OpenCloudOS-Kernel/drivers/acpi/power.c

1019 lines
25 KiB
C
Raw Normal View History

treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 157 Based on 3 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version [author] [kishon] [vijay] [abraham] [i] [kishon]@[ti] [com] this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version [author] [graeme] [gregory] [gg]@[slimlogic] [co] [uk] [author] [kishon] [vijay] [abraham] [i] [kishon]@[ti] [com] [based] [on] [twl6030]_[usb] [c] [author] [hema] [hk] [hemahk]@[ti] [com] this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 1105 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Richard Fontana <rfontana@redhat.com> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070033.202006027@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-27 14:55:06 +08:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* drivers/acpi/power.c - ACPI Power Resources management.
*
* Copyright (C) 2001 - 2015 Intel Corp.
* Author: Andy Grover <andrew.grover@intel.com>
* Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
* Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
*/
/*
* ACPI power-managed devices may be controlled in two ways:
* 1. via "Device Specific (D-State) Control"
* 2. via "Power Resource Control".
* The code below deals with ACPI Power Resources control.
*
* An ACPI "power resource object" represents a software controllable power
* plane, clock plane, or other resource depended on by a device.
*
* A device may rely on multiple power resources, and a power resource
* may be shared by multiple devices.
*/
#define pr_fmt(fmt) "ACPI: PM: " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/sysfs.h>
ACPI: Clean up inclusions of ACPI header files Replace direct inclusions of <acpi/acpi.h>, <acpi/acpi_bus.h> and <acpi/acpi_drivers.h>, which are incorrect, with <linux/acpi.h> inclusions and remove some inclusions of those files that aren't necessary. First of all, <acpi/acpi.h>, <acpi/acpi_bus.h> and <acpi/acpi_drivers.h> should not be included directly from any files that are built for CONFIG_ACPI unset, because that generally leads to build warnings about undefined symbols in !CONFIG_ACPI builds. For CONFIG_ACPI set, <linux/acpi.h> includes those files and for CONFIG_ACPI unset it provides stub ACPI symbols to be used in that case. Second, there are ordering dependencies between those files that always have to be met. Namely, it is required that <acpi/acpi_bus.h> be included prior to <acpi/acpi_drivers.h> so that the acpi_pci_root declarations the latter depends on are always there. And <acpi/acpi.h> which provides basic ACPICA type declarations should always be included prior to any other ACPI headers in CONFIG_ACPI builds. That also is taken care of including <linux/acpi.h> as appropriate. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Tony Luck <tony.luck@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Acked-by: Bjorn Helgaas <bhelgaas@google.com> (drivers/pci stuff) Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> (Xen stuff) Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-12-03 08:49:16 +08:00
#include <linux/acpi.h>
#include "sleep.h"
#include "internal.h"
#define ACPI_POWER_CLASS "power_resource"
#define ACPI_POWER_DEVICE_NAME "Power Resource"
#define ACPI_POWER_RESOURCE_STATE_OFF 0x00
#define ACPI_POWER_RESOURCE_STATE_ON 0x01
#define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
struct acpi_power_dependent_device {
struct device *dev;
struct list_head node;
};
struct acpi_power_resource {
struct acpi_device device;
struct list_head list_node;
char *name;
u32 system_level;
u32 order;
unsigned int ref_count;
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
bool wakeup_enabled;
struct mutex resource_lock;
struct list_head dependents;
};
struct acpi_power_resource_entry {
struct list_head node;
struct acpi_power_resource *resource;
};
static LIST_HEAD(acpi_power_resource_list);
static DEFINE_MUTEX(power_resource_list_lock);
/* --------------------------------------------------------------------------
Power Resource Management
-------------------------------------------------------------------------- */
static inline
struct acpi_power_resource *to_power_resource(struct acpi_device *device)
{
return container_of(device, struct acpi_power_resource, device);
}
static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
{
struct acpi_device *device;
if (acpi_bus_get_device(handle, &device))
return NULL;
return to_power_resource(device);
}
static int acpi_power_resources_list_add(acpi_handle handle,
struct list_head *list)
{
struct acpi_power_resource *resource = acpi_power_get_context(handle);
struct acpi_power_resource_entry *entry;
if (!resource || !list)
return -EINVAL;
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->resource = resource;
if (!list_empty(list)) {
struct acpi_power_resource_entry *e;
list_for_each_entry(e, list, node)
if (e->resource->order > resource->order) {
