OpenCloudOS-Kernel/fs/gfs2/glops.c

678 lines
17 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
* Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
*/
#include <linux/spinlock.h>
#include <linux/completion.h>
#include <linux/buffer_head.h>
#include <linux/gfs2_ondisk.h>
#include <linux/bio.h>
#include <linux/posix_acl.h>
#include <linux/security.h>
#include "gfs2.h"
#include "incore.h"
#include "bmap.h"
#include "glock.h"
#include "glops.h"
#include "inode.h"
#include "log.h"
#include "meta_io.h"
#include "recovery.h"
#include "rgrp.h"
#include "util.h"
#include "trans.h"
#include "dir.h"
#include "lops.h"
struct workqueue_struct *gfs2_freeze_wq;
static void gfs2_ail_error(struct gfs2_glock *gl, const struct buffer_head *bh)
{
fs_err(gl->gl_name.ln_sbd,
"AIL buffer %p: blocknr %llu state 0x%08lx mapping %p page "
"state 0x%lx\n",
bh, (unsigned long long)bh->b_blocknr, bh->b_state,
bh->b_page->mapping, bh->b_page->flags);
fs_err(gl->gl_name.ln_sbd, "AIL glock %u:%llu mapping %p\n",
gl->gl_name.ln_type, gl->gl_name.ln_number,
gfs2_glock2aspace(gl));
gfs2_lm_withdraw(gl->gl_name.ln_sbd, "AIL error\n");
}
/**
* __gfs2_ail_flush - remove all buffers for a given lock from the AIL
* @gl: the glock
* @fsync: set when called from fsync (not all buffers will be clean)
*
* None of the buffers should be dirty, locked, or pinned.
*/
static void __gfs2_ail_flush(struct gfs2_glock *gl, bool fsync,
unsigned int nr_revokes)
{
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
struct list_head *head = &gl->gl_ail_list;
struct gfs2_bufdata *bd, *tmp;
struct buffer_head *bh;
const unsigned long b_state = (1UL << BH_Dirty)|(1UL << BH_Pinned)|(1UL << BH_Lock);
gfs2_log_lock(sdp);
spin_lock(&sdp->sd_ail_lock);
list_for_each_entry_safe_reverse(bd, tmp, head, bd_ail_gl_list) {
if (nr_revokes == 0)
break;
bh = bd->bd_bh;
if (bh->b_state & b_state) {
if (fsync)
continue;
gfs2_ail_error(gl, bh);
}
gfs2_trans_add_revoke(sdp, bd);
nr_revokes--;
}
GLOCK_BUG_ON(gl, !fsync && atomic_read(&gl->gl_ail_count));
spin_unlock(&sdp->sd_ail_lock);
gfs2_log_unlock(sdp);
}
static void gfs2_ail_empty_gl(struct gfs2_glock *gl)
{
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
struct gfs2_trans tr;
memset(&tr, 0, sizeof(tr));
INIT_LIST_HEAD(&tr.tr_buf);
INIT_LIST_HEAD(&tr.tr_databuf);
INIT_LIST_HEAD(&tr.tr_ail1_list);
INIT_LIST_HEAD(&tr.tr_ail2_list);
tr.tr_revokes = atomic_read(&gl->gl_ail_count);
if (!tr.tr_revokes) {
bool have_revokes;
bool log_in_flight;
/*
* We have nothing on the ail, but there could be revokes on
* the sdp revoke queue, in which case, we still want to flush
* the log and wait for it to finish.
*
* If the sdp revoke list is empty too, we might still have an
* io outstanding for writing revokes, so we should wait for
* it before returning.
*
* If none of these conditions are true, our revokes are all
* flushed and we can return.
*/
gfs2_log_lock(sdp);
have_revokes = !list_empty(&sdp->sd_log_revokes);
log_in_flight = atomic_read(&sdp->sd_log_in_flight);
gfs2_log_unlock(sdp);
if (have_revokes)
goto flush;
if (log_in_flight)
log_flush_wait(sdp);
return;
}
GFS2: remove transaction glock GFS2 has a transaction glock, which must be grabbed for every transaction, whose purpose is to deal with freezing the filesystem. Aside from this involving a large amount of locking, it is very easy to make the current fsfreeze code hang on unfreezing. This patch rewrites how gfs2 handles freezing the filesystem. The transaction glock is removed. In it's place is a freeze glock, which is cached (but not held) in a shared state by every node in the cluster when the filesystem is mounted. This lock only needs to be grabbed on freezing, and actions which need to be safe from freezing, like recovery. When a node wants to freeze the filesystem, it grabs this glock exclusively. When the freeze glock state changes on the nodes (either from shared to unlocked, or shared to exclusive), the filesystem does a special log flush. gfs2_log_flush() does all the work for flushing out the and shutting down the incore log, and then it tries to grab the freeze glock in a shared state again. Since the filesystem is stuck in gfs2_log_flush, no new transaction can start, and nothing can be written to disk. Unfreezing the filesytem simply involes dropping the freeze glock, allowing gfs2_log_flush() to grab and then release the shared lock, so it is cached for next time. However, in order for the unfreezing ioctl to occur, gfs2 needs to get a shared lock on the filesystem root directory inode to check permissions. If that glock has already been grabbed exclusively, fsfreeze will be unable to get the shared lock and unfreeze the filesystem. In order to allow the unfreeze, this patch makes gfs2 grab a shared lock on the filesystem root directory during the freeze, and hold it until it unfreezes the filesystem. The functions which need to grab a shared lock in order to allow the unfreeze ioctl to be issued now use the lock grabbed by the freeze code instead. The freeze and unfreeze code take care to make sure that this shared lock will not be dropped while another process is using it. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2014-05-02 11:26:55 +08:00
/* A shortened, inline version of gfs2_trans_begin()
* tr->alloced is not set since the transaction structure is
* on the stack */
tr.tr_reserved = 1 + gfs2_struct2blk(sdp, tr.tr_revokes, sizeof(u64));
tr.tr_ip = _RET_IP_;
if (gfs2_log_reserve(sdp, tr.tr_reserved) < 0)
GFS2: remove transaction glock GFS2 has a transaction glock, which must be grabbed for every transaction, whose purpose is to deal with freezing the filesystem. Aside from this involving a large amount of locking, it is very easy to make the current fsfreeze code hang on unfreezing. This patch rewrites how gfs2 handles freezing the filesystem. The transaction glock is removed. In it's place is a freeze glock, which is cached (but not held) in a shared state by every node in the cluster when the filesystem is mounted. This lock only needs to be grabbed on freezing, and actions which need to be safe from freezing, like recovery. When a node wants to freeze the filesystem, it grabs this glock exclusively. When the freeze glock state changes on the nodes (either from shared to unlocked, or shared to exclusive), the filesystem does a special log flush. gfs2_log_flush() does all the work for flushing out the and shutting down the incore log, and then it tries to grab the freeze glock in a shared state again. Since the filesystem is stuck in gfs2_log_flush, no new transaction can start, and nothing can be written to disk. Unfreezing the filesytem simply involes dropping the freeze glock, allowing gfs2_log_flush() to grab and then release the shared lock, so it is cached for next time. However, in order for the unfreezing ioctl to occur, gfs2 needs to get a shared lock on the filesystem root directory inode to check permissions. If that glock has already been grabbed exclusively, fsfreeze will be unable to get the shared lock and unfreeze the filesystem. In order to allow the unfreeze, this patch makes gfs2 grab a shared lock on the filesystem root directory during the freeze, and hold it until it unfreezes the filesystem. The functions which need to grab a shared lock in order to allow the unfreeze ioctl to be issued now use the lock grabbed by the freeze code instead. The freeze and unfreeze code take care to make sure that this shared lock will not be dropped while another process is using it. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2014-05-02 11:26:55 +08:00
return;
WARN_ON_ONCE(current->journal_info);
current->journal_info = &tr;
__gfs2_ail_flush(gl, 0, tr.tr_revokes);
gfs2_trans_end(sdp);
flush:
gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
GFS2_LFC_AIL_EMPTY_GL);
}
void gfs2_ail_flush(struct gfs2_glock *gl, bool fsync)
{
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
unsigned int revokes = atomic_read(&gl->gl_ail_count);
unsigned int max_revokes = (sdp->sd_sb.sb_bsize - sizeof(struct gfs2_log_descriptor)) / sizeof(u64);
int ret;
if (!revokes)
return;
while (revokes > max_revokes)
max_revokes += (sdp->sd_sb.sb_bsize - sizeof(struct gfs2_meta_header)) / sizeof(u64);
ret = gfs2_trans_begin(sdp, 0, max_revokes);
if (ret)
return;
__gfs2_ail_flush(gl, fsync, max_revokes);
gfs2_trans_end(sdp);
gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
GFS2_LFC_AIL_FLUSH);
}
/**
* rgrp_go_sync - sync out the metadata for this glock
* @gl: the glock
*
* Called when demoting or unlocking an EX glock. We must flush
* to disk all dirty buffers/pages relating to this glock, and must not
* return to caller to demote/unlock the glock until I/O is complete.
