OpenCloudOS-Kernel/include/trace/define_trace.h

128 lines
3.4 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
tracing: create automated trace defines This patch lowers the number of places a developer must modify to add new tracepoints. The current method to add a new tracepoint into an existing system is to write the trace point macro in the trace header with one of the macros TRACE_EVENT, TRACE_FORMAT or DECLARE_TRACE, then they must add the same named item into the C file with the macro DEFINE_TRACE(name) and then add the trace point. This change cuts out the needing to add the DEFINE_TRACE(name). Every file that uses the tracepoint must still include the trace/<type>.h file, but the one C file must also add a define before the including of that file. #define CREATE_TRACE_POINTS #include <trace/mytrace.h> This will cause the trace/mytrace.h file to also produce the C code necessary to implement the trace point. Note, if more than one trace/<type>.h is used to create the C code it is best to list them all together. #define CREATE_TRACE_POINTS #include <trace/foo.h> #include <trace/bar.h> #include <trace/fido.h> Thanks to Mathieu Desnoyers and Christoph Hellwig for coming up with the cleaner solution of the define above the includes over my first design to have the C code include a "special" header. This patch converts sched, irq and lockdep and skb to use this new method. Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: Zhao Lei <zhaolei@cn.fujitsu.com> Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-10 21:36:00 +08:00
/*
* Trace files that want to automate creation of all tracepoints defined
tracing: create automated trace defines This patch lowers the number of places a developer must modify to add new tracepoints. The current method to add a new tracepoint into an existing system is to write the trace point macro in the trace header with one of the macros TRACE_EVENT, TRACE_FORMAT or DECLARE_TRACE, then they must add the same named item into the C file with the macro DEFINE_TRACE(name) and then add the trace point. This change cuts out the needing to add the DEFINE_TRACE(name). Every file that uses the tracepoint must still include the trace/<type>.h file, but the one C file must also add a define before the including of that file. #define CREATE_TRACE_POINTS #include <trace/mytrace.h> This will cause the trace/mytrace.h file to also produce the C code necessary to implement the trace point. Note, if more than one trace/<type>.h is used to create the C code it is best to list them all together. #define CREATE_TRACE_POINTS #include <trace/foo.h> #include <trace/bar.h> #include <trace/fido.h> Thanks to Mathieu Desnoyers and Christoph Hellwig for coming up with the cleaner solution of the define above the includes over my first design to have the C code include a "special" header. This patch converts sched, irq and lockdep and skb to use this new method. Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: Zhao Lei <zhaolei@cn.fujitsu.com> Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-10 21:36:00 +08:00
* in their file should include this file. The following are macros that the
* trace file may define:
*
* TRACE_SYSTEM defines the system the tracepoint is for
*
* TRACE_INCLUDE_FILE if the file name is something other than TRACE_SYSTEM.h
* This macro may be defined to tell define_trace.h what file to include.
* Note, leave off the ".h".
*
* TRACE_INCLUDE_PATH if the path is something other than core kernel include/trace
* then this macro can define the path to use. Note, the path is relative to
* define_trace.h, not the file including it. Full path names for out of tree
* modules must be used.