list_add_tail(&entry->node, &e->node);
return 0;
}
}
list_add_tail(&entry->node, list);
return 0;
}
void acpi_power_resources_list_free(struct list_head *list)
{
struct acpi_power_resource_entry *entry, *e;
list_for_each_entry_safe(entry, e, list, node) {
list_del(&entry->node);
kfree(entry);
}
}
static bool acpi_power_resource_is_dup(union acpi_object *package,
unsigned int start, unsigned int i)
{
acpi_handle rhandle, dup;
unsigned int j;
/* The caller is expected to check the package element types */
rhandle = package->package.elements[i].reference.handle;
for (j = start; j < i; j++) {
dup = package->package.elements[j].reference.handle;
if (dup == rhandle)
return true;
}
return false;
}
int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
struct list_head *list)
{
unsigned int i;
int err = 0;
for (i = start; i < package->package.count; i++) {
union acpi_object *element = &package->package.elements[i];
acpi_handle rhandle;
if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
err = -ENODATA;
break;
}
rhandle = element->reference.handle;
if (!rhandle) {
err = -ENODEV;
break;
}
/* Some ACPI tables contain duplicate power resource references */
if (acpi_power_resource_is_dup(package, start, i))
continue;
err = acpi_add_power_resource(rhandle);
if (err)
break;
err = acpi_power_resources_list_add(rhandle, list);
if (err)
break;
}
if (err)
acpi_power_resources_list_free(list);
return err;
}
static int acpi_power_get_state(acpi_handle handle, int *state)
{
acpi_status status = AE_OK;
unsigned long long sta = 0;
if (!handle || !state)
return -EINVAL;
status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
if (ACPI_FAILURE(status))
return -ENODEV;
*state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
ACPI_POWER_RESOURCE_STATE_OFF;
acpi_handle_debug(handle, "Power resource is %s\n",
*state ? "on" : "off");
return 0;
}
static int acpi_power_get_list_state(struct list_head *list, int *state)
{
struct acpi_power_resource_entry *entry;
int cur_state;
if (!list || !state)
return -EINVAL;
/* The state of the list is 'on' IFF all resources are 'on'. */
cur_state = 0;
list_for_each_entry(entry, list, node) {
struct acpi_power_resource *resource = entry->resource;
acpi_handle handle = resource->device.handle;
int result;
mutex_lock(&resource->resource_lock);
result = acpi_power_get_state(handle, &cur_state);
mutex_unlock(&resource->resource_lock);
if (result)
return result;
if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
break;
}
pr_debug("Power resource list is %s\n", cur_state ? "on" : "off");
*state = cur_state;
return 0;
}
static int
acpi_power_resource_add_dependent(struct acpi_power_resource *resource,
struct device *dev)
{
struct acpi_power_dependent_device *dep;
int ret = 0;
mutex_lock(&resource->resource_lock);
list_for_each_entry(dep, &resource->dependents, node) {
/* Only add it once */
if (dep->dev == dev)
goto unlock;
}
dep = kzalloc(sizeof(*dep), GFP_KERNEL);
if (!dep) {
ret = -ENOMEM;
goto unlock;
}
dep->dev = dev;
list_add_tail(&dep->node, &resource->dependents);
dev_dbg(dev, "added power dependency to [%s]\n", resource->name);
unlock:
mutex_unlock(&resource->resource_lock);
return ret;
}
static void
acpi_power_resource_remove_dependent(struct acpi_power_resource *resource,
struct device *dev)
{
struct acpi_power_dependent_device *dep;
mutex_lock(&resource->resource_lock);
list_for_each_entry(dep, &resource->dependents, node) {
if (dep->dev == dev) {
list_del(&dep->node);
kfree(dep);
dev_dbg(dev, "removed power dependency to [%s]\n",
resource->name);
break;
}
}
mutex_unlock(&resource->resource_lock);
}
/**
* acpi_device_power_add_dependent - Add dependent device of this ACPI device
* @adev: ACPI device pointer
* @dev: Dependent device
*
* If @adev has non-empty _PR0 the @dev is added as dependent device to all
* power resources returned by it. This means that whenever these power
* resources are turned _ON the dependent devices get runtime resumed. This
* is needed for devices such as PCI to allow its driver to re-initialize
* it after it went to D0uninitialized.
*
* If @adev does not have _PR0 this does nothing.
*
* Returns %0 in case of success and negative errno otherwise.
*/
int acpi_device_power_add_dependent(struct acpi_device *adev,
struct device *dev)
{
struct acpi_power_resource_entry *entry;
struct list_head *resources;
int ret;
if (!adev->flags.power_manageable)
return 0;
resources = &adev->power.states[ACPI_STATE_D0].resources;
list_for_each_entry(entry, resources, node) {
ret = acpi_power_resource_add_dependent(entry->resource, dev);
if (ret)
goto err;
}
return 0;
err:
list_for_each_entry(entry, resources, node)
acpi_power_resource_remove_dependent(entry->resource, dev);
return ret;
}
/**
* acpi_device_power_remove_dependent - Remove dependent device
* @adev: ACPI device pointer
* @dev: Dependent device
*
* Does the opposite of acpi_device_power_add_dependent() and removes the
* dependent device if it is found. Can be called to @adev that does not
* have _PR0 as well.