*/
static void rgrp_go_sync(struct gfs2_glock *gl)
{
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
struct address_space *mapping = &sdp->sd_aspace;
struct gfs2_rgrpd *rgd;
int error;
spin_lock(&gl->gl_lockref.lock);
rgd = gl->gl_object;
if (rgd)
gfs2_rgrp_brelse(rgd);
spin_unlock(&gl->gl_lockref.lock);
if (!test_and_clear_bit(GLF_DIRTY, &gl->gl_flags))
return;
GLOCK_BUG_ON(gl, gl->gl_state != LM_ST_EXCLUSIVE);
gfs2_log_flush(sdp, gl, GFS2_LOG_HEAD_FLUSH_NORMAL |
GFS2_LFC_RGRP_GO_SYNC);
filemap_fdatawrite_range(mapping, gl->gl_vm.start, gl->gl_vm.end);
error = filemap_fdatawait_range(mapping, gl->gl_vm.start, gl->gl_vm.end);
mapping_set_error(mapping, error);
gfs2_ail_empty_gl(gl);
GFS2: Use rbtree for resource groups and clean up bitmap buffer ref count scheme Here is an update of Bob's original rbtree patch which, in addition, also resolves the rather strange ref counting that was being done relating to the bitmap blocks. Originally we had a dual system for journaling resource groups. The metadata blocks were journaled and also the rgrp itself was added to a list. The reason for adding the rgrp to the list in the journal was so that the "repolish clones" code could be run to update the free space, and potentially send any discard requests when the log was flushed. This was done by comparing the "cloned" bitmap with what had been written back on disk during the transaction commit. Due to this, there was a requirement to hang on to the rgrps' bitmap buffers until the journal had been flushed. For that reason, there was a rather complicated set up in the ->go_lock ->go_unlock functions for rgrps involving both a mutex and a spinlock (the ->sd_rindex_spin) to maintain a reference count on the buffers. However, the journal maintains a reference count on the buffers anyway, since they are being journaled as metadata buffers. So by moving the code which deals with the post-journal accounting for bitmap blocks to the metadata journaling code, we can entirely dispense with the rather strange buffer ref counting scheme and also the requirement to journal the rgrps. The net result of all this is that the ->sd_rindex_spin is left to do exactly one job, and that is to look after the rbtree or rgrps. This patch is designed to be a stepping stone towards using RCU for the rbtree of resource groups, however the reduction in the number of uses of the ->sd_rindex_spin is likely to have benefits for multi-threaded workloads, anyway. The patch retains ->go_lock and ->go_unlock for rgrps, however these maybe also be removed in future in favour of calling the functions directly where required in the code. That will allow locking of resource groups without needing to actually read them in - something that could be useful in speeding up statfs. In the mean time though it is valid to dereference ->bi_bh only when the rgrp is locked. This is basically the same rule as before, modulo the references not being valid until the following journal flush. Signed-off-by: Steven Whitehouse <swhiteho@redhat.com> Signed-off-by: Bob Peterson <rpeterso@redhat.com> Cc: Benjamin Marzinski <bmarzins@redhat.com>
2011-08-31 16:53:19 +08:00
spin_lock(&gl->gl_lockref.lock);
rgd = gl->gl_object;
if (rgd)
gfs2_free_clones(rgd);
spin_unlock(&gl->gl_lockref.lock);
}
/**
* rgrp_go_inval - invalidate the metadata for this glock
* @gl: the glock
* @flags:
*
* We never used LM_ST_DEFERRED with resource groups, so that we
* should always see the metadata flag set here.
*
*/
static void rgrp_go_inval(struct gfs2_glock *gl, int flags)
{
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
struct address_space *mapping = &sdp->sd_aspace;
struct gfs2_rgrpd *rgd = gfs2_glock2rgrp(gl);
if (rgd)
gfs2_rgrp_brelse(rgd);
WARN_ON_ONCE(!(flags & DIO_METADATA));
gfs2_assert_withdraw(sdp, !atomic_read(&gl->gl_ail_count));
truncate_inode_pages_range(mapping, gl->gl_vm.start, gl->gl_vm.end);
if (rgd)
rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
}
static struct gfs2_inode *gfs2_glock2inode(struct gfs2_glock *gl)
{
struct gfs2_inode *ip;
spin_lock(&gl->gl_lockref.lock);
ip = gl->gl_object;
if (ip)
set_bit(GIF_GLOP_PENDING, &ip->i_flags);
spin_unlock(&gl->gl_lockref.lock);
return ip;
}
struct gfs2_rgrpd *gfs2_glock2rgrp(struct gfs2_glock *gl)
{
struct gfs2_rgrpd *rgd;
spin_lock(&gl->gl_lockref.lock);
rgd = gl->gl_object;
spin_unlock(&gl->gl_lockref.lock);
return rgd;
}
static void gfs2_clear_glop_pending(struct gfs2_inode *ip)
{
if (!ip)
return;
clear_bit_unlock(GIF_GLOP_PENDING, &ip->i_flags);
wake_up_bit(&ip->i_flags, GIF_GLOP_PENDING);
}
/**
* inode_go_sync - Sync the dirty data and/or metadata for an inode glock
* @gl: the glock protecting the inode
*
*/
static void inode_go_sync(struct gfs2_glock *gl)
{
struct gfs2_inode *ip = gfs2_glock2inode(gl);
int isreg = ip && S_ISREG(ip->i_inode.i_mode);
struct address_space *metamapping = gfs2_glock2aspace(gl);
int error;
if (isreg) {
if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
unmap_shared_mapping_range(ip->i_inode.i_mapping, 0, 0);
inode_dio_wait(&ip->i_inode);
}
if (!test_and_clear_bit(GLF_DIRTY, &gl->gl_flags))
goto out;
GLOCK_BUG_ON(gl, gl->gl_state != LM_ST_EXCLUSIVE);
gfs2_log_flush(gl->gl_name.ln_sbd, gl, GFS2_LOG_HEAD_FLUSH_NORMAL |
GFS2_LFC_INODE_GO_SYNC);
filemap_fdatawrite(metamapping);
if (isreg) {
struct address_space *mapping = ip->i_inode.i_mapping;
filemap_fdatawrite(mapping);
error = filemap_fdatawait(mapping);
mapping_set_error(mapping, error);
}
error = filemap_fdatawait(metamapping);
mapping_set_error(metamapping, error);
gfs2_ail_empty_gl(gl);
/*
* Writeback of the data mapping may cause the dirty flag to be set
* so we have to clear it again here.
