0] = get_unaligned_be16(data + SERIAL_FIRST_PART);
|
|
|
|
priv->serial_number[1] = get_unaligned_be16(data + SERIAL_SECOND_PART);
|
|
|
|
priv->firmware_version = get_unaligned_be16(data + FIRMWARE_VERSION);
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
|
|
|
/* Sensor readings */
|
2022-02-28 04:56:25 +08:00
|
|
|
switch (priv->kind) {
|
|
|
|
case d5next:
|
|
|
|
priv->power_cycles = get_unaligned_be32(data + D5NEXT_POWER_CYCLES);
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
priv->temp_input[0] = get_unaligned_be16(data + D5NEXT_COOLANT_TEMP) * 10;
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
priv->speed_input[0] = get_unaligned_be16(data + D5NEXT_PUMP_SPEED);
|
|
|
|
priv->speed_input[1] = get_unaligned_be16(data + D5NEXT_FAN_SPEED);
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
priv->power_input[0] = get_unaligned_be16(data + D5NEXT_PUMP_POWER) * 10000;
|
|
|
|
priv->power_input[1] = get_unaligned_be16(data + D5NEXT_FAN_POWER) * 10000;
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
priv->voltage_input[0] = get_unaligned_be16(data + D5NEXT_PUMP_VOLTAGE) * 10;
|
|
|
|
priv->voltage_input[1] = get_unaligned_be16(data + D5NEXT_FAN_VOLTAGE) * 10;
|
|
|
|
priv->voltage_input[2] = get_unaligned_be16(data + D5NEXT_5V_VOLTAGE) * 10;
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
priv->current_input[0] = get_unaligned_be16(data + D5NEXT_PUMP_CURRENT);
|
|
|
|
priv->current_input[1] = get_unaligned_be16(data + D5NEXT_FAN_CURRENT);
|
|
|
|
break;
|
|
|
|
case farbwerk360:
|
|
|
|
/* Temperature sensor readings */
|
|
|
|
for (i = 0; i < FARBWERK360_NUM_SENSORS; i++) {
|
|
|
|
sensor_value = get_unaligned_be16(data + FARBWERK360_SENSOR_START +
|
|
|
|
i * FARBWERK360_SENSOR_SIZE);
|
|
|
|
if (sensor_value == FARBWERK360_SENSOR_DISCONNECTED)
|
|
|
|
priv->temp_input[i] = -ENODATA;
|
|
|
|
else
|
|
|
|
priv->temp_input[i] = sensor_value * 10;
|
|
|
|
}
|
|
|
|
break;
|
2022-04-04 21:42:11 +08:00
|
|
|
case octo:
|
|
|
|
priv->power_cycles = get_unaligned_be32(data + OCTO_POWER_CYCLES);
|
|
|
|
|
|
|
|
/* Fan speed and related readings */
|
|
|
|
for (i = 0; i < OCTO_NUM_FANS; i++) {
|
|
|
|
priv->speed_input[i] =
|
|
|
|
get_unaligned_be16(data + octo_sensor_fan_offsets[i] +
|
|
|
|
OCTO_FAN_SPEED_OFFSET);
|
|
|
|
priv->power_input[i] =
|
|
|
|
get_unaligned_be16(data + octo_sensor_fan_offsets[i] +
|
|
|
|
OCTO_FAN_POWER_OFFSET) * 10000;
|
|
|
|
priv->voltage_input[i] =
|
|
|
|
get_unaligned_be16(data + octo_sensor_fan_offsets[i] +
|
|
|
|
OCTO_FAN_VOLTAGE_OFFSET) * 10;
|
|
|
|
priv->current_input[i] =
|
|
|
|
get_unaligned_be16(data + octo_sensor_fan_offsets[i] +
|
|
|
|
OCTO_FAN_CURRENT_OFFSET);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Temperature sensor readings */
|
|
|
|
for (i = 0; i < OCTO_NUM_SENSORS; i++) {
|
|
|
|
sensor_value = get_unaligned_be16(data + OCTO_SENSOR_START +
|
|
|
|
i * OCTO_SENSOR_SIZE);
|
|
|
|
if (sensor_value == OCTO_SENSOR_DISCONNECTED)
|
|
|
|
priv->temp_input[i] = -ENODATA;
|
|
|
|
else
|
|
|
|
priv->temp_input[i] = sensor_value * 10;
|
|
|
|
}
|
|
|
|
break;
|
2022-02-28 04:56:25 +08:00
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
|
|
|
priv->updated = jiffies;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
|
|
|
|
|
|
static int serial_number_show(struct seq_file *seqf, void *unused)
|
|
|
|
{
|
2022-02-28 04:56:25 +08:00
|
|
|
struct aqc_data *priv = seqf->private;
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
|
|
|
seq_printf(seqf, "%05u-%05u\n", priv->serial_number[0], priv->serial_number[1]);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
DEFINE_SHOW_ATTRIBUTE(serial_number);
|
|
|
|
|
|
|
|
static int firmware_version_show(struct seq_file *seqf, void *unused)
|
|
|
|
{
|
2022-02-28 04:56:25 +08:00
|
|
|
struct aqc_data *priv = seqf->private;
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
|
|
|