*/
void acpi_device_power_remove_dependent(struct acpi_device *adev,
struct device *dev)
{
struct acpi_power_resource_entry *entry;
struct list_head *resources;
if (!adev->flags.power_manageable)
return;
resources = &adev->power.states[ACPI_STATE_D0].resources;
list_for_each_entry_reverse(entry, resources, node)
acpi_power_resource_remove_dependent(entry->resource, dev);
}
static int __acpi_power_on(struct acpi_power_resource *resource)
{
struct acpi_power_dependent_device *dep;
acpi_status status = AE_OK;
status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL);
if (ACPI_FAILURE(status))
return -ENODEV;
pr_debug("Power resource [%s] turned on\n", resource->name);
/*
* If there are other dependents on this power resource we need to
* resume them now so that their drivers can re-initialize the
* hardware properly after it went back to D0.
*/
if (list_empty(&resource->dependents) ||
list_is_singular(&resource->dependents))
return 0;
list_for_each_entry(dep, &resource->dependents, node) {
dev_dbg(dep->dev, "runtime resuming because [%s] turned on\n",
resource->name);
pm_request_resume(dep->dev);
}
return 0;
}
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
{
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
int result = 0;
if (resource->ref_count++) {
pr_debug("Power resource [%s] already on\n", resource->name);
} else {
result = __acpi_power_on(resource);
ACPI / power: Drop automaitc resume of power resource dependent devices The mechanism causing devices depending on a given power resource (that is, devices that can be in D0 only if that power resource is on) to be resumed automatically when the power resource is turned on (and their "inferred" power state becomes D0 as a result) is inherently racy and in fact unnecessary. It is racy, because if the power resource is turned on and then immediately off, the device resume triggered by the first transition to "on" may still happen, causing the power resource to be turned on again. That again will trigger the "resume of dependent devices" mechanism, but if the devices in question are not in use, they will be suspended in the meantime causing the power resource to be turned off. However, the "resume of dependent devices" will next resume them again and so on. In some cases (USB port PM in particular) that leads to an endless busy loop of flipping the resource on and off continuously. It is needless, because whoever turns a power resource on will most likely turn it off at some point and the devices that go into "D0" as a result of turning it on will then go back into D3cold (generally, the state they were in before). Moreover, turning on all power resources a device needs to go into D0 is not sufficient for a full transition into D0 in general. Namely, _PS0 may need to be executed in addition to that in some cases. This means that the whole rationale of the "resume of dependent devices" mechanism was incorrect to begin with and it's best to remove it entirely. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-17 05:05:42 +08:00
if (result)
resource->ref_count--;
}
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
return result;
}
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
static int acpi_power_on(struct acpi_power_resource *resource)
{
int result;
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
mutex_lock(&resource->resource_lock);
result = acpi_power_on_unlocked(resource);
mutex_unlock(&resource->resource_lock);
return result;
}
static int __acpi_power_off(struct acpi_power_resource *resource)
{
acpi_status status;
status = acpi_evaluate_object(resource->device.handle, "_OFF",
NULL, NULL);
if (ACPI_FAILURE(status))
return -ENODEV;
pr_debug("Power resource [%s] turned off\n", resource->name);
return 0;
}
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
{
int result = 0;
if (!resource->ref_count) {
pr_debug("Power resource [%s] already off\n", resource->name);
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
return 0;
}
if (--resource->ref_count) {
pr_debug("Power resource [%s] still in use\n", resource->name);
} else {
result = __acpi_power_off(resource);
if (result)
resource->ref_count++;
}
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
return result;
}
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
static int acpi_power_off(struct acpi_power_resource *resource)
{
int result;
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
mutex_lock(&resource->resource_lock);
result = acpi_power_off_unlocked(resource);
mutex_unlock(&resource->resource_lock);
return result;
}
static int acpi_power_off_list(struct list_head *list)
{
struct acpi_power_resource_entry *entry;
int result = 0;
list_for_each_entry_reverse(entry, list, node) {
result = acpi_power_off(entry->resource);
if (result)
goto err;
}
return 0;
err:
list_for_each_entry_continue(entry, list, node)
acpi_power_on(entry->resource);