*/
smp_mb__before_atomic();
clear_bit(GLF_DIRTY, &gl->gl_flags);
out:
gfs2_clear_glop_pending(ip);
}
/**
* inode_go_inval - prepare a inode glock to be released
* @gl: the glock
* @flags:
*
* Normally we invalidate everything, but if we are moving into
* LM_ST_DEFERRED from LM_ST_SHARED or LM_ST_EXCLUSIVE then we
* can keep hold of the metadata, since it won't have changed.
*
*/
static void inode_go_inval(struct gfs2_glock *gl, int flags)
{
struct gfs2_inode *ip = gfs2_glock2inode(gl);
gfs2_assert_withdraw(gl->gl_name.ln_sbd, !atomic_read(&gl->gl_ail_count));
if (flags & DIO_METADATA) {
struct address_space *mapping = gfs2_glock2aspace(gl);
truncate_inode_pages(mapping, 0);
if (ip) {
set_bit(GIF_INVALID, &ip->i_flags);
forget_all_cached_acls(&ip->i_inode);
security_inode_invalidate_secctx(&ip->i_inode);
gfs2_dir_hash_inval(ip);
}
}
if (ip == GFS2_I(gl->gl_name.ln_sbd->sd_rindex)) {
gfs2_log_flush(gl->gl_name.ln_sbd, NULL,
GFS2_LOG_HEAD_FLUSH_NORMAL |
GFS2_LFC_INODE_GO_INVAL);
gl->gl_name.ln_sbd->sd_rindex_uptodate = 0;
}
if (ip && S_ISREG(ip->i_inode.i_mode))
truncate_inode_pages(ip->i_inode.i_mapping, 0);
gfs2_clear_glop_pending(ip);
}
/**
* inode_go_demote_ok - Check to see if it's ok to unlock an inode glock
* @gl: the glock
*
* Returns: 1 if it's ok
*/
static int inode_go_demote_ok(const struct gfs2_glock *gl)
{
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
if (sdp->sd_jindex == gl->gl_object || sdp->sd_rindex == gl->gl_object)
return 0;
return 1;
}
static int gfs2_dinode_in(struct gfs2_inode *ip, const void *buf)
{
const struct gfs2_dinode *str = buf;
vfs: change inode times to use struct timespec64 struct timespec is not y2038 safe. Transition vfs to use y2038 safe struct timespec64 instead. The change was made with the help of the following cocinelle script. This catches about 80% of the changes. All the header file and logic changes are included in the first 5 rules. The rest are trivial substitutions. I avoid changing any of the function signatures or any other filesystem specific data structures to keep the patch simple for review. The script can be a little shorter by combining different cases. But, this version was sufficient for my usecase. virtual patch @ depends on patch @ identifier now; @@ - struct timespec + struct timespec64 current_time ( ... ) { - struct timespec now = current_kernel_time(); + struct timespec64 now = current_kernel_time64(); ... - return timespec_trunc( + return timespec64_trunc( ... ); } @ depends on patch @ identifier xtime; @@ struct \( iattr \| inode \| kstat \) { ... - struct timespec xtime; + struct timespec64 xtime; ... } @ depends on patch @ identifier t; @@ struct inode_operations { ... int (*update_time) (..., - struct timespec t, + struct timespec64 t, ...); ... } @ depends on patch @ identifier t; identifier fn_update_time =~ "update_time$"; @@ fn_update_time (..., - struct timespec *t, + struct timespec64 *t, ...) { ... } @ depends on patch @ identifier t; @@ lease_get_mtime( ... , - struct timespec *t + struct timespec64 *t ) { ... } @te depends on patch forall@ identifier ts; local idexpression struct inode *inode_node; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; identifier fn_update_time =~ "update_time$"; identifier fn; expression e, E3; local idexpression struct inode *node1; local idexpression struct inode *node2; local idexpression struct iattr *attr1; local idexpression struct iattr *attr2; local idexpression struct iattr attr; identifier i_xtime1 =~ "^i_[acm]time$"; identifier i_xtime2 =~ "^i_[acm]time$"; identifier ia_xtime1 =~ "^ia_[acm]time$"; identifier ia_xtime2 =~ "^ia_[acm]time$"; @@ ( ( - struct timespec ts; + struct timespec64 ts; | - struct timespec ts = current_time(inode_node); + struct timespec64 ts = current_time(inode_node); ) <+... when != ts ( - timespec_equal(&inode_node->i_xtime, &ts) + timespec64_equal(&inode_node->i_xtime, &ts) | - timespec_equal(&ts, &inode_node->i_xtime) + timespec64_equal(&ts, &inode_node->i_xtime) | - timespec_compare(&inode_node->i_xtime, &ts) + timespec64_compare(&inode_node->i_xtime, &ts) | - timespec_compare(&ts, &inode_node->i_xtime) + timespec64_compare(&ts, &inode_node->i_xtime) | ts = current_time(e) | fn_update_time(..., &ts,...) | inode_node->i_xtime = ts | node1->i_xtime = ts | ts = inode_node->i_xtime | <+... attr1->ia_xtime ...+> = ts | ts = attr1->ia_xtime | ts.tv_sec | ts.tv_nsec | btrfs_set_stack_timespec_sec(..., ts.tv_sec) | btrfs_set_stack_timespec_nsec(..., ts.tv_nsec) | - ts = timespec64_to_timespec( + ts = ... -) | - ts = ktime_to_timespec( + ts = ktime_to_timespec64( ...) | - ts = E3 + ts = timespec_to_timespec64(E3) | - ktime_get_real_ts(&ts) + ktime_get_real_ts64(&ts) | fn(..., - ts + timespec64_to_timespec(ts) ,...) ) ...+> ( <... when != ts - return ts; + return timespec64_to_timespec(ts); ...> ) | - timespec_equal(&node1->i_xtime1, &node2->i_xtime2) + timespec64_equal(&node1->i_xtime2, &node2->i_xtime2) | - timespec_equal(&node1->i_xtime1, &attr2->ia_xtime2) + timespec64_equal(&node1->i_xtime2, &attr2->ia_xtime2) | - timespec_compare(&node1->i_xtime1, &node2->i_xtime2) + timespec64_compare(&node1->i_xtime1, &node2->i_xtime2) | node1->i_xtime1 = - timespec_trunc(attr1->ia_xtime1, + timespec64_trunc(attr1->ia_xtime1, ...) | - attr1->ia_xtime1 = timespec_trunc(attr2->ia_xtime2, + attr1->ia_xtime1 = timespec64_trunc(attr2->ia_xtime2, ...) | - ktime_get_real_ts(&attr1->ia_xtime1) + ktime_get_real_ts64(&attr1->ia_xtime1) | - ktime_get_real_ts(&attr.ia_xtime1) + ktime_get_real_ts64(&attr.ia_xtime1) ) @ depends on patch @ struct inode *node; struct iattr *attr; identifier fn; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; expression e; @@ ( - fn(node->i_xtime); + fn(timespec64_to_timespec(node->i_xtime)); | fn(..., - node->i_xtime); + timespec64_to_timespec(node->i_xtime)); | - e = fn(attr->ia_xtime); + e = fn(timespec64_to_timespec(attr->ia_xtime)); ) @ depends on patch forall @ struct inode *node; struct iattr *attr; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; identifier fn; @@ { + struct timespec ts; <+... ( + ts = timespec64_to_timespec(node->i_xtime); fn (..., - &node->i_xtime, + &ts, ...); | + ts = timespec64_to_timespec(attr->ia_xtime); fn (..., - &attr->ia_xtime, + &ts, ...); ) ...+> } @ depends on patch forall @ struct inode *node; struct iattr *attr; struct kstat *stat; identifier ia_xtime =~ "^ia_[acm]time$"; identifier i_xtime =~ "^i_[acm]time$"; identifier xtime =~ "^[acm]time$"; identifier fn, ret; @@ { + struct timespec ts; <+... ( + ts = timespec64_to_timespec(node->i_xtime); ret = fn (..., - &node->i_xtime, + &ts, ...); | + ts = timespec64_to_timespec(node->i_xtime); ret = fn (..., - &node->i_xtime); + &ts); | + ts = timespec64_to_timespec(attr->ia_xtime); ret = fn (..., - &attr->ia_xtime, + &ts, ...); | + ts = timespec64_to_timespec(attr->ia_xtime); ret = fn (..., - &attr->ia_xtime); + &ts); | + ts = timespec64_to_timespec(stat->xtime); ret = fn (..., - &stat->xtime); + &ts); ) ...