*/
#ifdef CREATE_TRACE_POINTS
/* Prevent recursion */
#undef CREATE_TRACE_POINTS
#include <linux/stringify.h>
#undef TRACE_EVENT
#define TRACE_EVENT(name, proto, args, tstruct, assign, print) \
DEFINE_TRACE(name)
#undef TRACE_EVENT_CONDITION
#define TRACE_EVENT_CONDITION(name, proto, args, cond, tstruct, assign, print) \
TRACE_EVENT(name, \
PARAMS(proto), \
PARAMS(args), \
PARAMS(tstruct), \
PARAMS(assign), \
PARAMS(print))
tracing: Move tracepoint callbacks from declaration to definition It's not strictly correct for the tracepoint reg/unreg callbacks to occur when a client is hooking up, because the actual tracepoint may not be present yet. This happens to be fine for syscall, since that's in the core kernel, but it would cause problems for tracepoints defined in a module that hasn't been loaded yet. It also means the reg/unreg has to be EXPORTed for any modules to use the tracepoint (as in SystemTap). This patch removes DECLARE_TRACE_WITH_CALLBACK, and instead introduces DEFINE_TRACE_FN which stores the callbacks in struct tracepoint. The callbacks are used now when the active state of the tracepoint changes in set_tracepoint & disable_tracepoint. This also introduces TRACE_EVENT_FN, so ftrace events can also provide registration callbacks if needed. Signed-off-by: Josh Stone <jistone@redhat.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Jiaying Zhang <jiayingz@google.com> Cc: Martin Bligh <mbligh@google.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> LKML-Reference: <1251150194-1713-4-git-send-email-jistone@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-08-25 05:43:13 +08:00
#undef TRACE_EVENT_FN
#define TRACE_EVENT_FN(name, proto, args, tstruct, \
assign, print, reg, unreg) \
DEFINE_TRACE_FN(name, reg, unreg)
#undef TRACE_EVENT_FN_COND
#define TRACE_EVENT_FN_COND(name, proto, args, cond, tstruct, \
assign, print, reg, unreg) \
DEFINE_TRACE_FN(name, reg, unreg)
tracing: Create new TRACE_EVENT_TEMPLATE There are some places in the kernel that define several tracepoints and they are all identical besides the name. The code to enable, disable and record is created for every trace point even if most of the code is identical. This patch adds TRACE_EVENT_TEMPLATE that lets the developer create a template TRACE_EVENT and create trace points with DEFINE_EVENT, which is based off of a given template. Each trace point used by this will share most of the code, and bring down the size of the kernel when there are several duplicate events. Usage is: TRACE_EVENT_TEMPLATE(name, proto, args, tstruct, assign, print); Which would be the same as defining a normal TRACE_EVENT. To create the trace events that the trace points will use: DEFINE_EVENT(template, name, proto, args) is done. The template is the name of the TRACE_EVENT_TEMPLATE to use. The name is the name of the trace point. The parameters proto and args must be the same as the proto and args of the template. If they are not the same, then a compile error will result. I tried hard removing this duplication but the C preprocessor is not powerful enough (or my CPP magic experience points is not at a high enough level) to not need them. A lot of trace events are coming in with new XFS development. Most of the trace points are identical except for the name. The following shows the advantage of having TRACE_EVENT_TEMPLATE: $ size fs/xfs/xfs.o.* text data bss dec hex filename 452114 2788 3520 458422 6feb6 fs/xfs/xfs.o.old 638482 38116 3744 680342 a6196 fs/xfs/xfs.o.template 996954 38116 4480 1039550 fdcbe fs/xfs/xfs.o.trace xfs.o.old is without any tracepoints. xfs.o.template uses the new TRACE_EVENT_TEMPLATE. xfs.o.trace uses the current TRACE_EVENT macros. Requested-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:27:27 +08:00
#undef DEFINE_EVENT
#define DEFINE_EVENT(template, name, proto, args) \
DEFINE_TRACE(name)
#undef DEFINE_EVENT_FN
#define DEFINE_EVENT_FN(template, name, proto, args, reg, unreg) \
DEFINE_TRACE_FN(name, reg, unreg)