return result;
}
static int acpi_power_on_list(struct list_head *list)
{
struct acpi_power_resource_entry *entry;
int result = 0;
list_for_each_entry(entry, list, node) {
result = acpi_power_on(entry->resource);
if (result)
goto err;
}
return 0;
err:
list_for_each_entry_continue_reverse(entry, list, node)
acpi_power_off(entry->resource);
return result;
}
static struct attribute *attrs[] = {
NULL,
};
static const struct attribute_group attr_groups[] = {
[ACPI_STATE_D0] = {
.name = "power_resources_D0",
.attrs = attrs,
},
[ACPI_STATE_D1] = {
.name = "power_resources_D1",
.attrs = attrs,
},
[ACPI_STATE_D2] = {
.name = "power_resources_D2",
.attrs = attrs,
},
[ACPI_STATE_D3_HOT] = {
.name = "power_resources_D3hot",
.attrs = attrs,
},
};
static const struct attribute_group wakeup_attr_group = {
.name = "power_resources_wakeup",
.attrs = attrs,
};
static void acpi_power_hide_list(struct acpi_device *adev,
struct list_head *resources,
const struct attribute_group *attr_group)
{
struct acpi_power_resource_entry *entry;
if (list_empty(resources))
return;
list_for_each_entry_reverse(entry, resources, node) {
struct acpi_device *res_dev = &entry->resource->device;
sysfs_remove_link_from_group(&adev->dev.kobj,
attr_group->name,
dev_name(&res_dev->dev));
}
sysfs_remove_group(&adev->dev.kobj, attr_group);
}
static void acpi_power_expose_list(struct acpi_device *adev,
struct list_head *resources,
const struct attribute_group *attr_group)
{
struct acpi_power_resource_entry *entry;
int ret;
if (list_empty(resources))
return;
ret = sysfs_create_group(&adev->dev.kobj, attr_group);
if (ret)
return;
list_for_each_entry(entry, resources, node) {
struct acpi_device *res_dev = &entry->resource->device;
ret = sysfs_add_link_to_group(&adev->dev.kobj,
attr_group->name,
&res_dev->dev.kobj,
dev_name(&res_dev->dev));
if (ret) {
acpi_power_hide_list(adev, resources, attr_group);
break;
}
}
}
static void acpi_power_expose_hide(struct acpi_device *adev,
struct list_head *resources,
const struct attribute_group *attr_group,
bool expose)
{
if (expose)
acpi_power_expose_list(adev, resources, attr_group);
else
acpi_power_hide_list(adev, resources, attr_group);
}
void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
{
int state;
if (adev->wakeup.flags.valid)
acpi_power_expose_hide(adev, &adev->wakeup.resources,
&wakeup_attr_group, add);
if (!adev->power.flags.power_resources)
return;
for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
acpi_power_expose_hide(adev,
&adev->power.states[state].resources,
&attr_groups[state], add);
}
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
{
struct acpi_power_resource_entry *entry;
int system_level = 5;
list_for_each_entry(entry, list, node) {
struct acpi_power_resource *resource = entry->resource;
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
acpi_handle handle = resource->device.handle;
int result;
int state;
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
mutex_lock(&resource->resource_lock);
result = acpi_power_get_state(handle, &state);
if (result) {
mutex_unlock(&resource->resource_lock);
return result;
}
if (state == ACPI_POWER_RESOURCE_STATE_ON) {
resource->ref_count++;
resource->wakeup_enabled = true;
}
if (system_level > resource->system_level)
system_level = resource->system_level;
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
mutex_unlock(&resource->resource_lock);
}
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
*system_level_p = system_level;
return 0;
}
/* --------------------------------------------------------------------------
Device Power Management
-------------------------------------------------------------------------- */
/**
* acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
* ACPI 3.0) _PSW (Power State Wake)
* @dev: Device to handle.
* @enable: 0 - disable, 1 - enable the wake capabilities of the device.
* @sleep_state: Target sleep state of the system.
* @dev_state: Target power state of the device.
*
* Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
* State Wake) for the device, if present. On failure reset the device's
* wakeup.flags.valid flag.
*
* RETURN VALUE:
* 0 if either _DSW or _PSW has been successfully executed
* 0 if neither _DSW nor _PSW has been found
* -ENODEV if the execution of either _DSW or _PSW has failed
*/
int acpi_device_sleep_wake(struct acpi_device *dev,
int enable, int sleep_state, int dev_state)
{
union acpi_object in_arg[3];
struct acpi_object_list arg_list = { 3, in_arg };
acpi_status status = AE_OK;
/*
* Try to execute _DSW first.
*
* Three arguments are needed for the _DSW object:
* Argument 0: enable/disable the wake capabilities
* Argument 1: target system state
* Argument 2: target device state
* When _DSW object is called to disable the wake capabilities, maybe
* the first argument is filled. The values of the other two arguments
* are meaningless.