+> } @ depends on patch @ struct inode *node; struct inode *node2; identifier i_xtime1 =~ "^i_[acm]time$"; identifier i_xtime2 =~ "^i_[acm]time$"; identifier i_xtime3 =~ "^i_[acm]time$"; struct iattr *attrp; struct iattr *attrp2; struct iattr attr ; identifier ia_xtime1 =~ "^ia_[acm]time$"; identifier ia_xtime2 =~ "^ia_[acm]time$"; struct kstat *stat; struct kstat stat1; struct timespec64 ts; identifier xtime =~ "^[acmb]time$"; expression e; @@ ( ( node->i_xtime2 \| attrp->ia_xtime2 \| attr.ia_xtime2 \) = node->i_xtime1 ; | node->i_xtime2 = \( node2->i_xtime1 \| timespec64_trunc(...) \); | node->i_xtime2 = node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \); | node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \); | stat->xtime = node2->i_xtime1; | stat1.xtime = node2->i_xtime1; | ( node->i_xtime2 \| attrp->ia_xtime2 \) = attrp->ia_xtime1 ; | ( attrp->ia_xtime1 \| attr.ia_xtime1 \) = attrp2->ia_xtime2; | - e = node->i_xtime1; + e = timespec64_to_timespec( node->i_xtime1 ); | - e = attrp->ia_xtime1; + e = timespec64_to_timespec( attrp->ia_xtime1 ); | node->i_xtime1 = current_time(...); | node->i_xtime2 = node->i_xtime1 = node->i_xtime3 = - e; + timespec_to_timespec64(e); | node->i_xtime1 = node->i_xtime3 = - e; + timespec_to_timespec64(e); | - node->i_xtime1 = e; + node->i_xtime1 = timespec_to_timespec64(e); ) Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com> Cc: <anton@tuxera.com> Cc: <balbi@kernel.org> Cc: <bfields@fieldses.org> Cc: <darrick.wong@oracle.com> Cc: <dhowells@redhat.com> Cc: <dsterba@suse.com> Cc: <dwmw2@infradead.org> Cc: <hch@lst.de> Cc: <hirofumi@mail.parknet.co.jp> Cc: <hubcap@omnibond.com> Cc: <jack@suse.com> Cc: <jaegeuk@kernel.org> Cc: <jaharkes@cs.cmu.edu> Cc: <jslaby@suse.com> Cc: <keescook@chromium.org> Cc: <mark@fasheh.com> Cc: <miklos@szeredi.hu> Cc: <nico@linaro.org> Cc: <reiserfs-devel@vger.kernel.org> Cc: <richard@nod.at> Cc: <sage@redhat.com> Cc: <sfrench@samba.org> Cc: <swhiteho@redhat.com> Cc: <tj@kernel.org> Cc: <trond.myklebust@primarydata.com> Cc: <tytso@mit.edu> Cc: <viro@zeniv.linux.org.uk>
2018-05-09 10:36:02 +08:00
struct timespec64 atime;
u16 height, depth;
if (unlikely(ip->i_no_addr != be64_to_cpu(str->di_num.no_addr)))
goto corrupt;
ip->i_no_formal_ino = be64_to_cpu(str->di_num.no_formal_ino);
ip->i_inode.i_mode = be32_to_cpu(str->di_mode);
ip->i_inode.i_rdev = 0;
switch (ip->i_inode.i_mode & S_IFMT) {
case S_IFBLK:
case S_IFCHR:
ip->i_inode.i_rdev = MKDEV(be32_to_cpu(str->di_major),
be32_to_cpu(str->di_minor));
break;
};
i_uid_write(&ip->i_inode, be32_to_cpu(str->di_uid));
i_gid_write(&ip->i_inode, be32_to_cpu(str->di_gid));
set_nlink(&ip->i_inode, be32_to_cpu(str->di_nlink));
i_size_write(&ip->i_inode, be64_to_cpu(str->di_size));
gfs2_set_inode_blocks(&ip->i_inode, be64_to_cpu(str->di_blocks));
atime.tv_sec = be64_to_cpu(str->di_atime);
atime.tv_nsec = be32_to_cpu(str->di_atime_nsec);
vfs: change inode times to use struct timespec64 struct timespec is not y2038 safe. Transition vfs to use y2038 safe struct timespec64 instead. The change was made with the help of the following cocinelle script. This catches about 80% of the changes. All the header file and logic changes are included in the first 5 rules. The rest are trivial substitutions. I avoid changing any of the function signatures or any other filesystem specific data structures to keep the patch simple for review. The script can be a little shorter by combining different cases. But, this version was sufficient for my usecase. virtual patch @ depends on patch @ identifier now; @@ - struct timespec + struct timespec64 current_time ( ... ) { - struct timespec now = current_kernel_time(); + struct timespec64 now = current_kernel_time64(); ... - return timespec_trunc( + return timespec64_trunc( ... ); } @ depends on patch @ identifier xtime; @@ struct \( iattr \| inode \| kstat \) { ... - struct timespec xtime; + struct timespec64 xtime; ... } @ depends on patch @ identifier t; @@ struct inode_operations { ... int (*update_time) (..., - struct timespec t, + struct timespec64 t, ...); ... } @ depends on patch @ identifier t; identifier fn_update_time =~ "update_time$"; @@ fn_update_time (..., - struct timespec *t, + struct timespec64 *t, ...) { ... } @ depends on patch @ identifier t; @@ lease_get_mtime( ... , - struct timespec *t + struct timespec64 *t ) { ... } @te depends on patch forall@ identifier ts; local idexpression struct inode *inode_node; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; identifier fn_update_time =~ "update_time$"; identifier fn; expression e, E3; local idexpression struct inode *node1; local idexpression struct inode *node2; local idexpression struct iattr *attr1; local idexpression struct iattr *attr2; local idexpression struct iattr attr; identifier i_xtime1 =~ "^i_[acm]time$"; identifier i_xtime2 =~ "^i_[acm]time$"; identifier ia_xtime1 =~ "^ia_[acm]time$"; identifier ia_xtime2 =~ "^ia_[acm]time$"; @@ ( ( - struct timespec ts; + struct timespec64 ts; | - struct timespec ts = current_time(inode_node); + struct timespec64 ts = current_time(inode_node); ) <+... when != ts ( - timespec_equal(&inode_node->i_xtime, &ts) + timespec64_equal(&inode_node->i_xtime, &ts) | - timespec_equal(&ts, &inode_node->i_xtime) + timespec64_equal(&ts, &inode_node->i_xtime) | - timespec_compare(&inode_node->i_xtime, &ts) + timespec64_compare(&inode_node->i_xtime, &ts) | - timespec_compare(&ts, &inode_node->i_xtime) + timespec64_compare(&ts, &inode_node->i_xtime) | ts = current_time(e) | fn_update_time(..., &ts,...) | inode_node->i_xtime = ts | node1->i_xtime = ts | ts = inode_node->i_xtime | <+... attr1->ia_xtime ...+> = ts | ts = attr1->ia_xtime | ts.tv_sec | ts.tv_nsec | btrfs_set_stack_timespec_sec(..., ts.tv_sec) | btrfs_set_stack_timespec_nsec(..., ts.tv_nsec) | - ts = timespec64_to_timespec( + ts = ... -) | - ts = ktime_to_timespec( + ts = ktime_to_timespec64( ...) | - ts = E3 + ts = timespec_to_timespec64(E3) | - ktime_get_real_ts(&ts) + ktime_get_real_ts64(&ts) | fn(..., - ts + timespec64_to_timespec(ts) ,...) ) ...+> ( <... when != ts - return ts; + return timespec64_to_timespec(ts); ...