seq_printf(seqf, "%u\n", priv->firmware_version);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
DEFINE_SHOW_ATTRIBUTE(firmware_version);
|
|
|
|
|
|
|
|
static int power_cycles_show(struct seq_file *seqf, void *unused)
|
|
|
|
{
|
2022-02-28 04:56:25 +08:00
|
|
|
struct aqc_data *priv = seqf->private;
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
|
|
|
seq_printf(seqf, "%u\n", priv->power_cycles);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
DEFINE_SHOW_ATTRIBUTE(power_cycles);
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
static void aqc_debugfs_init(struct aqc_data *priv)
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
{
|
2022-02-28 04:56:25 +08:00
|
|
|
char name[64];
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
scnprintf(name, sizeof(name), "%s_%s-%s", "aquacomputer", priv->name,
|
|
|
|
dev_name(&priv->hdev->dev));
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
|
|
|
priv->debugfs = debugfs_create_dir(name, NULL);
|
|
|
|
debugfs_create_file("serial_number", 0444, priv->debugfs, priv, &serial_number_fops);
|
|
|
|
debugfs_create_file("firmware_version", 0444, priv->debugfs, priv, &firmware_version_fops);
|
2022-02-28 04:56:25 +08:00
|
|
|
|
2022-04-04 21:42:11 +08:00
|
|
|
switch (priv->kind) {
|
|
|
|
case d5next:
|
|
|
|
case octo:
|
2022-02-28 04:56:25 +08:00
|
|
|
debugfs_create_file("power_cycles", 0444, priv->debugfs, priv, &power_cycles_fops);
|
2022-04-04 21:42:11 +08:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
static void aqc_debugfs_init(struct aqc_data *priv)
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
static int aqc_probe(struct hid_device *hdev, const struct hid_device_id *id)
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
{
|
2022-02-28 04:56:25 +08:00
|
|
|
struct aqc_data *priv;
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
priv = devm_kzalloc(&hdev->dev, sizeof(*priv), GFP_KERNEL);
|
|
|
|
if (!priv)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
priv->hdev = hdev;
|
|
|
|
hid_set_drvdata(hdev, priv);
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
priv->updated = jiffies - STATUS_UPDATE_INTERVAL;
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
|
|
|
ret = hid_parse(hdev);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
ret = hid_hw_open(hdev);
|
|
|
|
if (ret)
|
|
|
|
goto fail_and_stop;
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
switch (hdev->product) {
|
|
|
|
case USB_PRODUCT_ID_D5NEXT:
|
|
|
|
priv->kind = d5next;
|
2022-04-04 21:42:11 +08:00
|
|
|
|
|
|
|
priv->temp_label = label_d5next_temp;
|
|
|
|
priv->speed_label = label_d5next_speeds;
|
|
|
|
priv->power_label = label_d5next_power;
|
|
|
|
priv->voltage_label = label_d5next_voltages;
|
|
|
|
priv->current_label = label_d5next_current;
|
2022-02-28 04:56:25 +08:00
|
|
|
break;
|
|
|
|
case USB_PRODUCT_ID_FARBWERK360:
|
|
|
|
priv->kind = farbwerk360;
|
2022-04-04 21:42:11 +08:00
|
|
|
|
|
|
|
priv->temp_label = label_temp_sensors;
|
|
|
|
break;
|
|
|
|
case USB_PRODUCT_ID_OCTO:
|
|
|
|
priv->kind = octo;
|
|
|
|
priv->buffer_size = OCTO_CTRL_REPORT_SIZE;
|
|
|
|
priv->checksum_start = OCTO_CTRL_REPORT_CHECKSUM_START;
|
|
|
|
priv->checksum_length = OCTO_CTRL_REPORT_CHECKSUM_LENGTH;
|
|
|
|
priv->checksum_offset = OCTO_CTRL_REPORT_CHECKSUM_OFFSET;
|
|
|
|
|
|
|
|
priv->temp_label = label_temp_sensors;
|
|
|
|
priv->speed_label = label_fan_speed;
|
|
|
|
priv->power_label = label_fan_power;
|
|
|
|
priv->voltage_label = label_fan_voltage;
|
|
|
|
priv->current_label = label_fan_current;
|
2022-02-28 04:56:25 +08:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
priv->name = aqc_device_names[priv->kind];
|
|
|
|
|
2022-04-04 21:42:11 +08:00
|
|
|
priv->buffer = devm_kzalloc(&hdev->dev, priv->buffer_size, GFP_KERNEL);
|
|
|
|
if (!priv->buffer)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
mutex_init(&priv->mutex);
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
