666 lines
16 KiB
C
666 lines
16 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* DAMON Primitives for Virtual Address Spaces
|
||
|
*
|
||
|
* Author: SeongJae Park <sjpark@amazon.de>
|
||
|
*/
|
||
|
|
||
|
#define pr_fmt(fmt) "damon-va: " fmt
|
||
|
|
||
|
#include <linux/damon.h>
|
||
|
#include <linux/hugetlb.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/mmu_notifier.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/page_idle.h>
|
||
|
#include <linux/pagewalk.h>
|
||
|
#include <linux/random.h>
|
||
|
#include <linux/sched/mm.h>
|
||
|
#include <linux/slab.h>
|
||
|
|
||
|
/* Get a random number in [l, r) */
|
||
|
#define damon_rand(l, r) (l + prandom_u32_max(r - l))
|
||
|
|
||
|
/*
|
||
|
* 't->id' should be the pointer to the relevant 'struct pid' having reference
|
||
|
* count. Caller must put the returned task, unless it is NULL.
|
||
|
*/
|
||
|
#define damon_get_task_struct(t) \
|
||
|
(get_pid_task((struct pid *)t->id, PIDTYPE_PID))
|
||
|
|
||
|
/*
|
||
|
* Get the mm_struct of the given target
|
||
|
*
|
||
|
* Caller _must_ put the mm_struct after use, unless it is NULL.
|
||
|
*
|
||
|
* Returns the mm_struct of the target on success, NULL on failure
|
||
|
*/
|
||
|
static struct mm_struct *damon_get_mm(struct damon_target *t)
|
||
|
{
|
||
|
struct task_struct *task;
|
||
|
struct mm_struct *mm;
|
||
|
|
||
|
task = damon_get_task_struct(t);
|
||
|
if (!task)
|
||
|
return NULL;
|
||
|
|
||
|
mm = get_task_mm(task);
|
||
|
put_task_struct(task);
|
||
|
return mm;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Functions for the initial monitoring target regions construction
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Size-evenly split a region into 'nr_pieces' small regions
|
||
|
*
|
||
|
* Returns 0 on success, or negative error code otherwise.
|
||
|
*/
|
||
|
static int damon_va_evenly_split_region(struct damon_target *t,
|
||
|
struct damon_region *r, unsigned int nr_pieces)
|
||
|
{
|
||
|
unsigned long sz_orig, sz_piece, orig_end;
|
||
|
struct damon_region *n = NULL, *next;
|
||
|
unsigned long start;
|
||
|
|
||
|
if (!r || !nr_pieces)
|
||
|
return -EINVAL;
|
||
|
|
||
|
orig_end = r->ar.end;
|
||
|
sz_orig = r->ar.end - r->ar.start;
|
||
|
sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
|
||
|
|
||
|
if (!sz_piece)
|
||
|
return -EINVAL;
|
||
|
|
||
|
r->ar.end = r->ar.start + sz_piece;
|
||
|
next = damon_next_region(r);
|
||
|
for (start = r->ar.end; start + sz_piece <= orig_end;
|
||
|
start += sz_piece) {
|
||
|
n = damon_new_region(start, start + sz_piece);
|
||
|
if (!n)
|
||
|
return -ENOMEM;
|
||
|
damon_insert_region(n, r, next, t);
|
||
|
r = n;
|
||
|
}
|
||
|
/* complement last region for possible rounding error */
|
||
|
if (n)
|
||
|
n->ar.end = orig_end;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static unsigned long sz_range(struct damon_addr_range *r)
|
||
|
{
|
||
|
return r->end - r->start;
|
||
|
}
|
||
|
|
||
|
static void swap_ranges(struct damon_addr_range *r1,
|
||
|
struct damon_addr_range *r2)
|
||
|
{
|
||
|
struct damon_addr_range tmp;
|
||
|
|
||
|
tmp = *r1;
|
||
|
*r1 = *r2;
|
||
|
*r2 = tmp;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Find three regions separated by two biggest unmapped regions
|
||
|
*
|
||
|
* vma the head vma of the target address space
|
||
|
* regions an array of three address ranges that results will be saved
|
||
|
*
|
||
|
* This function receives an address space and finds three regions in it which
|
||
|
* separated by the two biggest unmapped regions in the space. Please refer to
|
||
|
* below comments of '__damon_va_init_regions()' function to know why this is
|
||
|
* necessary.