> ) | - timespec_equal(&node1->i_xtime1, &node2->i_xtime2) + timespec64_equal(&node1->i_xtime2, &node2->i_xtime2) | - timespec_equal(&node1->i_xtime1, &attr2->ia_xtime2) + timespec64_equal(&node1->i_xtime2, &attr2->ia_xtime2) | - timespec_compare(&node1->i_xtime1, &node2->i_xtime2) + timespec64_compare(&node1->i_xtime1, &node2->i_xtime2) | node1->i_xtime1 = - timespec_trunc(attr1->ia_xtime1, + timespec64_trunc(attr1->ia_xtime1, ...) | - attr1->ia_xtime1 = timespec_trunc(attr2->ia_xtime2, + attr1->ia_xtime1 = timespec64_trunc(attr2->ia_xtime2, ...) | - ktime_get_real_ts(&attr1->ia_xtime1) + ktime_get_real_ts64(&attr1->ia_xtime1) | - ktime_get_real_ts(&attr.ia_xtime1) + ktime_get_real_ts64(&attr.ia_xtime1) ) @ depends on patch @ struct inode *node; struct iattr *attr; identifier fn; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; expression e; @@ ( - fn(node->i_xtime); + fn(timespec64_to_timespec(node->i_xtime)); | fn(..., - node->i_xtime); + timespec64_to_timespec(node->i_xtime)); | - e = fn(attr->ia_xtime); + e = fn(timespec64_to_timespec(attr->ia_xtime)); ) @ depends on patch forall @ struct inode *node; struct iattr *attr; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; identifier fn; @@ { + struct timespec ts; <+... ( + ts = timespec64_to_timespec(node->i_xtime); fn (..., - &node->i_xtime, + &ts, ...); | + ts = timespec64_to_timespec(attr->ia_xtime); fn (..., - &attr->ia_xtime, + &ts, ...); ) ...+> } @ depends on patch forall @ struct inode *node; struct iattr *attr; struct kstat *stat; identifier ia_xtime =~ "^ia_[acm]time$"; identifier i_xtime =~ "^i_[acm]time$"; identifier xtime =~ "^[acm]time$"; identifier fn, ret; @@ { + struct timespec ts; <+... ( + ts = timespec64_to_timespec(node->i_xtime); ret = fn (..., - &node->i_xtime, + &ts, ...); | + ts = timespec64_to_timespec(node->i_xtime); ret = fn (..., - &node->i_xtime); + &ts); | + ts = timespec64_to_timespec(attr->ia_xtime); ret = fn (..., - &attr->ia_xtime, + &ts, ...); | + ts = timespec64_to_timespec(attr->ia_xtime); ret = fn (..., - &attr->ia_xtime); + &ts); | + ts = timespec64_to_timespec(stat->xtime); ret = fn (..., - &stat->xtime); + &ts); ) ...+> } @ depends on patch @ struct inode *node; struct inode *node2; identifier i_xtime1 =~ "^i_[acm]time$"; identifier i_xtime2 =~ "^i_[acm]time$"; identifier i_xtime3 =~ "^i_[acm]time$"; struct iattr *attrp; struct iattr *attrp2; struct iattr attr ; identifier ia_xtime1 =~ "^ia_[acm]time$"; identifier ia_xtime2 =~ "^ia_[acm]time$"; struct kstat *stat; struct kstat stat1; struct timespec64 ts; identifier xtime =~ "^[acmb]time$"; expression e; @@ ( ( node->i_xtime2 \| attrp->ia_xtime2 \| attr.ia_xtime2 \) = node->i_xtime1 ; | node->i_xtime2 = \( node2->i_xtime1 \| timespec64_trunc(...) \); | node->i_xtime2 = node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \); | node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \); | stat->xtime = node2->i_xtime1; | stat1.xtime = node2->i_xtime1; | ( node->i_xtime2 \| attrp->ia_xtime2 \) = attrp->ia_xtime1 ; | ( attrp->ia_xtime1 \| attr.ia_xtime1 \) = attrp2->ia_xtime2; | - e = node->i_xtime1; + e = timespec64_to_timespec( node->i_xtime1 ); | - e = attrp->ia_xtime1; + e = timespec64_to_timespec( attrp->ia_xtime1 ); | node->i_xtime1 = current_time(...); | node->i_xtime2 = node->i_xtime1 = node->i_xtime3 = - e; + timespec_to_timespec64(e); | node->i_xtime1 = node->i_xtime3 = - e; + timespec_to_timespec64(e); | - node->i_xtime1 = e; + node->i_xtime1 = timespec_to_timespec64(e); ) Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com> Cc: <anton@tuxera.com> Cc: <balbi@kernel.org> Cc: <bfields@fieldses.org> Cc: <darrick.wong@oracle.com> Cc: <dhowells@redhat.com> Cc: <dsterba@suse.com> Cc: <dwmw2@infradead.org> Cc: <hch@lst.de> Cc: <hirofumi@mail.parknet.co.jp> Cc: <hubcap@omnibond.com> Cc: <jack@suse.com> Cc: <jaegeuk@kernel.org> Cc: <jaharkes@cs.cmu.edu> Cc: <jslaby@suse.com> Cc: <keescook@chromium.org> Cc: <mark@fasheh.com> Cc: <miklos@szeredi.hu> Cc: <nico@linaro.org> Cc: <reiserfs-devel@vger.kernel.org> Cc: <richard@nod.at> Cc: <sage@redhat.com> Cc: <sfrench@samba.org> Cc: <swhiteho@redhat.com> Cc: <tj@kernel.org> Cc: <trond.myklebust@primarydata.com> Cc: <tytso@mit.edu> Cc: <viro@zeniv.linux.org.uk>
2018-05-09 10:36:02 +08:00
if (timespec64_compare(&ip->i_inode.i_atime, &atime) < 0)
ip->i_inode.i_atime = atime;
ip->i_inode.i_mtime.tv_sec = be64_to_cpu(str->di_mtime);
ip->i_inode.i_mtime.tv_nsec = be32_to_cpu(str->di_mtime_nsec);
ip->i_inode.i_ctime.tv_sec = be64_to_cpu(str->di_ctime);
ip->i_inode.i_ctime.tv_nsec = be32_to_cpu(str->di_ctime_nsec);
ip->i_goal = be64_to_cpu(str->di_goal_meta);
ip->i_generation = be64_to_cpu(str->di_generation);
ip->i_diskflags = be32_to_cpu(str->di_flags);
ip->i_eattr = be64_to_cpu(str->di_eattr);
/* i_diskflags and i_eattr must be set before gfs2_set_inode_flags() */
gfs2_set_inode_flags(&ip->i_inode);
height = be16_to_cpu(str->di_height);
if (unlikely(height > GFS2_MAX_META_HEIGHT))
goto corrupt;
ip->i_height = (u8)height;
depth = be16_to_cpu(str->di_depth);
if (unlikely(depth > GFS2_DIR_MAX_DEPTH))
goto corrupt;
ip->i_depth = (u8)depth;
ip->i_entries = be32_to_cpu(str->di_entries);
if (S_ISREG(ip->i_inode.i_mode))
gfs2_set_aops(&ip->i_inode);
return 0;
corrupt:
gfs2_consist_inode(ip);
return -EIO;
}
/**
* gfs2_inode_refresh - Refresh the incore copy of the dinode
* @ip: The GFS2 inode
*
* Returns: errno
*/
int gfs2_inode_refresh(struct gfs2_inode *ip)
{
struct buffer_head *dibh;
int error;
error = gfs2_meta_inode_buffer(ip, &dibh);
if (error)
return error;
error = gfs2_dinode_in(ip, dibh->b_data);
brelse(dibh);
clear_bit(GIF_INVALID, &ip->i_flags);
return error;
}
/**
* inode_go_lock - operation done after an inode lock is locked by a process
* @gl: the glock
* @flags:
*
* Returns: errno
*/
static int inode_go_lock(struct gfs2_holder *gh)
{
struct gfs2_glock *gl = gh->gh_gl;
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
struct gfs2_inode *ip = gl->gl_object;
int error = 0;
if (!ip || (gh->gh_flags & GL_SKIP))
return 0;
if (test_bit(GIF_INVALID, &ip->i_flags)) {
error = gfs2_inode_refresh(ip);
if (error)
return error;
}
if (gh->gh_state != LM_ST_DEFERRED)
inode_dio_wait(&ip->i_inode);
if ((ip->i_diskflags & GFS2_DIF_TRUNC_IN_PROG) &&
(gl->gl_state == LM_ST_EXCLUSIVE) &&
(gh->gh_state == LM_ST_EXCLUSIVE)) {
spin_lock(&sdp->sd_trunc_lock);
if (list_empty(&ip->i_trunc_list))
list_add(&ip->i_trunc_list, &sdp->sd_trunc_list);
spin_unlock(&sdp->sd_trunc_lock);
wake_up(&sdp->sd_quota_wait);
return 1;
}
return error;
}
/**
* inode_go_dump - print information about an inode
* @seq: The iterator
* @ip: the inode
* @fs_id_buf: file system id (may be empty)
*
*/
static void inode_go_dump(struct seq_file *seq, struct gfs2_glock *gl,
const char *fs_id_buf)
{
struct gfs2_inode *ip = gl->gl_object;
struct inode *inode = &ip->i_inode;
unsigned long nrpages;
if (ip == NULL)
return;
xa_lock_irq(&inode->i_data.i_pages);
nrpages = inode->i_data.nrpages;
xa_unlock_irq(&inode->i_data.i_pages);
gfs2_print_dbg(seq, "%s I: n:%llu/%llu t:%u f:0x%02lx d:0x%08x s:%llu "
"p:%lu\n", fs_id_buf,
(unsigned long long)ip->i_no_formal_ino,
(unsigned long long)ip->i_no_addr,
IF2DT(ip->i_inode.i_mode), ip->i_flags,
(unsigned int)ip->i_diskflags,
(unsigned long long)i_size_read(inode), nrpages);
}
/**