*/
in_arg[0].type = ACPI_TYPE_INTEGER;
in_arg[0].integer.value = enable;
in_arg[1].type = ACPI_TYPE_INTEGER;
in_arg[1].integer.value = sleep_state;
in_arg[2].type = ACPI_TYPE_INTEGER;
in_arg[2].integer.value = dev_state;
status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
if (ACPI_SUCCESS(status)) {
return 0;
} else if (status != AE_NOT_FOUND) {
acpi_handle_info(dev->handle, "_DSW execution failed\n");
dev->wakeup.flags.valid = 0;
return -ENODEV;
}
/* Execute _PSW */
status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
acpi_handle_info(dev->handle, "_PSW execution failed\n");
dev->wakeup.flags.valid = 0;
return -ENODEV;
}
return 0;
}
/*
* Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
* 1. Power on the power resources required for the wakeup device
* 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
* State Wake) for the device, if present
*/
int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
{
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
struct acpi_power_resource_entry *entry;
int err = 0;
if (!dev || !dev->wakeup.flags.valid)
return -EINVAL;
mutex_lock(&acpi_device_lock);
if (dev->wakeup.prepare_count++)
goto out;
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
list_for_each_entry(entry, &dev->wakeup.resources, node) {
struct acpi_power_resource *resource = entry->resource;
mutex_lock(&resource->resource_lock);
if (!resource->wakeup_enabled) {
err = acpi_power_on_unlocked(resource);
if (!err)
resource->wakeup_enabled = true;
}
mutex_unlock(&resource->resource_lock);
if (err) {
dev_err(&dev->dev,
"Cannot turn wakeup power resources on\n");
dev->wakeup.flags.valid = 0;
goto out;
}
}
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
/*
* Passing 3 as the third argument below means the device may be
* put into arbitrary power state afterward.
*/
err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
if (err)
dev->wakeup.prepare_count = 0;
out:
mutex_unlock(&acpi_device_lock);
return err;
}
/*
* Shutdown a wakeup device, counterpart of above method
* 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
* State Wake) for the device, if present
* 2. Shutdown down the power resources
*/
int acpi_disable_wakeup_device_power(struct acpi_device *dev)
{
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
struct acpi_power_resource_entry *entry;
int err = 0;
if (!dev || !dev->wakeup.flags.valid)
return -EINVAL;
mutex_lock(&acpi_device_lock);
if (--dev->wakeup.prepare_count > 0)
goto out;
/*
* Executing the code below even if prepare_count is already zero when
* the function is called may be useful, for example for initialisation.
*/
if (dev->wakeup.prepare_count < 0)
dev->wakeup.prepare_count = 0;
err = acpi_device_sleep_wake(dev, 0, 0, 0);
if (err)
goto out;
ACPI / PM: Take unusual configurations of power resources into account Commit d2e5f0c (ACPI / PCI: Rework the setup and cleanup of device wakeup) moved the initial disabling of system wakeup for PCI devices into a place where it can actually work and that exposed a hidden old issue with crap^Wunusual system designs where the same power resources are used for both wakeup power and device power control at run time. Namely, say there is one power resource such that the ACPI power state D0 of a PCI device depends on that power resource (i.e. the device is in D0 when that power resource is "on") and it is used as a wakeup power resource for the same device. Then, calling acpi_pci_sleep_wake(pci_dev, false) for the device in question will cause the reference counter of that power resource to drop to 0, which in turn will cause it to be turned off. As a result, the device will go into D3cold at that point, although it should have stayed in D0. As it turns out, that happens to USB controllers on some laptops and USB becomes unusable on those machines as a result, which is a major regression from v3.8. To fix this problem, (1) increment the reference counters of wakup power resources during their initialization if they are "on" initially, (2) prevent acpi_disable_wakeup_device_power() from decrementing the reference counters of wakeup power resources that were not enabled for wakeup power previously, and (3) prevent acpi_enable_wakeup_device_power() from incrementing the reference counters of wakeup power resources that already are enabled for wakeup power. In addition to that, if it is impossible to determine the initial states of wakeup power resources, avoid enabling wakeup for devices whose wakeup power depends on those power resources. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Fabio Baltieri <fabio.baltieri@linaro.org> Tested-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-02-24 06:15:21 +08:00
list_for_each_entry(entry, &dev->wakeup.resources, node) {
struct acpi_power_resource *resource = entry->resource;
mutex_lock(&resource->resource_lock);
if (resource->wakeup_enabled) {
err = acpi_power_off_unlocked(resource);
if (!err)
resource->wakeup_enabled = false;
}
mutex_unlock(&resource->resource_lock);
if (err) {
dev_err(&dev->dev,
"Cannot turn wakeup power resources off\n");
dev->wakeup.flags.valid = 0;
break;
}
}
out:
mutex_unlock(&acpi_device_lock);
return err;
}
int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
{
int result = 0;
int list_state = 0;
int i = 0;
if (!device || !state)
return -EINVAL;
/*
* We know a device's inferred power state when all the resources
* required for a given D-state are 'on'.