|
||
|
*
|
||
|
* Returns 0 if success, or negative error code otherwise.
|
||
|
*/
|
||
|
static int __damon_va_three_regions(struct vm_area_struct *vma,
|
||
|
struct damon_addr_range regions[3])
|
||
|
{
|
||
|
struct damon_addr_range gap = {0}, first_gap = {0}, second_gap = {0};
|
||
|
struct vm_area_struct *last_vma = NULL;
|
||
|
unsigned long start = 0;
|
||
|
struct rb_root rbroot;
|
||
|
|
||
|
/* Find two biggest gaps so that first_gap > second_gap > others */
|
||
|
for (; vma; vma = vma->vm_next) {
|
||
|
if (!last_vma) {
|
||
|
start = vma->vm_start;
|
||
|
goto next;
|
||
|
}
|
||
|
|
||
|
if (vma->rb_subtree_gap <= sz_range(&second_gap)) {
|
||
|
rbroot.rb_node = &vma->vm_rb;
|
||
|
vma = rb_entry(rb_last(&rbroot),
|
||
|
struct vm_area_struct, vm_rb);
|
||
|
goto next;
|
||
|
}
|
||
|
|
||
|
gap.start = last_vma->vm_end;
|
||
|
gap.end = vma->vm_start;
|
||
|
if (sz_range(&gap) > sz_range(&second_gap)) {
|
||
|
swap_ranges(&gap, &second_gap);
|
||
|
if (sz_range(&second_gap) > sz_range(&first_gap))
|
||
|
swap_ranges(&second_gap, &first_gap);
|
||
|
}
|
||
|
next:
|
||
|
last_vma = vma;
|
||
|
}
|
||
|
|
||
|
if (!sz_range(&second_gap) || !sz_range(&first_gap))
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* Sort the two biggest gaps by address */
|
||
|
if (first_gap.start > second_gap.start)
|
||
|
swap_ranges(&first_gap, &second_gap);
|
||
|
|
||
|
/* Store the result */
|
||
|
regions[0].start = ALIGN(start, DAMON_MIN_REGION);
|
||
|
regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
|
||
|
regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
|
||
|
regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
|
||
|
regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
|
||
|
regions[2].end = ALIGN(last_vma->vm_end, DAMON_MIN_REGION);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Get the three regions in the given target (task)
|
||
|
*
|
||
|
* Returns 0 on success, negative error code otherwise.
|
||
|
*/
|
||
|
static int damon_va_three_regions(struct damon_target *t,
|
||
|
struct damon_addr_range regions[3])
|
||
|
{
|
||
|
struct mm_struct *mm;
|
||
|
int rc;
|
||
|
|
||
|
mm = damon_get_mm(t);
|
||
|
if (!mm)
|
||
|
return -EINVAL;
|
||
|
|
||
|
mmap_read_lock(mm);
|
||
|
rc = __damon_va_three_regions(mm->mmap, regions);
|
||
|
mmap_read_unlock(mm);
|
||
|
|
||
|
mmput(mm);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize the monitoring target regions for the given target (task)
|
||
|
*
|
||
|
* t the given target
|
||
|
*
|
||
|
* Because only a number of small portions of the entire address space
|
||
|
* is actually mapped to the memory and accessed, monitoring the unmapped
|
||
|
* regions is wasteful. That said, because we can deal with small noises,
|
||
|
* tracking every mapping is not strictly required but could even incur a high
|
||
|
* overhead if the mapping frequently changes or the number of mappings is
|
||
|
* high. The adaptive regions adjustment mechanism will further help to deal
|
||
|
* with the noise by simply identifying the unmapped areas as a region that
|
||
|
* has no access. Moreover, applying the real mappings that would have many
|
||
|
* unmapped areas inside will make the adaptive mechanism quite complex. That
|
||
|
* said, too huge unmapped areas inside the monitoring target should be removed
|
||
|
* to not take the time for the adaptive mechanism.