tracing: Create new DEFINE_EVENT_PRINT After creating the TRACE_EVENT_TEMPLATE I started to look at other trace points to see what duplication was made. I noticed that there are several trace points where they are almost identical except for the name and the output format. Since TRACE_EVENT_TEMPLATE was successful in bringing down the size of trace events, I added a DEFINE_EVENT_PRINT. DEFINE_EVENT_PRINT is used just like DEFINE_EVENT is. That is, the DEFINE_EVENT_PRINT also uses a TRACE_EVENT_TEMPLATE, but it allows the developer to overwrite the print format. If there are two or more TRACE_EVENTS that are identical except for the name and print, then they can be converted to use a TRACE_EVENT_TEMPLATE. Since the TRACE_EVENT_TEMPLATE already does the print output, the first trace event would have its print format held in the TRACE_EVENT_TEMPLATE and be defined with a DEFINE_EVENT. The rest will use the DEFINE_EVENT_PRINT and override the print format. Converting the sched trace points to both DEFINE_EVENT and DEFINE_EVENT_PRINT. Five were converted to DEFINE_EVENT and two were converted to DEFINE_EVENT_PRINT. I was able to get the following: $ size kernel/sched.o-* text data bss dec hex filename 79299 6776 2520 88595 15a13 kernel/sched.o-notrace 101941 11896 2584 116421 1c6c5 kernel/sched.o-templ 104779 11896 2584 119259 1d1db kernel/sched.o-trace sched.o-notrace is the scheduler compiled with no trace points. sched.o-templ is with the use of DEFINE_EVENT and DEFINE_EVENT_PRINT sched.o-trace is the current trace events. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:36:26 +08:00
#undef DEFINE_EVENT_PRINT
#define DEFINE_EVENT_PRINT(template, name, proto, args, print) \
DEFINE_TRACE(name)
#undef DEFINE_EVENT_CONDITION
#define DEFINE_EVENT_CONDITION(template, name, proto, args, cond) \
DEFINE_EVENT(template, name, PARAMS(proto), PARAMS(args))
tracing: create automated trace defines This patch lowers the number of places a developer must modify to add new tracepoints. The current method to add a new tracepoint into an existing system is to write the trace point macro in the trace header with one of the macros TRACE_EVENT, TRACE_FORMAT or DECLARE_TRACE, then they must add the same named item into the C file with the macro DEFINE_TRACE(name) and then add the trace point. This change cuts out the needing to add the DEFINE_TRACE(name). Every file that uses the tracepoint must still include the trace/<type>.h file, but the one C file must also add a define before the including of that file. #define CREATE_TRACE_POINTS #include <trace/mytrace.h> This will cause the trace/mytrace.h file to also produce the C code necessary to implement the trace point. Note, if more than one trace/<type>.h is used to create the C code it is best to list them all together. #define CREATE_TRACE_POINTS #include <trace/foo.h> #include <trace/bar.h> #include <trace/fido.h> Thanks to Mathieu Desnoyers and Christoph Hellwig for coming up with the cleaner solution of the define above the includes over my first design to have the C code include a "special" header. This patch converts sched, irq and lockdep and skb to use this new method. Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: Zhao Lei <zhaolei@cn.fujitsu.com> Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-10 21:36:00 +08:00
#undef DECLARE_TRACE
#define DECLARE_TRACE(name, proto, args) \
DEFINE_TRACE(name)
#undef TRACE_INCLUDE
#undef __TRACE_INCLUDE
#ifndef TRACE_INCLUDE_FILE
# define TRACE_INCLUDE_FILE TRACE_SYSTEM
# define UNDEF_TRACE_INCLUDE_FILE
#endif
#ifndef TRACE_INCLUDE_PATH
# define __TRACE_INCLUDE(system) <trace/events/system.h>
# define UNDEF_TRACE_INCLUDE_PATH
tracing: create automated trace defines This patch lowers the number of places a developer must modify to add new tracepoints. The current method to add a new tracepoint into an existing system is to write the trace point macro in the trace header with one of the macros TRACE_EVENT, TRACE_FORMAT or DECLARE_TRACE, then they must add the same named item into the C file with the macro DEFINE_TRACE(name) and then add the trace point. This change cuts out the needing to add the DEFINE_TRACE(name). Every file that uses the tracepoint must still include the trace/<type>.h file, but the one C file must also add a define before the including of that file. #define CREATE_TRACE_POINTS #include <trace/mytrace.h> This will cause the trace/mytrace.h file to also produce the C code necessary to implement the trace point. Note, if more than one trace/<type>.h is used to create the C code it is best to list them all together. #define CREATE_TRACE_POINTS #include <trace/foo.h> #include <trace/bar.h> #include <trace/fido.h> Thanks to Mathieu Desnoyers and Christoph Hellwig for coming up with the cleaner solution of the define above the includes over my first design to have the C code include a "special" header. This patch converts sched, irq and lockdep and skb to use this new method. Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: Zhao Lei <zhaolei@cn.fujitsu.com> Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-10 21:36:00 +08:00
