License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
2016-11-23 23:52:26 +08:00
|
|
|
#ifndef _BPF_CGROUP_H
|
|
|
|
#define _BPF_CGROUP_H
|
|
|
|
|
2018-09-28 22:45:36 +08:00
|
|
|
#include <linux/bpf.h>
|
2018-07-07 05:34:29 +08:00
|
|
|
#include <linux/errno.h>
|
2016-11-23 23:52:26 +08:00
|
|
|
#include <linux/jump_label.h>
|
2018-08-03 05:27:19 +08:00
|
|
|
#include <linux/percpu.h>
|
2018-08-03 05:27:18 +08:00
|
|
|
#include <linux/rbtree.h>
|
2016-11-23 23:52:26 +08:00
|
|
|
#include <uapi/linux/bpf.h>
|
|
|
|
|
|
|
|
struct sock;
|
2018-03-31 06:08:02 +08:00
|
|
|
struct sockaddr;
|
2016-11-23 23:52:26 +08:00
|
|
|
struct cgroup;
|
|
|
|
struct sk_buff;
|
2018-08-03 05:27:18 +08:00
|
|
|
struct bpf_map;
|
|
|
|
struct bpf_prog;
|
bpf: BPF support for sock_ops
Created a new BPF program type, BPF_PROG_TYPE_SOCK_OPS, and a corresponding
struct that allows BPF programs of this type to access some of the
socket's fields (such as IP addresses, ports, etc.). It uses the
existing bpf cgroups infrastructure so the programs can be attached per
cgroup with full inheritance support. The program will be called at
appropriate times to set relevant connections parameters such as buffer
sizes, SYN and SYN-ACK RTOs, etc., based on connection information such
as IP addresses, port numbers, etc.
Alghough there are already 3 mechanisms to set parameters (sysctls,
route metrics and setsockopts), this new mechanism provides some
distinct advantages. Unlike sysctls, it can set parameters per
connection. In contrast to route metrics, it can also use port numbers
and information provided by a user level program. In addition, it could
set parameters probabilistically for evaluation purposes (i.e. do
something different on 10% of the flows and compare results with the
other 90% of the flows). Also, in cases where IPv6 addresses contain
geographic information, the rules to make changes based on the distance
(or RTT) between the hosts are much easier than route metric rules and
can be global. Finally, unlike setsockopt, it oes not require
application changes and it can be updated easily at any time.
Although the bpf cgroup framework already contains a sock related
program type (BPF_PROG_TYPE_CGROUP_SOCK), I created the new type
(BPF_PROG_TYPE_SOCK_OPS) beccause the existing type expects to be called
only once during the connections's lifetime. In contrast, the new
program type will be called multiple times from different places in the
network stack code. For example, before sending SYN and SYN-ACKs to set
an appropriate timeout, when the connection is established to set
congestion control, etc. As a result it has "op" field to specify the
type of operation requested.
The purpose of this new program type is to simplify setting connection
parameters, such as buffer sizes, TCP's SYN RTO, etc. For example, it is
easy to use facebook's internal IPv6 addresses to determine if both hosts
of a connection are in the same datacenter. Therefore, it is easy to
write a BPF program to choose a small SYN RTO value when both hosts are
in the same datacenter.
This patch only contains the framework to support the new BPF program
type, following patches add the functionality to set various connection
parameters.
This patch defines a new BPF program type: BPF_PROG_TYPE_SOCKET_OPS
and a new bpf syscall command to load a new program of this type:
BPF_PROG_LOAD_SOCKET_OPS.
Two new corresponding structs (one for the kernel one for the user/BPF
program):
/* kernel version */
struct bpf_sock_ops_kern {
struct sock *sk;
__u32 op;
union {
__u32 reply;
__u32 replylong[4];
};
};
/* user version
* Some fields are in network byte order reflecting the sock struct
* Use the bpf_ntohl helper macro in samples/bpf/bpf_endian.h to
* convert them to host byte order.
*/
struct bpf_sock_ops {
__u32 op;
union {
__u32 reply;
__u32 replylong[4];
};
__u32 family;
__u32 remote_ip4; /* In network byte order */
__u32 local_ip4; /* In network byte order */
__u32 remote_ip6[4]; /* In network byte order */
__u32 local_ip6[4]; /* In network byte order */
__u32 remote_port; /* In network byte order */
__u32 local_port; /* In host byte horder */
};
Currently there are two types of ops. The first type expects the BPF
program to return a value which is then used by the caller (or a
negative value to indicate the operation is not supported). The second
type expects state changes to be done by the BPF program, for example
through a setsockopt BPF helper function, and they ignore the return
value.
The reply fields of the bpf_sockt_ops struct are there in case a bpf
program needs to return a value larger than an integer.
Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-01 11:02:40 +08:00
|
|
|
struct bpf_sock_ops_kern;
|
2018-08-03 05:27:18 +08:00
|
|
|
struct bpf_cgroup_storage;
|
2016-11-23 23:52:26 +08:00
|
|
|
|
|
|
|
#ifdef CONFIG_CGROUP_BPF
|
|
|
|
|
|
|
|
extern struct static_key_false cgroup_bpf_enabled_key;
|
|
|
|
#define cgroup_bpf_enabled static_branch_unlikely(&cgroup_bpf_enabled_key)
|
|
|
|
|
2018-09-28 22:45:40 +08:00
|
|
|
DECLARE_PER_CPU(struct bpf_cgroup_storage*,
|
|
|
|
bpf_cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]);
|
2018-09-28 22:45:36 +08:00
|
|
|
|
|
|
|
#define for_each_cgroup_storage_type(stype) \
|
|
|
|
for (stype = 0; stype < MAX_BPF_CGROUP_STORAGE_TYPE; stype++)
|
2018-08-03 05:27:19 +08:00
|
|
|
|
2018-08-03 05:27:18 +08:00
|
|
|
struct bpf_cgroup_storage_map;
|
|
|
|
|
|
|
|
struct bpf_storage_buffer {
|
|
|
|
struct rcu_head rcu;
|
|
|
|
char data[0];
|
|
|
|
};
|
|
|
|
|
|
|
|
struct bpf_cgroup_storage {
|
2018-09-28 22:45:43 +08:00
|
|
|
union {
|
|
|
|
struct bpf_storage_buffer *buf;
|
|
|
|
void __percpu *percpu_buf;
|
|
|
|
};
|
2018-08-03 05:27:18 +08:00
|
|
|
struct bpf_cgroup_storage_map *map;
|
|
|
|
struct bpf_cgroup_storage_key key;
|
|
|
|
struct list_head list;
|
|
|
|
struct rb_node node;
|
|
|
|
struct rcu_head rcu;
|
|
|
|
};
|
|
|
|
|
2017-10-03 13:50:21 +08:00
|
|
|
struct bpf_prog_list {
|
|
|
|
struct list_head node;
|
|
|
|
struct bpf_prog *prog;
|
2018-09-28 22:45:36 +08:00
|
|
|
struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE];
|
2017-10-03 13:50:21 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
struct bpf_prog_array;
|
|
|
|
|
2016-11-23 23:52:26 +08:00
|
|
|
struct cgroup_bpf {
|
2017-10-03 13:50:21 +08:00
|
|
|
/* array of effective progs in this cgroup */
|
|
|
|
struct bpf_prog_array __rcu *effective[MAX_BPF_ATTACH_TYPE];
|
|
|
|
|
|
|
|
/* attached progs to this cgroup and attach flags
|
|
|
|
* when flags == 0 or BPF_F_ALLOW_OVERRIDE the progs list will
|
|
|
|
* have either zero or one element
|
|
|
|
* when BPF_F_ALLOW_MULTI the list can have up to BPF_CGROUP_MAX_PROGS
|
2016-11-23 23:52:26 +08:00
|
|
|
*/
|
2017-10-03 13:50:21 +08:00
|
|
|
struct list_head progs[MAX_BPF_ATTACH_TYPE];
|
|
|
|
u32 flags[MAX_BPF_ATTACH_TYPE];
|
|
|
|
|
|
|
|
/* temp storage for effective prog array used by prog_attach/detach */
|
|
|
|
struct bpf_prog_array __rcu *inactive;
|
2016-11-23 23:52:26 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
void cgroup_bpf_put(struct cgroup *cgrp);
|
2017-10-03 13:50:21 +08:00
|
|
|
int cgroup_bpf_inherit(struct cgroup *cgrp);
|
2016-11-23 23:52:26 +08:00
|
|
|
|
2017-10-03 13:50:21 +08:00
|
|
|
int __cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
|
|
|
|
enum bpf_attach_type type, u32 flags);
|
|
|
|
int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
|
|
|
|
enum bpf_attach_type type, u32 flags);
|
2017-10-03 13:50:22 +08:00
|
|
|
int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
|
|
|
|
union bpf_attr __user *uattr);
|
2016-11-23 23:52:26 +08:00
|
|
|
|
2017-10-03 13:50:21 +08:00
|
|
|
/* Wrapper for __cgroup_bpf_*() protected by cgroup_mutex */
|
|
|
|
int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
|
|
|
|
enum bpf_attach_type type, u32 flags);
|
|
|
|
int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
|
|
|
|
enum bpf_attach_type type, u32 flags);
|
2017-10-03 13:50:22 +08:00
|
|
|
int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
|
|
|
|
union bpf_attr __user *uattr);
|
2016-11-23 23:52:26 +08:00
|
|
|
|
2016-12-02 00:48:03 +08:00
|
|
|
int __cgroup_bpf_run_filter_skb(struct sock *sk,
|
|
|
|
struct sk_buff *skb,
|
|
|
|
enum bpf_attach_type type);
|
|
|
|
|
2016-12-02 00:48:04 +08:00
|
|
|
int __cgroup_bpf_run_filter_sk(struct sock *sk,
|
|
|
|
enum bpf_attach_type type);
|
|
|
|
|
2018-03-31 06:08:02 +08:00
|
|
|
int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
|
|
|
|
struct sockaddr *uaddr,
|
2018-05-25 23:55:23 +08:00
|
|
|
enum bpf_attach_type type,
|
|
|
|
void *t_ctx);
|
2018-03-31 06:08:02 +08:00
|
|
|
|
bpf: BPF support for sock_ops
Created a new BPF program type, BPF_PROG_TYPE_SOCK_OPS, and a corresponding
struct that allows BPF programs of this type to access some of the
socket's fields (such as IP addresses, ports, etc.). It uses the
existing bpf cgroups infrastructure so the programs can be attached per
cgroup with full inheritance support. The program will be called at
appropriate times to set relevant connections parameters such as buffer
sizes, SYN and SYN-ACK RTOs, etc., based on connection information such
as IP addresses, port numbers, etc.