|
||
|
*
|
||
|
* For the reason, we convert the complex mappings to three distinct regions
|
||
|
* that cover every mapped area of the address space. Also the two gaps
|
||
|
* between the three regions are the two biggest unmapped areas in the given
|
||
|
* address space. In detail, this function first identifies the start and the
|
||
|
* end of the mappings and the two biggest unmapped areas of the address space.
|
||
|
* Then, it constructs the three regions as below:
|
||
|
*
|
||
|
* [mappings[0]->start, big_two_unmapped_areas[0]->start)
|
||
|
* [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
|
||
|
* [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
|
||
|
*
|
||
|
* As usual memory map of processes is as below, the gap between the heap and
|
||
|
* the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
|
||
|
* region and the stack will be two biggest unmapped regions. Because these
|
||
|
* gaps are exceptionally huge areas in usual address space, excluding these
|
||
|
* two biggest unmapped regions will be sufficient to make a trade-off.
|
||
|
*
|
||
|
* <heap>
|
||
|
* <BIG UNMAPPED REGION 1>
|
||
|
* <uppermost mmap()-ed region>
|
||
|
* (other mmap()-ed regions and small unmapped regions)
|
||
|
* <lowermost mmap()-ed region>
|
||
|
* <BIG UNMAPPED REGION 2>
|
||
|
* <stack>
|
||
|
*/
|
||
|
static void __damon_va_init_regions(struct damon_ctx *ctx,
|
||
|
struct damon_target *t)
|
||
|
{
|
||
|
struct damon_region *r;
|
||
|
struct damon_addr_range regions[3];
|
||
|
unsigned long sz = 0, nr_pieces;
|
||
|
int i;
|
||
|
|
||
|
if (damon_va_three_regions(t, regions)) {
|
||
|
pr_err("Failed to get three regions of target %lu\n", t->id);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 3; i++)
|
||
|
sz += regions[i].end - regions[i].start;
|
||
|
if (ctx->min_nr_regions)
|
||
|
sz /= ctx->min_nr_regions;
|
||
|
if (sz < DAMON_MIN_REGION)
|
||
|
sz = DAMON_MIN_REGION;
|
||
|
|
||
|
/* Set the initial three regions of the target */
|
||
|
for (i = 0; i < 3; i++) {
|
||
|
r = damon_new_region(regions[i].start, regions[i].end);
|
||
|
if (!r) {
|
||
|
pr_err("%d'th init region creation failed\n", i);
|
||
|
return;
|
||
|
}
|
||
|
damon_add_region(r, t);
|
||
|
|
||
|
nr_pieces = (regions[i].end - regions[i].start) / sz;
|
||
|
damon_va_evenly_split_region(t, r, nr_pieces);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Initialize '->regions_list' of every target (task) */
|
||
|
void damon_va_init(struct damon_ctx *ctx)
|
||
|
{
|
||
|
struct damon_target *t;
|
||
|
|
||
|
damon_for_each_target(t, ctx) {
|
||
|
/* the user may set the target regions as they want */
|
||
|
if (!damon_nr_regions(t))
|
||
|
__damon_va_init_regions(ctx, t);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Functions for the dynamic monitoring target regions update
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Check whether a region is intersecting an address range
|
||
|
*
|
||
|
* Returns true if it is.