*/
for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
struct list_head *list = &device->power.states[i].resources;
if (list_empty(list))
continue;
result = acpi_power_get_list_state(list, &list_state);
if (result)
return result;
if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
*state = i;
return 0;
}
}
ACPI / PM: Rework device power management to follow ACPI 6 The ACPI 6 specification has made some changes in the device power management area. In particular: * The D3hot power state is now supposed to be always available (instead of D3cold) and D3cold is only regarded as valid if the _PR3 object is present for the given device. * The required ordering of transitions into power states deeper than D0 is now such that for a transition into state Dx the _PSx method is supposed to be executed first, if present, and the states of the power resources the device depends on are supposed to be changed after that. * It is now explicitly forbidden to transition devices from lower-power (deeper) into higher-power (shallower) power states other than D0. Those changes have been made so the specification reflects the Windows' device power management code that the vast majority of systems using ACPI is validated against. To avoid artificial differences in ACPI device power management between Windows and Linux, modify the ACPI device power management code to follow the new specification. Add comments explaining the code flow in some unclear places. This only may affect some real corner cases in which the OS behavior expected by the firmware is different from the Windows one, but that's quite unlikely. The transition ordering change affects transitions to D1 and D2 which are rarely used (if at all) and into D3hot and D3cold for devices actually having _PR3, but those are likely to be validated against Windows anyway. The other changes may affect code calling acpi_device_get_power() or acpi_device_update_power() where ACPI_STATE_D3_HOT may be returned instead of ACPI_STATE_D3_COLD (that's why the ACPI fan driver needs to be updated too) and since transitions into ACPI_STATE_D3_HOT may remove power now, it is better to avoid this one in acpi_pm_device_sleep_state() if the "no power off" PM QoS flag is set. The only existing user of acpi_device_can_poweroff() really cares about the case when _PR3 is present, so the change in that function should not cause any problems to happen too. A plus is that PCI_D3hot can be mapped to ACPI_STATE_D3_HOT now and the compatibility with older systems should be covered automatically. In any case, if any real problems result from this, it still will be better to follow the Windows' behavior (which now is reflected by the specification too) in general and handle the cases when it doesn't work via quirks. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-05-16 07:55:35 +08:00
*state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ?
ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT;
return 0;
}
int acpi_power_on_resources(struct acpi_device *device, int state)
{
if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
return -EINVAL;
return acpi_power_on_list(&device->power.states[state].resources);
}
int acpi_power_transition(struct acpi_device *device, int state)
{
ACPI / PCI / PM: Fix device PM regression related to D3hot/D3cold Commit 1cc0c998fdf2 ("ACPI: Fix D3hot v D3cold confusion") introduced a bug in __acpi_bus_set_power() and changed the behavior of acpi_pci_set_power_state() in such a way that it generally doesn't work as expected if PCI_D3hot is passed to it as the second argument. First off, if ACPI_STATE_D3 (equal to ACPI_STATE_D3_COLD) is passed to __acpi_bus_set_power() and the explicit_set flag is set for the D3cold state, the function will try to execute AML method called "_PS4", which doesn't exist. Fix this by adding a check to ensure that the name of the AML method to execute for transitions to ACPI_STATE_D3_COLD is correct in __acpi_bus_set_power(). Also make sure that the explicit_set flag for ACPI_STATE_D3_COLD will be set if _PS3 is present and modify acpi_power_transition() to avoid accessing power resources for ACPI_STATE_D3_COLD, because they don't exist. Second, if PCI_D3hot is passed to acpi_pci_set_power_state() as the target state, the function will request a transition to ACPI_STATE_D3_HOT instead of ACPI_STATE_D3. However, ACPI_STATE_D3_HOT is now only marked as supported if the _PR3 AML method is defined for the given device, which is rare. This causes problems to happen on systems where devices were successfully put into ACPI D3 by pci_set_power_state(PCI_D3hot) which doesn't work now. In particular, some unused graphics adapters are not turned off as a result. To fix this issue restore the old behavior of acpi_pci_set_power_state(), which is to request a transition to ACPI_STATE_D3 (equal to ACPI_STATE_D3_COLD) if either PCI_D3hot or PCI_D3cold is passed to it as the argument. This approach is not ideal, because generally power should not be removed from devices if PCI_D3hot is the target power state, but since this behavior is relied on, we have no choice but to restore it at the moment and spend more time on designing a better solution in the future. References: https://bugzilla.kernel.org/show_bug.cgi?id=43228 Reported-by: rocko <rockorequin@hotmail.com> Reported-by: Cristian Rodríguez <crrodriguez@opensuse.org> Reported-and-tested-by: Peter <lekensteyn@gmail.com> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-18 06:39:35 +08:00
int result = 0;
if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
return -EINVAL;
if (device->power.state == state || !device->flags.power_manageable)
return 0;
if ((device->power.state < ACPI_STATE_D0)
|| (device->power.state > ACPI_STATE_D3_COLD))
return -ENODEV;
/*
* First we reference all power resources required in the target list
* (e.g. so the device doesn't lose power while transitioning). Then,
* we dereference all power resources used in the current list.