Alghough there are already 3 mechanisms to set parameters (sysctls,
route metrics and setsockopts), this new mechanism provides some
distinct advantages. Unlike sysctls, it can set parameters per
connection. In contrast to route metrics, it can also use port numbers
and information provided by a user level program. In addition, it could
set parameters probabilistically for evaluation purposes (i.e. do
something different on 10% of the flows and compare results with the
other 90% of the flows). Also, in cases where IPv6 addresses contain
geographic information, the rules to make changes based on the distance
(or RTT) between the hosts are much easier than route metric rules and
can be global. Finally, unlike setsockopt, it oes not require
application changes and it can be updated easily at any time.
Although the bpf cgroup framework already contains a sock related
program type (BPF_PROG_TYPE_CGROUP_SOCK), I created the new type
(BPF_PROG_TYPE_SOCK_OPS) beccause the existing type expects to be called
only once during the connections's lifetime. In contrast, the new
program type will be called multiple times from different places in the
network stack code. For example, before sending SYN and SYN-ACKs to set
an appropriate timeout, when the connection is established to set
congestion control, etc. As a result it has "op" field to specify the
type of operation requested.
The purpose of this new program type is to simplify setting connection
parameters, such as buffer sizes, TCP's SYN RTO, etc. For example, it is
easy to use facebook's internal IPv6 addresses to determine if both hosts
of a connection are in the same datacenter. Therefore, it is easy to
write a BPF program to choose a small SYN RTO value when both hosts are
in the same datacenter.
This patch only contains the framework to support the new BPF program
type, following patches add the functionality to set various connection
parameters.
This patch defines a new BPF program type: BPF_PROG_TYPE_SOCKET_OPS
and a new bpf syscall command to load a new program of this type:
BPF_PROG_LOAD_SOCKET_OPS.
Two new corresponding structs (one for the kernel one for the user/BPF
program):
/* kernel version */
struct bpf_sock_ops_kern {
struct sock *sk;
__u32 op;
union {
__u32 reply;
__u32 replylong[4];
};
};
/* user version
* Some fields are in network byte order reflecting the sock struct
* Use the bpf_ntohl helper macro in samples/bpf/bpf_endian.h to
* convert them to host byte order.
*/
struct bpf_sock_ops {
__u32 op;
union {
__u32 reply;
__u32 replylong[4];
};
__u32 family;
__u32 remote_ip4; /* In network byte order */
__u32 local_ip4; /* In network byte order */
__u32 remote_ip6[4]; /* In network byte order */
__u32 local_ip6[4]; /* In network byte order */
__u32 remote_port; /* In network byte order */
__u32 local_port; /* In host byte horder */
};
Currently there are two types of ops. The first type expects the BPF
program to return a value which is then used by the caller (or a
negative value to indicate the operation is not supported). The second
type expects state changes to be done by the BPF program, for example
through a setsockopt BPF helper function, and they ignore the return
value.
The reply fields of the bpf_sockt_ops struct are there in case a bpf
program needs to return a value larger than an integer.
Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-01 11:02:40 +08:00
|
|
|
int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
|
|
|
|
struct bpf_sock_ops_kern *sock_ops,
|
|
|
|
enum bpf_attach_type type);
|
|
|
|
|
2017-11-05 21:15:32 +08:00
|
|
|
int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor,
|
|
|
|
short access, enum bpf_attach_type type);
|
|
|
|
|
2018-09-28 22:45:36 +08:00
|
|
|
static inline enum bpf_cgroup_storage_type cgroup_storage_type(
|
|
|
|
struct bpf_map *map)
|
2018-08-03 05:27:19 +08:00
|
|
|
{
|
2018-09-28 22:45:43 +08:00
|
|
|
if (map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
|
|
|
|
return BPF_CGROUP_STORAGE_PERCPU;