|
||
|
*/
|
||
|
static bool damon_intersect(struct damon_region *r, struct damon_addr_range *re)
|
||
|
{
|
||
|
return !(r->ar.end <= re->start || re->end <= r->ar.start);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Update damon regions for the three big regions of the given target
|
||
|
*
|
||
|
* t the given target
|
||
|
* bregions the three big regions of the target
|
||
|
*/
|
||
|
static void damon_va_apply_three_regions(struct damon_target *t,
|
||
|
struct damon_addr_range bregions[3])
|
||
|
{
|
||
|
struct damon_region *r, *next;
|
||
|
unsigned int i = 0;
|
||
|
|
||
|
/* Remove regions which are not in the three big regions now */
|
||
|
damon_for_each_region_safe(r, next, t) {
|
||
|
for (i = 0; i < 3; i++) {
|
||
|
if (damon_intersect(r, &bregions[i]))
|
||
|
break;
|
||
|
}
|
||
|
if (i == 3)
|
||
|
damon_destroy_region(r, t);
|
||
|
}
|
||
|
|
||
|
/* Adjust intersecting regions to fit with the three big regions */
|
||
|
for (i = 0; i < 3; i++) {
|
||
|
struct damon_region *first = NULL, *last;
|
||
|
struct damon_region *newr;
|
||
|
struct damon_addr_range *br;
|
||
|
|
||
|
br = &bregions[i];
|
||
|
/* Get the first and last regions which intersects with br */
|
||
|
damon_for_each_region(r, t) {
|
||
|
if (damon_intersect(r, br)) {
|
||
|
if (!first)
|
||
|
first = r;
|
||
|
last = r;
|
||
|
}
|
||
|
if (r->ar.start >= br->end)
|
||
|
break;
|
||
|
}
|
||
|
if (!first) {
|
||
|
/* no damon_region intersects with this big region */
|
||
|
newr = damon_new_region(
|
||
|
ALIGN_DOWN(br->start,
|
||
|
DAMON_MIN_REGION),
|
||
|
ALIGN(br->end, DAMON_MIN_REGION));
|
||
|
if (!newr)
|
||
|
continue;
|
||
|
damon_insert_region(newr, damon_prev_region(r), r, t);
|
||
|
} else {
|
||
|
first->ar.start = ALIGN_DOWN(br->start,
|
||
|
DAMON_MIN_REGION);
|
||
|
last->ar.end = ALIGN(br->end, DAMON_MIN_REGION);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Update regions for current memory mappings
|
||
|
*/
|
||
|
void damon_va_update(struct damon_ctx *ctx)
|
||
|
{
|
||
|
struct damon_addr_range three_regions[3];
|
||
|
struct damon_target *t;
|
||
|
|
||
|
damon_for_each_target(t, ctx) {
|
||
|
if (damon_va_three_regions(t, three_regions))
|
||
|
continue;
|
||
|
damon_va_apply_three_regions(t, three_regions);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Get an online page for a pfn if it's in the LRU list. Otherwise, returns
|
||
|
* NULL.
|
||
|
*
|
||
|
* The body of this function is stolen from the 'page_idle_get_page()'. We
|
||
|
* steal rather than reuse it because the code is quite simple.
|
||
|
*/
|
||
|
static struct page *damon_get_page(unsigned long pfn)
|
||
|
{
|
||
|
struct page *page = pfn_to_online_page(pfn);
|
||
|
|
||
|
if (!page || !PageLRU(page) || !get_page_unless_zero(page))
|
||
|
return NULL;
|
||
|
|
||
|
if (unlikely(!PageLRU(page))) {
|
||
|
put_page(page);
|
||
|
page = NULL;
|
||
|
}
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
static void damon_ptep_mkold(pte_t *pte, struct mm_struct *mm,
|
||
|
unsigned long addr)
|
||
|
{
|
||
|
bool referenced = false;
|
||
|
struct page *page = damon_get_page(pte_pfn(*pte));
|
||
|
|
||
|
if (!page)
|
||
|
return;
|
||
|
|
||
|
if (pte_young(*pte)) {
|
||
|
referenced = true;
|
||
|
*pte = pte_mkold(*pte);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_MMU_NOTIFIER
|
||
|
if (mmu_notifier_clear_young(mm, addr, addr + PAGE_SIZE))
|
||
|
referenced = true;
|
||
|
#endif /* CONFIG_MMU_NOTIFIER */
|
||
|
|
||
|
if (referenced)
|
||
|
set_page_young(page);
|
||
|
|
||
|
set_page_idle(page);
|
||
|
put_page(page);