GFS2: remove transaction glock GFS2 has a transaction glock, which must be grabbed for every transaction, whose purpose is to deal with freezing the filesystem. Aside from this involving a large amount of locking, it is very easy to make the current fsfreeze code hang on unfreezing. This patch rewrites how gfs2 handles freezing the filesystem. The transaction glock is removed. In it's place is a freeze glock, which is cached (but not held) in a shared state by every node in the cluster when the filesystem is mounted. This lock only needs to be grabbed on freezing, and actions which need to be safe from freezing, like recovery. When a node wants to freeze the filesystem, it grabs this glock exclusively. When the freeze glock state changes on the nodes (either from shared to unlocked, or shared to exclusive), the filesystem does a special log flush. gfs2_log_flush() does all the work for flushing out the and shutting down the incore log, and then it tries to grab the freeze glock in a shared state again. Since the filesystem is stuck in gfs2_log_flush, no new transaction can start, and nothing can be written to disk. Unfreezing the filesytem simply involes dropping the freeze glock, allowing gfs2_log_flush() to grab and then release the shared lock, so it is cached for next time. However, in order for the unfreezing ioctl to occur, gfs2 needs to get a shared lock on the filesystem root directory inode to check permissions. If that glock has already been grabbed exclusively, fsfreeze will be unable to get the shared lock and unfreeze the filesystem. In order to allow the unfreeze, this patch makes gfs2 grab a shared lock on the filesystem root directory during the freeze, and hold it until it unfreezes the filesystem. The functions which need to grab a shared lock in order to allow the unfreeze ioctl to be issued now use the lock grabbed by the freeze code instead. The freeze and unfreeze code take care to make sure that this shared lock will not be dropped while another process is using it. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2014-05-02 11:26:55 +08:00
* freeze_go_sync - promote/demote the freeze glock
* @gl: the glock
* @state: the requested state
* @flags:
*
*/
GFS2: remove transaction glock GFS2 has a transaction glock, which must be grabbed for every transaction, whose purpose is to deal with freezing the filesystem. Aside from this involving a large amount of locking, it is very easy to make the current fsfreeze code hang on unfreezing. This patch rewrites how gfs2 handles freezing the filesystem. The transaction glock is removed. In it's place is a freeze glock, which is cached (but not held) in a shared state by every node in the cluster when the filesystem is mounted. This lock only needs to be grabbed on freezing, and actions which need to be safe from freezing, like recovery. When a node wants to freeze the filesystem, it grabs this glock exclusively. When the freeze glock state changes on the nodes (either from shared to unlocked, or shared to exclusive), the filesystem does a special log flush. gfs2_log_flush() does all the work for flushing out the and shutting down the incore log, and then it tries to grab the freeze glock in a shared state again. Since the filesystem is stuck in gfs2_log_flush, no new transaction can start, and nothing can be written to disk. Unfreezing the filesytem simply involes dropping the freeze glock, allowing gfs2_log_flush() to grab and then release the shared lock, so it is cached for next time. However, in order for the unfreezing ioctl to occur, gfs2 needs to get a shared lock on the filesystem root directory inode to check permissions. If that glock has already been grabbed exclusively, fsfreeze will be unable to get the shared lock and unfreeze the filesystem. In order to allow the unfreeze, this patch makes gfs2 grab a shared lock on the filesystem root directory during the freeze, and hold it until it unfreezes the filesystem. The functions which need to grab a shared lock in order to allow the unfreeze ioctl to be issued now use the lock grabbed by the freeze code instead. The freeze and unfreeze code take care to make sure that this shared lock will not be dropped while another process is using it. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2014-05-02 11:26:55 +08:00
static void freeze_go_sync(struct gfs2_glock *gl)
{
int error = 0;
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
GFS2: remove transaction glock GFS2 has a transaction glock, which must be grabbed for every transaction, whose purpose is to deal with freezing the filesystem. Aside from this involving a large amount of locking, it is very easy to make the current fsfreeze code hang on unfreezing. This patch rewrites how gfs2 handles freezing the filesystem. The transaction glock is removed. In it's place is a freeze glock, which is cached (but not held) in a shared state by every node in the cluster when the filesystem is mounted. This lock only needs to be grabbed on freezing, and actions which need to be safe from freezing, like recovery. When a node wants to freeze the filesystem, it grabs this glock exclusively. When the freeze glock state changes on the nodes (either from shared to unlocked, or shared to exclusive), the filesystem does a special log flush. gfs2_log_flush() does all the work for flushing out the and shutting down the incore log, and then it tries to grab the freeze glock in a shared state again. Since the filesystem is stuck in gfs2_log_flush, no new transaction can start, and nothing can be written to disk. Unfreezing the filesytem simply involes dropping the freeze glock, allowing gfs2_log_flush() to grab and then release the shared lock, so it is cached for next time. However, in order for the unfreezing ioctl to occur, gfs2 needs to get a shared lock on the filesystem root directory inode to check permissions. If that glock has already been grabbed exclusively, fsfreeze will be unable to get the shared lock and unfreeze the filesystem. In order to allow the unfreeze, this patch makes gfs2 grab a shared lock on the filesystem root directory during the freeze, and hold it until it unfreezes the filesystem. The functions which need to grab a shared lock in order to allow the unfreeze ioctl to be issued now use the lock grabbed by the freeze code instead. The freeze and unfreeze code take care to make sure that this shared lock will not be dropped while another process is using it. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2014-05-02 11:26:55 +08:00
if (gl->gl_state == LM_ST_SHARED &&
test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags)) {
atomic_set(&sdp->sd_freeze_state, SFS_STARTING_FREEZE);
error = freeze_super(sdp->sd_vfs);
if (error) {
fs_info(sdp, "GFS2: couldn't freeze filesystem: %d\n",
error);
gfs2_assert_withdraw(sdp, 0);
}
queue_work(gfs2_freeze_wq, &sdp->sd_freeze_work);
gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_FREEZE |
GFS2_LFC_FREEZE_GO_SYNC);
}
}
/**