|
|
|
|
|
2018-09-28 22:45:36 +08:00
|
|
|
return BPF_CGROUP_STORAGE_SHARED;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void bpf_cgroup_storage_set(struct bpf_cgroup_storage
|
|
|
|
*storage[MAX_BPF_CGROUP_STORAGE_TYPE])
|
|
|
|
{
|
|
|
|
enum bpf_cgroup_storage_type stype;
|
2018-08-03 05:27:19 +08:00
|
|
|
|
2018-09-28 22:45:40 +08:00
|
|
|
for_each_cgroup_storage_type(stype)
|
|
|
|
this_cpu_write(bpf_cgroup_storage[stype], storage[stype]);
|
2018-08-03 05:27:19 +08:00
|
|
|
}
|
|
|
|
|
2018-09-28 22:45:36 +08:00
|
|
|
struct bpf_cgroup_storage *bpf_cgroup_storage_alloc(struct bpf_prog *prog,
|
|
|
|
enum bpf_cgroup_storage_type stype);
|
2018-08-03 05:27:18 +08:00
|
|
|
void bpf_cgroup_storage_free(struct bpf_cgroup_storage *storage);
|
|
|
|
void bpf_cgroup_storage_link(struct bpf_cgroup_storage *storage,
|
|
|
|
struct cgroup *cgroup,
|
|
|
|
enum bpf_attach_type type);
|
|
|
|
void bpf_cgroup_storage_unlink(struct bpf_cgroup_storage *storage);
|
|
|
|
int bpf_cgroup_storage_assign(struct bpf_prog *prog, struct bpf_map *map);
|
|
|
|
void bpf_cgroup_storage_release(struct bpf_prog *prog, struct bpf_map *map);
|
|
|
|
|
2018-09-28 22:45:43 +08:00
|
|
|
int bpf_percpu_cgroup_storage_copy(struct bpf_map *map, void *key, void *value);
|
|
|
|
int bpf_percpu_cgroup_storage_update(struct bpf_map *map, void *key,
|
|
|
|
void *value, u64 flags);
|
|
|
|
|
2016-12-02 00:48:03 +08:00
|
|
|
/* Wrappers for __cgroup_bpf_run_filter_skb() guarded by cgroup_bpf_enabled. */
|
|
|
|
#define BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb) \
|
|
|
|
({ \
|
|
|
|
int __ret = 0; \
|
|
|
|
if (cgroup_bpf_enabled) \
|
|
|
|
__ret = __cgroup_bpf_run_filter_skb(sk, skb, \
|
|
|
|
BPF_CGROUP_INET_INGRESS); \
|
|
|
|
\
|
|
|
|
__ret; \
|
2016-11-23 23:52:26 +08:00
|
|
|
})
|
|
|
|
|
2016-12-02 00:48:03 +08:00
|
|
|
#define BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb) \
|
|
|
|
({ \
|
|
|
|
int __ret = 0; \
|
|
|
|
if (cgroup_bpf_enabled && sk && sk == skb->sk) { \
|
|
|
|
typeof(sk) __sk = sk_to_full_sk(sk); \
|
|
|
|
if (sk_fullsock(__sk)) \
|
|
|
|
__ret = __cgroup_bpf_run_filter_skb(__sk, skb, \
|
|
|
|
BPF_CGROUP_INET_EGRESS); \
|
|
|
|
} \
|
|
|
|
__ret; \
|
2016-11-23 23:52:26 +08:00
|
|
|
})
|
|
|
|
|
2018-03-31 06:08:07 +08:00
|
|
|
#define BPF_CGROUP_RUN_SK_PROG(sk, type) \
|
2016-12-02 00:48:04 +08:00
|
|
|
({ \
|
|
|
|
int __ret = 0; \
|
2018-02-23 14:58:41 +08:00
|
|
|
if (cgroup_bpf_enabled) { \
|
2018-03-31 06:08:07 +08:00
|
|
|
__ret = __cgroup_bpf_run_filter_sk(sk, type); \
|
2016-12-02 00:48:04 +08:00
|
|
|
} \
|
|
|
|
__ret; \
|
|
|
|
})
|
|
|
|
|
2018-03-31 06:08:07 +08:00
|
|
|
#define BPF_CGROUP_RUN_PROG_INET_SOCK(sk) \
|
|
|
|
BPF_CGROUP_RUN_SK_PROG(sk, BPF_CGROUP_INET_SOCK_CREATE)
|
|
|
|
|
|
|
|
#define BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk) \
|
|
|
|
BPF_CGROUP_RUN_SK_PROG(sk, BPF_CGROUP_INET4_POST_BIND)
|
|
|
|
|
|
|
|
#define BPF_CGROUP_RUN_PROG_INET6_POST_BIND(sk) \
|
|
|
|
BPF_CGROUP_RUN_SK_PROG(sk, BPF_CGROUP_INET6_POST_BIND)
|
|
|
|
|
2018-03-31 06:08:02 +08:00
|
|
|
#define BPF_CGROUP_RUN_SA_PROG(sk, uaddr, type) \
|
|
|
|
({ \
|
|
|
|
int __ret = 0; \
|
|
|
|
if (cgroup_bpf_enabled) \
|
2018-05-25 23:55:23 +08:00
|
|
|
__ret = __cgroup_bpf_run_filter_sock_addr(sk, uaddr, type, \
|
|
|
|
NULL); \
|
2018-03-31 06:08:02 +08:00
|
|
|
__ret; \
|
|
|
|
})
|
|
|
|
|
2018-05-25 23:55:23 +08:00
|
|
|
#define BPF_CGROUP_RUN_SA_PROG_LOCK(sk, uaddr, type, t_ctx) \
|
2018-03-31 06:08:05 +08:00
|
|
|
({ \
|
|
|
|
int __ret = 0; \
|
|
|
|
if (cgroup_bpf_enabled) { \
|
|
|
|
lock_sock(sk); \
|
2018-05-25 23:55:23 +08:00
|
|
|
__ret = __cgroup_bpf_run_filter_sock_addr(sk, uaddr, type, \
|
|
|
|
t_ctx); \
|
2018-03-31 06:08:05 +08:00
|
|
|
release_sock(sk); \
|
|
|
|
} \
|
|
|
|
__ret; \
|
|
|
|
})
|
|
|
|
|
2018-03-31 06:08:02 +08:00
|
|
|
#define BPF_CGROUP_RUN_PROG_INET4_BIND(sk, uaddr) \
|
|
|
|
BPF_CGROUP_RUN_SA_PROG(sk, uaddr, BPF_CGROUP_INET4_BIND)