|
||
|
}
|
||
|
|
||
|
static void damon_pmdp_mkold(pmd_t *pmd, struct mm_struct *mm,
|
||
|
unsigned long addr)
|
||
|
{
|
||
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||
|
bool referenced = false;
|
||
|
struct page *page = damon_get_page(pmd_pfn(*pmd));
|
||
|
|
||
|
if (!page)
|
||
|
return;
|
||
|
|
||
|
if (pmd_young(*pmd)) {
|
||
|
referenced = true;
|
||
|
*pmd = pmd_mkold(*pmd);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_MMU_NOTIFIER
|
||
|
if (mmu_notifier_clear_young(mm, addr,
|
||
|
addr + ((1UL) << HPAGE_PMD_SHIFT)))
|
||
|
referenced = true;
|
||
|
#endif /* CONFIG_MMU_NOTIFIER */
|
||
|
|
||
|
if (referenced)
|
||
|
set_page_young(page);
|
||
|
|
||
|
set_page_idle(page);
|
||
|
put_page(page);
|
||
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
||
|
}
|
||
|
|
||
|
static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
|
||
|
unsigned long next, struct mm_walk *walk)
|
||
|
{
|
||
|
pte_t *pte;
|
||
|
spinlock_t *ptl;
|
||
|
|
||
|
if (pmd_huge(*pmd)) {
|
||
|
ptl = pmd_lock(walk->mm, pmd);
|
||
|
if (pmd_huge(*pmd)) {
|
||
|
damon_pmdp_mkold(pmd, walk->mm, addr);
|
||
|
spin_unlock(ptl);
|
||
|
return 0;
|
||
|
}
|
||
|
spin_unlock(ptl);
|
||
|
}
|
||
|
|
||
|
if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
|
||
|
return 0;
|
||
|
pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
|
||
|
if (!pte_present(*pte))
|
||
|
goto out;
|
||
|
damon_ptep_mkold(pte, walk->mm, addr);
|
||
|
out:
|
||
|
pte_unmap_unlock(pte, ptl);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct mm_walk_ops damon_mkold_ops = {
|
||
|
.pmd_entry = damon_mkold_pmd_entry,
|
||
|
};
|
||
|
|
||
|
static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
|
||
|
{
|
||
|
mmap_read_lock(mm);
|
||
|
walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
|
||
|
mmap_read_unlock(mm);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Functions for the access checking of the regions
|
||
|
*/
|
||
|
|
||
|
static void damon_va_prepare_access_check(struct damon_ctx *ctx,
|
||
|
struct mm_struct *mm, struct damon_region *r)
|
||
|
{
|
||
|
r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
|
||
|
|
||
|
damon_va_mkold(mm, r->sampling_addr);
|
||
|
}
|
||
|
|
||
|
void damon_va_prepare_access_checks(struct damon_ctx *ctx)
|
||
|
{
|
||
|
struct damon_target *t;
|
||
|
struct mm_struct *mm;
|
||
|
struct damon_region *r;
|
||
|
|
||
|
damon_for_each_target(t, ctx) {
|
||
|
mm = damon_get_mm(t);
|
||
|
if (!mm)
|
||
|
continue;
|
||
|
damon_for_each_region(r, t)
|
||
|
damon_va_prepare_access_check(ctx, mm, r);
|
||
|
mmput(mm);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
struct damon_young_walk_private {
|
||
|
unsigned long *page_sz;
|
||
|
bool young;
|
||
|
};
|
||
|
|
||
|
static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
|
||
|
unsigned long next, struct mm_walk *walk)
|
||
|
{
|
||
|
pte_t *pte;
|
||
|
spinlock_t *ptl;
|
||
|
struct page *page;
|
||
|
struct damon_young_walk_private *priv = walk->private;
|
||
|
|
||
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||
|
if (pmd_huge(*pmd)) {
|
||
|
ptl = pmd_lock(walk->mm, pmd);
|
||
|
if (!pmd_huge(*pmd)) {
|
||
|
spin_unlock(ptl);
|
||
|
goto regular_page;
|
||
|
}
|
||
|
page = damon_get_page(pmd_pfn(*pmd));
|
||
|
if (!page)
|
||
|
goto huge_out;
|
||
|
if (pmd_young(*pmd) || !page_is_idle(page) ||
|
||
|
mmu_notifier_test_young(walk->mm,
|
||
|
addr)) {
|
||
|
*priv->page_sz = ((1UL) << HPAGE_PMD_SHIFT);
|
||
|
priv->young = true;
|
||
|
}
|
||
|
put_page(page);
|
||
|
huge_out:
|
||
|