*/
ACPI / PCI / PM: Fix device PM regression related to D3hot/D3cold Commit 1cc0c998fdf2 ("ACPI: Fix D3hot v D3cold confusion") introduced a bug in __acpi_bus_set_power() and changed the behavior of acpi_pci_set_power_state() in such a way that it generally doesn't work as expected if PCI_D3hot is passed to it as the second argument. First off, if ACPI_STATE_D3 (equal to ACPI_STATE_D3_COLD) is passed to __acpi_bus_set_power() and the explicit_set flag is set for the D3cold state, the function will try to execute AML method called "_PS4", which doesn't exist. Fix this by adding a check to ensure that the name of the AML method to execute for transitions to ACPI_STATE_D3_COLD is correct in __acpi_bus_set_power(). Also make sure that the explicit_set flag for ACPI_STATE_D3_COLD will be set if _PS3 is present and modify acpi_power_transition() to avoid accessing power resources for ACPI_STATE_D3_COLD, because they don't exist. Second, if PCI_D3hot is passed to acpi_pci_set_power_state() as the target state, the function will request a transition to ACPI_STATE_D3_HOT instead of ACPI_STATE_D3. However, ACPI_STATE_D3_HOT is now only marked as supported if the _PR3 AML method is defined for the given device, which is rare. This causes problems to happen on systems where devices were successfully put into ACPI D3 by pci_set_power_state(PCI_D3hot) which doesn't work now. In particular, some unused graphics adapters are not turned off as a result. To fix this issue restore the old behavior of acpi_pci_set_power_state(), which is to request a transition to ACPI_STATE_D3 (equal to ACPI_STATE_D3_COLD) if either PCI_D3hot or PCI_D3cold is passed to it as the argument. This approach is not ideal, because generally power should not be removed from devices if PCI_D3hot is the target power state, but since this behavior is relied on, we have no choice but to restore it at the moment and spend more time on designing a better solution in the future. References: https://bugzilla.kernel.org/show_bug.cgi?id=43228 Reported-by: rocko <rockorequin@hotmail.com> Reported-by: Cristian Rodríguez <crrodriguez@opensuse.org> Reported-and-tested-by: Peter <lekensteyn@gmail.com> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-18 06:39:35 +08:00
if (state < ACPI_STATE_D3_COLD)
result = acpi_power_on_list(
&device->power.states[state].resources);
if (!result && device->power.state < ACPI_STATE_D3_COLD)
acpi_power_off_list(
&device->power.states[device->power.state].resources);
/* We shouldn't change the state unless the above operations succeed. */
device->power.state = result ? ACPI_STATE_UNKNOWN : state;
return result;
}
static void acpi_release_power_resource(struct device *dev)
{
struct acpi_device *device = to_acpi_device(dev);
struct acpi_power_resource *resource;
resource = container_of(device, struct acpi_power_resource, device);
mutex_lock(&power_resource_list_lock);
list_del(&resource->list_node);
mutex_unlock(&power_resource_list_lock);
acpi_free_pnp_ids(&device->pnp);
kfree(resource);
}
static ssize_t resource_in_use_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct acpi_power_resource *resource;
resource = to_power_resource(to_acpi_device(dev));
return sprintf(buf, "%u\n", !!resource->ref_count);
}
static DEVICE_ATTR_RO(resource_in_use);
static void acpi_power_sysfs_remove(struct acpi_device *device)
{
device_remove_file(&device->dev, &dev_attr_resource_in_use);
}
static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource)
{
mutex_lock(&power_resource_list_lock);
if (!list_empty(&acpi_power_resource_list)) {
struct acpi_power_resource *r;
list_for_each_entry(r, &acpi_power_resource_list, list_node)
if (r->order > resource->order) {
list_add_tail(&resource->list_node, &r->list_node);
goto out;
}
}
list_add_tail(&resource->list_node, &acpi_power_resource_list);
out:
mutex_unlock(&power_resource_list_lock);
}
int acpi_add_power_resource(acpi_handle handle)
{
struct acpi_power_resource *resource;
struct acpi_device *device = NULL;
union acpi_object acpi_object;
struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
acpi_status status;
int state, result = -ENODEV;
acpi_bus_get_device(handle, &device);
if (device)
return 0;
resource = kzalloc(sizeof(*resource), GFP_KERNEL);
if (!resource)
return -ENOMEM;
device = &resource->device;
acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER);
mutex_init(&resource->resource_lock);
INIT_LIST_HEAD(&resource->list_node);
INIT_LIST_HEAD(&resource->dependents);
resource->name = device->pnp.bus_id;
strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
device->power.state = ACPI_STATE_UNKNOWN;
/* Evaluate the object to get the system level and resource order. */
status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
if (ACPI_FAILURE(status))
goto err;
resource->system_level = acpi_object.power_resource.system_level;
resource->order = acpi_object.power_resource.resource_order;
result = acpi_power_get_state(handle, &state);
if (result)
goto err;
pr_info("%s [%s] (%s)\n", acpi_device_name(device),