priv->hwmon_dev = hwmon_device_register_with_info(&hdev->dev, priv->name, priv,
|
|
|
|
&aqc_chip_info, NULL);
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
|
|
|
if (IS_ERR(priv->hwmon_dev)) {
|
|
|
|
ret = PTR_ERR(priv->hwmon_dev);
|
|
|
|
goto fail_and_close;
|
|
|
|
}
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
aqc_debugfs_init(priv);
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
fail_and_close:
|
|
|
|
hid_hw_close(hdev);
|
|
|
|
fail_and_stop:
|
|
|
|
hid_hw_stop(hdev);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
static void aqc_remove(struct hid_device *hdev)
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
{
|
2022-02-28 04:56:25 +08:00
|
|
|
struct aqc_data *priv = hid_get_drvdata(hdev);
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
|
|
|
debugfs_remove_recursive(priv->debugfs);
|
|
|
|
hwmon_device_unregister(priv->hwmon_dev);
|
|
|
|
|
|
|
|
hid_hw_close(hdev);
|
|
|
|
hid_hw_stop(hdev);
|
|
|
|
}
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
static const struct hid_device_id aqc_table[] = {
|
|
|
|
{ HID_USB_DEVICE(USB_VENDOR_ID_AQUACOMPUTER, USB_PRODUCT_ID_D5NEXT) },
|
|
|
|
{ HID_USB_DEVICE(USB_VENDOR_ID_AQUACOMPUTER, USB_PRODUCT_ID_FARBWERK360) },
|
2022-04-04 21:42:11 +08:00
|
|
|
{ HID_USB_DEVICE(USB_VENDOR_ID_AQUACOMPUTER, USB_PRODUCT_ID_OCTO) },
|
2022-02-28 04:56:25 +08:00
|
|
|
{ }
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
};
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
MODULE_DEVICE_TABLE(hid, aqc_table);
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
static struct hid_driver aqc_driver = {
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
.name = DRIVER_NAME,
|
2022-02-28 04:56:25 +08:00
|
|
|
.id_table = aqc_table,
|
|
|
|
.probe = aqc_probe,
|
|
|
|
.remove = aqc_remove,
|
|
|
|
.raw_event = aqc_raw_event,
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
};
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
static int __init aqc_init(void)
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
{
|
2022-02-28 04:56:25 +08:00
|
|
|
return hid_register_driver(&aqc_driver);
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
}
|
|
|
|
|
2022-02-28 04:56:25 +08:00
|
|
|
static void __exit aqc_exit(void)
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
{
|
2022-02-28 04:56:25 +08:00
|
|
|
hid_unregister_driver(&aqc_driver);
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Request to initialize after the HID bus to ensure it's not being loaded before */
|
2022-02-28 04:56:25 +08:00
|
|
|
late_initcall(aqc_init);
|
|
|
|
module_exit(aqc_exit);
|
hwmon: add driver for Aquacomputer D5 Next
This driver exposes hardware sensors of the Aquacomputer D5 Next
watercooling pump, which communicates through a proprietary USB HID
protocol.
Available sensors are pump and fan speed, power, voltage and current, as
well as coolant temperature. Also available through debugfs are the serial
number, firmware version and power-on count.
Attaching a fan is optional and allows it to be controlled using
temperature curves directly from the pump. If it's not connected,
the fan-related sensors will report zeroes.
The pump can be configured either through software or via its physical
interface. Configuring the pump through this driver is not implemented,
as it seems to require sending it a complete configuration. That
includes addressable RGB LEDs, for which there is no standard sysfs
interface. Thus, that task is better suited for userspace tools.
This driver has been tested on x86_64, both in-kernel and as a module.
Signed-off-by: Aleksa Savic <savicaleksa83@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2021-08-28 13:26:28 +08:00
|
|
|
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
MODULE_AUTHOR("Aleksa Savic <savicaleksa83@gmail.com>");
|
2022-02-28 04:56:25 +08:00
|
|
|
MODULE_DESCRIPTION("Hwmon driver for Aquacomputer devices");
|