|
|
|
|
|
|
|
|
#define BPF_CGROUP_RUN_PROG_INET6_BIND(sk, uaddr) \
|
|
|
|
BPF_CGROUP_RUN_SA_PROG(sk, uaddr, BPF_CGROUP_INET6_BIND)
|
|
|
|
|
2018-03-31 06:08:05 +08:00
|
|
|
#define BPF_CGROUP_PRE_CONNECT_ENABLED(sk) (cgroup_bpf_enabled && \
|
|
|
|
sk->sk_prot->pre_connect)
|
|
|
|
|
|
|
|
#define BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr) \
|
|
|
|
BPF_CGROUP_RUN_SA_PROG(sk, uaddr, BPF_CGROUP_INET4_CONNECT)
|
|
|
|
|
|
|
|
#define BPF_CGROUP_RUN_PROG_INET6_CONNECT(sk, uaddr) \
|
|
|
|
BPF_CGROUP_RUN_SA_PROG(sk, uaddr, BPF_CGROUP_INET6_CONNECT)
|
|
|
|
|
|
|
|
#define BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr) \
|
2018-05-25 23:55:23 +08:00
|
|
|
BPF_CGROUP_RUN_SA_PROG_LOCK(sk, uaddr, BPF_CGROUP_INET4_CONNECT, NULL)
|
2018-03-31 06:08:05 +08:00
|
|
|
|
|
|
|
#define BPF_CGROUP_RUN_PROG_INET6_CONNECT_LOCK(sk, uaddr) \
|
2018-05-25 23:55:23 +08:00
|
|
|
BPF_CGROUP_RUN_SA_PROG_LOCK(sk, uaddr, BPF_CGROUP_INET6_CONNECT, NULL)
|
|
|
|
|
|
|
|
#define BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, uaddr, t_ctx) \
|
|
|
|
BPF_CGROUP_RUN_SA_PROG_LOCK(sk, uaddr, BPF_CGROUP_UDP4_SENDMSG, t_ctx)
|
|
|
|
|
|
|
|
#define BPF_CGROUP_RUN_PROG_UDP6_SENDMSG_LOCK(sk, uaddr, t_ctx) \
|
|
|
|
BPF_CGROUP_RUN_SA_PROG_LOCK(sk, uaddr, BPF_CGROUP_UDP6_SENDMSG, t_ctx)
|
2018-03-31 06:08:05 +08:00
|
|
|
|
bpf: BPF support for sock_ops
Created a new BPF program type, BPF_PROG_TYPE_SOCK_OPS, and a corresponding
struct that allows BPF programs of this type to access some of the
socket's fields (such as IP addresses, ports, etc.). It uses the
existing bpf cgroups infrastructure so the programs can be attached per
cgroup with full inheritance support. The program will be called at
appropriate times to set relevant connections parameters such as buffer
sizes, SYN and SYN-ACK RTOs, etc., based on connection information such
as IP addresses, port numbers, etc.
Alghough there are already 3 mechanisms to set parameters (sysctls,
route metrics and setsockopts), this new mechanism provides some
distinct advantages. Unlike sysctls, it can set parameters per
connection. In contrast to route metrics, it can also use port numbers
and information provided by a user level program. In addition, it could
set parameters probabilistically for evaluation purposes (i.e. do
something different on 10% of the flows and compare results with the
other 90% of the flows). Also, in cases where IPv6 addresses contain
geographic information, the rules to make changes based on the distance
(or RTT) between the hosts are much easier than route metric rules and
can be global. Finally, unlike setsockopt, it oes not require
application changes and it can be updated easily at any time.
Although the bpf cgroup framework already contains a sock related
program type (BPF_PROG_TYPE_CGROUP_SOCK), I created the new type
(BPF_PROG_TYPE_SOCK_OPS) beccause the existing type expects to be called
only once during the connections's lifetime. In contrast, the new
program type will be called multiple times from different places in the
network stack code. For example, before sending SYN and SYN-ACKs to set
an appropriate timeout, when the connection is established to set
congestion control, etc. As a result it has "op" field to specify the
type of operation requested.
The purpose of this new program type is to simplify setting connection
parameters, such as buffer sizes, TCP's SYN RTO, etc. For example, it is
easy to use facebook's internal IPv6 addresses to determine if both hosts
of a connection are in the same datacenter. Therefore, it is easy to
write a BPF program to choose a small SYN RTO value when both hosts are
in the same datacenter.
This patch only contains the framework to support the new BPF program
type, following patches add the functionality to set various connection
parameters.
This patch defines a new BPF program type: BPF_PROG_TYPE_SOCKET_OPS
and a new bpf syscall command to load a new program of this type:
BPF_PROG_LOAD_SOCKET_OPS.