GFS2: remove transaction glock GFS2 has a transaction glock, which must be grabbed for every transaction, whose purpose is to deal with freezing the filesystem. Aside from this involving a large amount of locking, it is very easy to make the current fsfreeze code hang on unfreezing. This patch rewrites how gfs2 handles freezing the filesystem. The transaction glock is removed. In it's place is a freeze glock, which is cached (but not held) in a shared state by every node in the cluster when the filesystem is mounted. This lock only needs to be grabbed on freezing, and actions which need to be safe from freezing, like recovery. When a node wants to freeze the filesystem, it grabs this glock exclusively. When the freeze glock state changes on the nodes (either from shared to unlocked, or shared to exclusive), the filesystem does a special log flush. gfs2_log_flush() does all the work for flushing out the and shutting down the incore log, and then it tries to grab the freeze glock in a shared state again. Since the filesystem is stuck in gfs2_log_flush, no new transaction can start, and nothing can be written to disk. Unfreezing the filesytem simply involes dropping the freeze glock, allowing gfs2_log_flush() to grab and then release the shared lock, so it is cached for next time. However, in order for the unfreezing ioctl to occur, gfs2 needs to get a shared lock on the filesystem root directory inode to check permissions. If that glock has already been grabbed exclusively, fsfreeze will be unable to get the shared lock and unfreeze the filesystem. In order to allow the unfreeze, this patch makes gfs2 grab a shared lock on the filesystem root directory during the freeze, and hold it until it unfreezes the filesystem. The functions which need to grab a shared lock in order to allow the unfreeze ioctl to be issued now use the lock grabbed by the freeze code instead. The freeze and unfreeze code take care to make sure that this shared lock will not be dropped while another process is using it. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2014-05-02 11:26:55 +08:00
* freeze_go_xmote_bh - After promoting/demoting the freeze glock
* @gl: the glock
*
*/
GFS2: remove transaction glock GFS2 has a transaction glock, which must be grabbed for every transaction, whose purpose is to deal with freezing the filesystem. Aside from this involving a large amount of locking, it is very easy to make the current fsfreeze code hang on unfreezing. This patch rewrites how gfs2 handles freezing the filesystem. The transaction glock is removed. In it's place is a freeze glock, which is cached (but not held) in a shared state by every node in the cluster when the filesystem is mounted. This lock only needs to be grabbed on freezing, and actions which need to be safe from freezing, like recovery. When a node wants to freeze the filesystem, it grabs this glock exclusively. When the freeze glock state changes on the nodes (either from shared to unlocked, or shared to exclusive), the filesystem does a special log flush. gfs2_log_flush() does all the work for flushing out the and shutting down the incore log, and then it tries to grab the freeze glock in a shared state again. Since the filesystem is stuck in gfs2_log_flush, no new transaction can start, and nothing can be written to disk. Unfreezing the filesytem simply involes dropping the freeze glock, allowing gfs2_log_flush() to grab and then release the shared lock, so it is cached for next time. However, in order for the unfreezing ioctl to occur, gfs2 needs to get a shared lock on the filesystem root directory inode to check permissions. If that glock has already been grabbed exclusively, fsfreeze will be unable to get the shared lock and unfreeze the filesystem. In order to allow the unfreeze, this patch makes gfs2 grab a shared lock on the filesystem root directory during the freeze, and hold it until it unfreezes the filesystem. The functions which need to grab a shared lock in order to allow the unfreeze ioctl to be issued now use the lock grabbed by the freeze code instead. The freeze and unfreeze code take care to make sure that this shared lock will not be dropped while another process is using it. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2014-05-02 11:26:55 +08:00
static int freeze_go_xmote_bh(struct gfs2_glock *gl, struct gfs2_holder *gh)
{
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
struct gfs2_inode *ip = GFS2_I(sdp->sd_jdesc->jd_inode);
struct gfs2_glock *j_gl = ip->i_gl;
struct gfs2_log_header_host head;
int error;
if (test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags)) {
j_gl->gl_ops->go_inval(j_gl, DIO_METADATA);
error = gfs2_find_jhead(sdp->sd_jdesc, &head, false);
if (error)
gfs2_consist(sdp);
if (!(head.lh_flags & GFS2_LOG_HEAD_UNMOUNT))
gfs2_consist(sdp);
/* Initialize some head of the log stuff */
if (!test_bit(SDF_WITHDRAWN, &sdp->sd_flags)) {
sdp->sd_log_sequence = head.lh_sequence + 1;
gfs2_log_pointers_init(sdp, head.lh_blkno);
}
}
return 0;
}
/**
* trans_go_demote_ok
* @gl: the glock
*
* Always returns 0
*/
GFS2: remove transaction glock GFS2 has a transaction glock, which must be grabbed for every transaction, whose purpose is to deal with freezing the filesystem. Aside from this involving a large amount of locking, it is very easy to make the current fsfreeze code hang on unfreezing. This patch rewrites how gfs2 handles freezing the filesystem. The transaction glock is removed. In it's place is a freeze glock, which is cached (but not held) in a shared state by every node in the cluster when the filesystem is mounted. This lock only needs to be grabbed on freezing, and actions which need to be safe from freezing, like recovery. When a node wants to freeze the filesystem, it grabs this glock exclusively. When the freeze glock state changes on the nodes (either from shared to unlocked, or shared to exclusive), the filesystem does a special log flush. gfs2_log_flush() does all the work for flushing out the and shutting down the incore log, and then it tries to grab the freeze glock in a shared state again. Since the filesystem is stuck in gfs2_log_flush, no new transaction can start, and nothing can be written to disk. Unfreezing the filesytem simply involes dropping the freeze glock, allowing gfs2_log_flush() to grab and then release the shared lock, so it is cached for next time. However, in order for the unfreezing ioctl to occur, gfs2 needs to get a shared lock on the filesystem root directory inode to check permissions. If that glock has already been grabbed exclusively, fsfreeze will be unable to get the shared lock and unfreeze the filesystem. In order to allow the unfreeze, this patch makes gfs2 grab a shared lock on the filesystem root directory during the freeze, and hold it until it unfreezes the filesystem. The functions which need to grab a shared lock in order to allow the unfreeze ioctl to be issued now use the lock grabbed by the freeze code instead. The freeze and unfreeze code take care to make sure that this shared lock will not be dropped while another process is using it. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2014-05-02 11:26:55 +08:00