spin_unlock(ptl);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
regular_page:
|
||
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
||
|
|
||
|
if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
|
||
|
return -EINVAL;
|
||
|
pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
|
||
|
if (!pte_present(*pte))
|
||
|
goto out;
|
||
|
page = damon_get_page(pte_pfn(*pte));
|
||
|
if (!page)
|
||
|
goto out;
|
||
|
if (pte_young(*pte) || !page_is_idle(page) ||
|
||
|
mmu_notifier_test_young(walk->mm, addr)) {
|
||
|
*priv->page_sz = PAGE_SIZE;
|
||
|
priv->young = true;
|
||
|
}
|
||
|
put_page(page);
|
||
|
out:
|
||
|
pte_unmap_unlock(pte, ptl);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct mm_walk_ops damon_young_ops = {
|
||
|
.pmd_entry = damon_young_pmd_entry,
|
||
|
};
|
||
|
|
||
|
static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
|
||
|
unsigned long *page_sz)
|
||
|
{
|
||
|
struct damon_young_walk_private arg = {
|
||
|
.page_sz = page_sz,
|
||
|
.young = false,
|
||
|
};
|
||
|
|
||
|
mmap_read_lock(mm);
|
||
|
walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
|
||
|
mmap_read_unlock(mm);
|
||
|
return arg.young;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check whether the region was accessed after the last preparation
|
||
|
*
|
||
|
* mm 'mm_struct' for the given virtual address space
|
||
|
* r the region to be checked
|
||
|
*/
|
||
|
static void damon_va_check_access(struct damon_ctx *ctx,
|
||
|
struct mm_struct *mm, struct damon_region *r)
|
||
|
{
|
||
|
static struct mm_struct *last_mm;
|
||
|
static unsigned long last_addr;
|
||
|
static unsigned long last_page_sz = PAGE_SIZE;
|
||
|
static bool last_accessed;
|
||
|
|
||
|
/* If the region is in the last checked page, reuse the result */
|
||
|
if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) ==
|
||
|
ALIGN_DOWN(r->sampling_addr, last_page_sz))) {
|
||
|
if (last_accessed)
|
||
|
r->nr_accesses++;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
last_accessed = damon_va_young(mm, r->sampling_addr, &last_page_sz);
|
||
|
if (last_accessed)
|
||
|
r->nr_accesses++;
|
||
|
|
||
|
last_mm = mm;
|
||
|
last_addr = r->sampling_addr;
|
||
|
}
|
||
|
|
||
|
unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
|
||
|
{
|
||
|
struct damon_target *t;
|
||
|
struct mm_struct *mm;
|
||
|
struct damon_region *r;
|
||
|
unsigned int max_nr_accesses = 0;
|
||
|
|
||
|
damon_for_each_target(t, ctx) {
|
||
|
mm = damon_get_mm(t);
|
||
|
if (!mm)
|
||
|
continue;
|
||
|
damon_for_each_region(r, t) {
|
||
|
damon_va_check_access(ctx, mm, r);
|
||
|
max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
|
||
|
}
|
||
|
mmput(mm);
|
||
|
}
|
||
|
|
||
|
return max_nr_accesses;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Functions for the target validity check and cleanup
|
||
|
*/
|
||
|
|
||
|
bool damon_va_target_valid(void *target)
|
||
|
{
|
||
|
struct damon_target *t = target;
|
||
|
struct task_struct *task;
|
||
|
|
||
|
task = damon_get_task_struct(t);
|
||
|
if (task) {
|
||
|
put_task_struct(task);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void damon_va_set_primitives(struct damon_ctx *ctx)
|
||
|
{
|
||
|
ctx->primitive.init = damon_va_init;
|
||
|
ctx->primitive.update = damon_va_update;
|
||
|
ctx->primitive.prepare_access_checks = damon_va_prepare_access_checks;
|
||
|
ctx->primitive.check_accesses = damon_va_check_accesses;
|
||
|
ctx->primitive.reset_aggregated = NULL;
|
||
|
ctx->primitive.target_valid = damon_va_target_valid;
|
||
|
ctx->primitive.cleanup = NULL;
|
||
|
}
|