Two new corresponding structs (one for the kernel one for the user/BPF
program):
/* kernel version */
struct bpf_sock_ops_kern {
struct sock *sk;
__u32 op;
union {
__u32 reply;
__u32 replylong[4];
};
};
/* user version
* Some fields are in network byte order reflecting the sock struct
* Use the bpf_ntohl helper macro in samples/bpf/bpf_endian.h to
* convert them to host byte order.
*/
struct bpf_sock_ops {
__u32 op;
union {
__u32 reply;
__u32 replylong[4];
};
__u32 family;
__u32 remote_ip4; /* In network byte order */
__u32 local_ip4; /* In network byte order */
__u32 remote_ip6[4]; /* In network byte order */
__u32 local_ip6[4]; /* In network byte order */
__u32 remote_port; /* In network byte order */
__u32 local_port; /* In host byte horder */
};
Currently there are two types of ops. The first type expects the BPF
program to return a value which is then used by the caller (or a
negative value to indicate the operation is not supported). The second
type expects state changes to be done by the BPF program, for example
through a setsockopt BPF helper function, and they ignore the return
value.
The reply fields of the bpf_sockt_ops struct are there in case a bpf
program needs to return a value larger than an integer.
Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-01 11:02:40 +08:00
|
|
|
#define BPF_CGROUP_RUN_PROG_SOCK_OPS(sock_ops) \
|
|
|
|
({ \
|
|
|
|
int __ret = 0; \
|
|
|
|
if (cgroup_bpf_enabled && (sock_ops)->sk) { \
|
|
|
|
typeof(sk) __sk = sk_to_full_sk((sock_ops)->sk); \
|
2017-07-18 02:42:55 +08:00
|
|
|
if (__sk && sk_fullsock(__sk)) \
|
bpf: BPF support for sock_ops
Created a new BPF program type, BPF_PROG_TYPE_SOCK_OPS, and a corresponding
struct that allows BPF programs of this type to access some of the
socket's fields (such as IP addresses, ports, etc.). It uses the
existing bpf cgroups infrastructure so the programs can be attached per
cgroup with full inheritance support. The program will be called at
appropriate times to set relevant connections parameters such as buffer
sizes, SYN and SYN-ACK RTOs, etc., based on connection information such
as IP addresses, port numbers, etc.
Alghough there are already 3 mechanisms to set parameters (sysctls,
route metrics and setsockopts), this new mechanism provides some
distinct advantages. Unlike sysctls, it can set parameters per
connection. In contrast to route metrics, it can also use port numbers
and information provided by a user level program. In addition, it could
set parameters probabilistically for evaluation purposes (i.e. do
something different on 10% of the flows and compare results with the
other 90% of the flows). Also, in cases where IPv6 addresses contain
geographic information, the rules to make changes based on the distance
(or RTT) between the hosts are much easier than route metric rules and
can be global. Finally, unlike setsockopt, it oes not require
application changes and it can be updated easily at any time.
Although the bpf cgroup framework already contains a sock related
program type (BPF_PROG_TYPE_CGROUP_SOCK), I created the new type
(BPF_PROG_TYPE_SOCK_OPS) beccause the existing type expects to be called
only once during the connections's lifetime. In contrast, the new
program type will be called multiple times from different places in the
network stack code. For example, before sending SYN and SYN-ACKs to set
an appropriate timeout, when the connection is established to set
congestion control, etc. As a result it has "op" field to specify the
type of operation requested.
The purpose of this new program type is to simplify setting connection
parameters, such as buffer sizes, TCP's SYN RTO, etc. For example, it is
easy to use facebook's internal IPv6 addresses to determine if both hosts
of a connection are in the same datacenter. Therefore, it is easy to
write a BPF program to choose a small SYN RTO value when both hosts are
in the same datacenter.
This patch only contains the framework to support the new BPF program
type, following patches add the functionality to set various connection
parameters.
This patch defines a new BPF program type: BPF_PROG_TYPE_SOCKET_OPS
and a new bpf syscall command to load a new program of this type:
BPF_PROG_LOAD_SOCKET_OPS.
Two new corresponding structs (one for the kernel one for the user/BPF
program):
/* kernel version */
struct bpf_sock_ops_kern {
struct sock *sk;
__u32 op;
union {
__u32 reply;
__u32 replylong[4];
};
};
/* user version
* Some fields are in network byte order reflecting the sock struct
* Use the bpf_ntohl helper macro in samples/bpf/bpf_endian.h to
* convert them to host byte order.
*/
struct bpf_sock_ops {
__u32 op;
union {
__u32 reply;
__u32 replylong[4];
};
__u32 family;
__u32 remote_ip4; /* In network byte order */
__u32 local_ip4; /* In network byte order */
__u32 remote_ip6[4]; /* In network byte order */
__u32 local_ip6[4]; /* In network byte order */
__u32 remote_port; /* In network byte order */
__u32 local_port; /* In host byte horder */
};
Currently there are two types of ops. The first type expects the BPF
program to return a value which is then used by the caller (or a
negative value to indicate the operation is not supported). The second
type expects state changes to be done by the BPF program, for example
through a setsockopt BPF helper function, and they ignore the return
value.
The reply fields of the bpf_sockt_ops struct are there in case a bpf
program needs to return a value larger than an integer.
Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-01 11:02:40 +08:00
|
|
|
__ret = __cgroup_bpf_run_filter_sock_ops(__sk, \
|
|
|
|
sock_ops, \
|
|
|
|
BPF_CGROUP_SOCK_OPS); \
|
|
|
|
} \
|
|
|
|
__ret; \
|
|
|
|
})
|
2017-11-05 21:15:32 +08:00
|
|
|
|
|
|
|
#define BPF_CGROUP_RUN_PROG_DEVICE_CGROUP(type, major, minor, access) \
|
|
|
|
({ \
|
|
|
|
int __ret = 0; \
|
|
|
|
if (cgroup_bpf_enabled) \
|
|
|
|
__ret = __cgroup_bpf_check_dev_permission(type, major, minor, \
|
|
|
|
access, \
|
|
|
|
BPF_CGROUP_DEVICE); \
|
|
|
|
\
|
|
|
|
__ret; \
|
|
|
|
})
|
2018-06-19 07:04:24 +08:00
|
|
|
int cgroup_bpf_prog_attach(const union bpf_attr *attr,
|
|
|
|
enum bpf_prog_type ptype, struct bpf_prog *prog);
|
|
|
|
int cgroup_bpf_prog_detach(const union bpf_attr *attr,
|
|
|
|
enum bpf_prog_type ptype);
|
|
|
|
int cgroup_bpf_prog_query(const union bpf_attr *attr,
|
|
|
|
union bpf_attr __user *uattr);
|
2016-11-23 23:52:26 +08:00
|
|
|
#else
|
|
|
|
|
2018-06-19 07:04:24 +08:00
|
|
|
struct bpf_prog;
|
2016-11-23 23:52:26 +08:00
|
|
|
struct cgroup_bpf {};
|
|
|
|
static inline void cgroup_bpf_put(struct cgroup *cgrp) {}
|
2017-10-03 13:50:21 +08:00
|
|
|
static inline int cgroup_bpf_inherit(struct cgroup *cgrp) { return 0; }
|
2016-11-23 23:52:26 +08:00
|
|
|
|
2018-06-19 07:04:24 +08:00
|
|
|
static inline int cgroup_bpf_prog_attach(const union bpf_attr *attr,
|
|
|
|
enum bpf_prog_type ptype,
|
|
|
|
struct bpf_prog *prog)
|
|
|
|
{
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int cgroup_bpf_prog_detach(const union bpf_attr *attr,
|
|
|
|
enum bpf_prog_type ptype)
|
|
|
|
{
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int cgroup_bpf_prog_query(const union bpf_attr *attr,
|
|
|
|
union bpf_attr __user *uattr)
|
|
|
|
{
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2018-09-28 22:45:36 +08:00
|
|
|
static inline void bpf_cgroup_storage_set(
|
|
|
|
struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE]) {}
|
2018-08-03 05:27:18 +08:00
|
|
|
static inline int bpf_cgroup_storage_assign(struct bpf_prog *prog,
|
|
|
|
struct bpf_map *map) { return 0; }
|
|
|
|
static inline void bpf_cgroup_storage_release(struct bpf_prog *prog,
|
|
|
|
struct bpf_map *map) {}
|
|
|
|
static inline struct bpf_cgroup_storage *bpf_cgroup_storage_alloc(
|
2018-09-28 22:45:36 +08:00
|
|
|
struct bpf_prog *prog, enum bpf_cgroup_storage_type stype) { return 0; }
|
2018-08-03 05:27:18 +08:00
|
|
|
static inline void bpf_cgroup_storage_free(
|
|
|
|
struct bpf_cgroup_storage *storage) {}
|
2018-09-28 22:45:43 +08:00
|
|
|
static inline int bpf_percpu_cgroup_storage_copy(struct bpf_map *map, void *key,
|
|
|
|
void *value) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
static inline int bpf_percpu_cgroup_storage_update(struct bpf_map *map,
|
|
|
|
void *key, void *value, u64 flags) {
|
|
|
|
return 0;
|
|
|
|
}
|
2018-08-03 05:27:18 +08:00
|
|
|
|
2018-05-25 23:55:22 +08:00
|
|
|
#define cgroup_bpf_enabled (0)
|
2018-03-31 06:08:05 +08:00
|
|
|
#define BPF_CGROUP_PRE_CONNECT_ENABLED(sk) (0)
|
2016-11-23 23:52:26 +08:00
|
|
|
#define BPF_CGROUP_RUN_PROG_INET_INGRESS(sk,skb) ({ 0; })
|
|
|
|
#define BPF_CGROUP_RUN_PROG_INET_EGRESS(sk,skb) ({ 0; })
|
2016-12-02 00:48:04 +08:00
|
|
|
#define BPF_CGROUP_RUN_PROG_INET_SOCK(sk) ({ 0; })
|
2018-03-31 06:08:02 +08:00
|
|
|
#define BPF_CGROUP_RUN_PROG_INET4_BIND(sk, uaddr) ({ 0; })
|
|
|
|
#define BPF_CGROUP_RUN_PROG_INET6_BIND(sk, uaddr) ({ 0; })
|
2018-03-31 06:08:07 +08:00
|
|
|
#define BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk) ({ 0; })
|
|
|
|
#define BPF_CGROUP_RUN_PROG_INET6_POST_BIND(sk) ({ 0; })
|
2018-03-31 06:08:05 +08:00
|
|
|
#define BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr) ({ 0; })
|
|
|
|
#define BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr) ({ 0; })
|
|
|
|
#define BPF_CGROUP_RUN_PROG_INET6_CONNECT(sk, uaddr) ({ 0; })
|
|
|
|
#define BPF_CGROUP_RUN_PROG_INET6_CONNECT_LOCK(sk, uaddr) ({ 0; })
|
2018-05-25 23:55:23 +08:00
|
|
|
#define BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, uaddr, t_ctx) ({ 0; })
|
|
|
|
#define BPF_CGROUP_RUN_PROG_UDP6_SENDMSG_LOCK(sk, uaddr, t_ctx) ({ 0; })
|
bpf: BPF support for sock_ops
Created a new BPF program type, BPF_PROG_TYPE_SOCK_OPS, and a corresponding
struct that allows BPF programs of this type to access some of the
socket's fields (such as IP addresses, ports, etc.). It uses the
existing bpf cgroups infrastructure so the programs can be attached per
cgroup with full inheritance support. The program will be called at
appropriate times to set relevant connections parameters such as buffer
sizes, SYN and SYN-ACK RTOs, etc., based on connection information such
as IP addresses, port numbers, etc.