static int freeze_go_demote_ok(const struct gfs2_glock *gl)
{
return 0;
}
/**
* iopen_go_callback - schedule the dcache entry for the inode to be deleted
* @gl: the glock
*
* gl_lockref.lock lock is held while calling this
*/
static void iopen_go_callback(struct gfs2_glock *gl, bool remote)
{
struct gfs2_inode *ip = gl->gl_object;
struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
if (!remote || sb_rdonly(sdp->sd_vfs))
return;
if (gl->gl_demote_state == LM_ST_UNLOCKED &&
gl->gl_state == LM_ST_SHARED && ip) {
gl->gl_lockref.count++;
if (queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
gl->gl_lockref.count--;
}
}
const struct gfs2_glock_operations gfs2_meta_glops = {
.go_type = LM_TYPE_META,
};
const struct gfs2_glock_operations gfs2_inode_glops = {
.go_sync = inode_go_sync,
.go_inval = inode_go_inval,
.go_demote_ok = inode_go_demote_ok,
.go_lock = inode_go_lock,
.go_dump = inode_go_dump,
.go_type = LM_TYPE_INODE,
.go_flags = GLOF_ASPACE | GLOF_LRU,
};
const struct gfs2_glock_operations gfs2_rgrp_glops = {
.go_sync = rgrp_go_sync,
.go_inval = rgrp_go_inval,
GFS2: Use rbtree for resource groups and clean up bitmap buffer ref count scheme Here is an update of Bob's original rbtree patch which, in addition, also resolves the rather strange ref counting that was being done relating to the bitmap blocks. Originally we had a dual system for journaling resource groups. The metadata blocks were journaled and also the rgrp itself was added to a list. The reason for adding the rgrp to the list in the journal was so that the "repolish clones" code could be run to update the free space, and potentially send any discard requests when the log was flushed. This was done by comparing the "cloned" bitmap with what had been written back on disk during the transaction commit. Due to this, there was a requirement to hang on to the rgrps' bitmap buffers until the journal had been flushed. For that reason, there was a rather complicated set up in the ->go_lock ->go_unlock functions for rgrps involving both a mutex and a spinlock (the ->sd_rindex_spin) to maintain a reference count on the buffers. However, the journal maintains a reference count on the buffers anyway, since they are being journaled as metadata buffers. So by moving the code which deals with the post-journal accounting for bitmap blocks to the metadata journaling code, we can entirely dispense with the rather strange buffer ref counting scheme and also the requirement to journal the rgrps. The net result of all this is that the ->sd_rindex_spin is left to do exactly one job, and that is to look after the rbtree or rgrps. This patch is designed to be a stepping stone towards using RCU for the rbtree of resource groups, however the reduction in the number of uses of the ->sd_rindex_spin is likely to have benefits for multi-threaded workloads, anyway. The patch retains ->go_lock and ->go_unlock for rgrps, however these maybe also be removed in future in favour of calling the functions directly where required in the code. That will allow locking of resource groups without needing to actually read them in - something that could be useful in speeding up statfs. In the mean time though it is valid to dereference ->bi_bh only when the rgrp is locked. This is basically the same rule as before, modulo the references not being valid until the following journal flush. Signed-off-by: Steven Whitehouse <swhiteho@redhat.com> Signed-off-by: Bob Peterson <rpeterso@redhat.com> Cc: Benjamin Marzinski <bmarzins@redhat.com>
2011-08-31 16:53:19 +08:00
.go_lock = gfs2_rgrp_go_lock,
.go_unlock = gfs2_rgrp_go_unlock,
.go_dump = gfs2_rgrp_dump,
.go_type = LM_TYPE_RGRP,
.go_flags = GLOF_LVB,
};
GFS2: remove transaction glock GFS2 has a transaction glock, which must be grabbed for every transaction, whose purpose is to deal with freezing the filesystem. Aside from this involving a large amount of locking, it is very easy to make the current fsfreeze code hang on unfreezing. This patch rewrites how gfs2 handles freezing the filesystem. The transaction glock is removed. In it's place is a freeze glock, which is cached (but not held) in a shared state by every node in the cluster when the filesystem is mounted. This lock only needs to be grabbed on freezing, and actions which need to be safe from freezing, like recovery. When a node wants to freeze the filesystem, it grabs this glock exclusively. When the freeze glock state changes on the nodes (either from shared to unlocked, or shared to exclusive), the filesystem does a special log flush. gfs2_log_flush() does all the work for flushing out the and shutting down the incore log, and then it tries to grab the freeze glock in a shared state again. Since the filesystem is stuck in gfs2_log_flush, no new transaction can start, and nothing can be written to disk. Unfreezing the filesytem simply involes dropping the freeze glock, allowing gfs2_log_flush() to grab and then release the shared lock, so it is cached for next time. However, in order for the unfreezing ioctl to occur, gfs2 needs to get a shared lock on the filesystem root directory inode to check permissions. If that glock has already been grabbed exclusively, fsfreeze will be unable to get the shared lock and unfreeze the filesystem. In order to allow the unfreeze, this patch makes gfs2 grab a shared lock on the filesystem root directory during the freeze, and hold it until it unfreezes the filesystem. The functions which need to grab a shared lock in order to allow the unfreeze ioctl to be issued now use the lock grabbed by the freeze code instead. The freeze and unfreeze code take care to make sure that this shared lock will not be dropped while another process is using it. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2014-05-02 11:26:55 +08:00
const struct gfs2_glock_operations gfs2_freeze_glops = {
.go_sync = freeze_go_sync,
.go_xmote_bh = freeze_go_xmote_bh,
.go_demote_ok = freeze_go_demote_ok,
.go_type = LM_TYPE_NONDISK,
};
const struct gfs2_glock_operations gfs2_iopen_glops = {
.go_type = LM_TYPE_IOPEN,
.go_callback = iopen_go_callback,
.go_flags = GLOF_LRU,
};
const struct gfs2_glock_operations gfs2_flock_glops = {
.go_type = LM_TYPE_FLOCK,
.go_flags = GLOF_LRU,
};
const struct gfs2_glock_operations gfs2_nondisk_glops = {
.go_type = LM_TYPE_NONDISK,
};
const struct gfs2_glock_operations gfs2_quota_glops = {
.go_type = LM_TYPE_QUOTA,
.go_flags = GLOF_LVB | GLOF_LRU,
};
const struct gfs2_glock_operations gfs2_journal_glops = {
.go_type = LM_TYPE_JOURNAL,
};
const struct gfs2_glock_operations *gfs2_glops_list[] = {
[LM_TYPE_META] = &gfs2_meta_glops,
[LM_TYPE_INODE] = &gfs2_inode_glops,
[LM_TYPE_RGRP] = &gfs2_rgrp_glops,
[LM_TYPE_IOPEN] = &gfs2_iopen_glops,
[LM_TYPE_FLOCK] = &gfs2_flock_glops,
[LM_TYPE_NONDISK] = &gfs2_nondisk_glops,
[LM_TYPE_QUOTA] = &gfs2_quota_glops,
[LM_TYPE_JOURNAL] = &gfs2_journal_glops,
};