acpi_device_bid(device), state ? "on" : "off");
device->flags.match_driver = true;
result = acpi_device_add(device, acpi_release_power_resource);
if (result)
goto err;
if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
device->remove = acpi_power_sysfs_remove;
acpi_power_add_resource_to_list(resource);
acpi_device_add_finalize(device);
return 0;
err:
acpi_release_power_resource(&device->dev);
return result;
}
#ifdef CONFIG_ACPI_SLEEP
void acpi_resume_power_resources(void)
{
struct acpi_power_resource *resource;
mutex_lock(&power_resource_list_lock);
list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
int result, state;
mutex_lock(&resource->resource_lock);
result = acpi_power_get_state(resource->device.handle, &state);
if (result) {
mutex_unlock(&resource->resource_lock);
continue;
}
if (state == ACPI_POWER_RESOURCE_STATE_OFF
&& resource->ref_count) {
dev_info(&resource->device.dev, "Turning ON\n");
__acpi_power_on(resource);
}
mutex_unlock(&resource->resource_lock);
}
ACPI / power: Delay turning off unused power resources after suspend Commit 660b1113e0f3 (ACPI / PM: Fix consistency check for power resources during resume) introduced a check for ACPI power resources which have been turned on by the BIOS during suspend and turns these back off again. This is causing problems on a Dell Venue Pro 11 7130 (i5-4300Y) it causes the following messages to show up in dmesg: [ 131.014605] ACPI: Waking up from system sleep state S3 [ 131.150271] acpi LNXPOWER:07: Turning OFF [ 131.150323] acpi LNXPOWER:06: Turning OFF [ 131.150911] acpi LNXPOWER:00: Turning OFF [ 131.169014] ACPI : EC: interrupt unblocked [ 131.181811] xhci_hcd 0000:00:14.0: System wakeup disabled by ACPI [ 133.535728] pci_raw_set_power_state: 76 callbacks suppressed [ 133.535735] iwlwifi 0000:01:00.0: Refused to change power state, currently in D3 [ 133.597672] PM: noirq resume of devices complete after 2428.891 msecs Followed by a bunch of iwlwifi errors later on and the pcie device dropping from the bus (acpiphp thinks it has been unplugged). Disabling the turning off of unused power resources fixes this. Instead of adding a quirk for this system, this commit fixes this by moving the disabling of unused power resources to later in the resume sequence when the iwlwifi card has been moved out of D3 so the ref_count for its power resource no longer is 0. This new behavior seems to match the intend of the original commit which commit-msg says: "(... which means that no devices are going to need them any time soon) and we should turn them off". This also avoids power resources which we need when bringing devices out of D3 from getting bounced off and then back on again. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-05-01 04:54:16 +08:00
mutex_unlock(&power_resource_list_lock);
}
#endif
ACPI / power: Delay turning off unused power resources after suspend Commit 660b1113e0f3 (ACPI / PM: Fix consistency check for power resources during resume) introduced a check for ACPI power resources which have been turned on by the BIOS during suspend and turns these back off again. This is causing problems on a Dell Venue Pro 11 7130 (i5-4300Y) it causes the following messages to show up in dmesg: [ 131.014605] ACPI: Waking up from system sleep state S3 [ 131.150271] acpi LNXPOWER:07: Turning OFF [ 131.150323] acpi LNXPOWER:06: Turning OFF [ 131.150911] acpi LNXPOWER:00: Turning OFF [ 131.169014] ACPI : EC: interrupt unblocked [ 131.181811] xhci_hcd 0000:00:14.0: System wakeup disabled by ACPI [ 133.535728] pci_raw_set_power_state: 76 callbacks suppressed [ 133.535735] iwlwifi 0000:01:00.0: Refused to change power state, currently in D3 [ 133.597672] PM: noirq resume of devices complete after 2428.891 msecs Followed by a bunch of iwlwifi errors later on and the pcie device dropping from the bus (acpiphp thinks it has been unplugged). Disabling the turning off of unused power resources fixes this. Instead of adding a quirk for this system, this commit fixes this by moving the disabling of unused power resources to later in the resume sequence when the iwlwifi card has been moved out of D3 so the ref_count for its power resource no longer is 0. This new behavior seems to match the intend of the original commit which commit-msg says: "(... which means that no devices are going to need them any time soon) and we should turn them off". This also avoids power resources which we need when bringing devices out of D3 from getting bounced off and then back on again. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-05-01 04:54:16 +08:00
void acpi_turn_off_unused_power_resources(void)
{
struct acpi_power_resource *resource;
mutex_lock(&power_resource_list_lock);
list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) {
mutex_lock(&resource->resource_lock);
if (!resource->ref_count) {
dev_info(&resource->device.dev, "Turning OFF\n");
__acpi_power_off(resource);
}
mutex_unlock(&resource->resource_lock);
}
mutex_unlock(&power_resource_list_lock);
}