Alghough there are already 3 mechanisms to set parameters (sysctls,
route metrics and setsockopts), this new mechanism provides some
distinct advantages. Unlike sysctls, it can set parameters per
connection. In contrast to route metrics, it can also use port numbers
and information provided by a user level program. In addition, it could
set parameters probabilistically for evaluation purposes (i.e. do
something different on 10% of the flows and compare results with the
other 90% of the flows). Also, in cases where IPv6 addresses contain
geographic information, the rules to make changes based on the distance
(or RTT) between the hosts are much easier than route metric rules and
can be global. Finally, unlike setsockopt, it oes not require
application changes and it can be updated easily at any time.
Although the bpf cgroup framework already contains a sock related
program type (BPF_PROG_TYPE_CGROUP_SOCK), I created the new type
(BPF_PROG_TYPE_SOCK_OPS) beccause the existing type expects to be called
only once during the connections's lifetime. In contrast, the new
program type will be called multiple times from different places in the
network stack code. For example, before sending SYN and SYN-ACKs to set
an appropriate timeout, when the connection is established to set
congestion control, etc. As a result it has "op" field to specify the
type of operation requested.
The purpose of this new program type is to simplify setting connection
parameters, such as buffer sizes, TCP's SYN RTO, etc. For example, it is
easy to use facebook's internal IPv6 addresses to determine if both hosts
of a connection are in the same datacenter. Therefore, it is easy to
write a BPF program to choose a small SYN RTO value when both hosts are
in the same datacenter.
This patch only contains the framework to support the new BPF program
type, following patches add the functionality to set various connection
parameters.
This patch defines a new BPF program type: BPF_PROG_TYPE_SOCKET_OPS
and a new bpf syscall command to load a new program of this type:
BPF_PROG_LOAD_SOCKET_OPS.
Two new corresponding structs (one for the kernel one for the user/BPF
program):
/* kernel version */
struct bpf_sock_ops_kern {
struct sock *sk;
__u32 op;
union {
__u32 reply;
__u32 replylong[4];
};
};
/* user version
* Some fields are in network byte order reflecting the sock struct
* Use the bpf_ntohl helper macro in samples/bpf/bpf_endian.h to
* convert them to host byte order.
*/
struct bpf_sock_ops {
__u32 op;
union {
__u32 reply;
__u32 replylong[4];
};
__u32 family;
__u32 remote_ip4; /* In network byte order */
__u32 local_ip4; /* In network byte order */
__u32 remote_ip6[4]; /* In network byte order */
__u32 local_ip6[4]; /* In network byte order */
__u32 remote_port; /* In network byte order */
__u32 local_port; /* In host byte horder */
};
Currently there are two types of ops. The first type expects the BPF
program to return a value which is then used by the caller (or a
negative value to indicate the operation is not supported). The second
type expects state changes to be done by the BPF program, for example
through a setsockopt BPF helper function, and they ignore the return
value.
The reply fields of the bpf_sockt_ops struct are there in case a bpf
program needs to return a value larger than an integer.
Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-01 11:02:40 +08:00
|
|
|
#define BPF_CGROUP_RUN_PROG_SOCK_OPS(sock_ops) ({ 0; })
|
2017-11-05 21:15:32 +08:00
|
|
|
#define BPF_CGROUP_RUN_PROG_DEVICE_CGROUP(type,major,minor,access) ({ 0; })
|
2016-11-23 23:52:26 +08:00
|
|
|
|
2018-09-28 22:45:36 +08:00
|
|
|
#define for_each_cgroup_storage_type(stype) for (; false; )
|
|
|
|
|
2016-11-23 23:52:26 +08:00
|
|
|
#endif /* CONFIG_CGROUP_BPF */
|
|
|
|
|
|
|
|
#endif /* _BPF_CGROUP_H */
|