#else
# define __TRACE_INCLUDE(system) __stringify(TRACE_INCLUDE_PATH/system.h)
#endif
# define TRACE_INCLUDE(system) __TRACE_INCLUDE(system)
/* Let the trace headers be reread */
#define TRACE_HEADER_MULTI_READ
#include TRACE_INCLUDE(TRACE_INCLUDE_FILE)
/* Make all open coded DECLARE_TRACE nops */
#undef DECLARE_TRACE
#define DECLARE_TRACE(name, proto, args)
#ifdef TRACEPOINTS_ENABLED
#include <trace/trace_events.h>
#include <trace/perf.h>
bpf: introduce BPF_RAW_TRACEPOINT Introduce BPF_PROG_TYPE_RAW_TRACEPOINT bpf program type to access kernel internal arguments of the tracepoints in their raw form. >From bpf program point of view the access to the arguments look like: struct bpf_raw_tracepoint_args { __u64 args[0]; }; int bpf_prog(struct bpf_raw_tracepoint_args *ctx) { // program can read args[N] where N depends on tracepoint // and statically verified at program load+attach time } kprobe+bpf infrastructure allows programs access function arguments. This feature allows programs access raw tracepoint arguments. Similar to proposed 'dynamic ftrace events' there are no abi guarantees to what the tracepoints arguments are and what their meaning is. The program needs to type cast args properly and use bpf_probe_read() helper to access struct fields when argument is a pointer. For every tracepoint __bpf_trace_##call function is prepared. In assembler it looks like: (gdb) disassemble __bpf_trace_xdp_exception Dump of assembler code for function __bpf_trace_xdp_exception: 0xffffffff81132080 <+0>: mov %ecx,%ecx 0xffffffff81132082 <+2>: jmpq 0xffffffff811231f0 <bpf_trace_run3> where TRACE_EVENT(xdp_exception, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, u32 act), The above assembler snippet is casting 32-bit 'act' field into 'u64' to pass into bpf_trace_run3(), while 'dev' and 'xdp' args are passed as-is. All of ~500 of __bpf_trace_*() functions are only 5-10 byte long and in total this approach adds 7k bytes to .text. This approach gives the lowest possible overhead while calling trace_xdp_exception() from kernel C code and transitioning into bpf land. Since tracepoint+bpf are used at speeds of 1M+ events per second this is valuable optimization. The new BPF_RAW_TRACEPOINT_OPEN sys_bpf command is introduced that returns anon_inode FD of 'bpf-raw-tracepoint' object. The user space looks like: // load bpf prog with BPF_PROG_TYPE_RAW_TRACEPOINT type prog_fd = bpf_prog_load(...); // receive anon_inode fd for given bpf_raw_tracepoint with prog attached raw_tp_fd = bpf_raw_tracepoint_open("xdp_exception", prog_fd); Ctrl-C of tracing daemon or cmdline tool that uses this feature will automatically detach bpf program, unload it and unregister tracepoint probe. On the kernel side the __bpf_raw_tp_map section of pointers to tracepoint definition and to __bpf_trace_*() probe function is used to find a tracepoint with "xdp_exception" name and corresponding __bpf_trace_xdp_exception() probe function which are passed to tracepoint_probe_register() to connect probe with tracepoint. Addition of bpf_raw_tracepoint doesn't interfere with ftrace and perf tracepoint mechanisms. perf_event_open() can be used in parallel on the same tracepoint. Multiple bpf_raw_tracepoint_open("xdp_exception", prog_fd) are permitted. Each with its own bpf program. The kernel will execute all tracepoint probes and all attached bpf programs. In the future bpf_raw_tracepoints can be extended with query/introspection logic. __bpf_raw_tp_map section logic was contributed by Steven Rostedt Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-29 03:05:37 +08:00
#include <trace/bpf_probe.h>
#endif
#undef TRACE_EVENT
tracing: Undef TRACE_EVENT_FN between trace events headers inclusion The recent commit: tracing/events: fix the include file dependencies fixed a file dependency problem while including more than one trace event header file. This fix undefined TRACE_EVENT after an event header macro preprocessing in order to make tracepoint.h able to correctly declare the tracepoints necessary for the next event header file. But now we also need to undefine TRACE_EVENT_FN at the end of an event header file preprocessing for the same reason. This fixes the following build error: In file included from include/trace/events/napi.h:5, from net/core/net-traces.c:28: include/linux/tracepoint.h:285:1: warning: "TRACE_EVENT_FN" redefined In file included from include/trace/define_trace.h:61, from include/trace/events/skb.h:40, from net/core/net-traces.c:27: include/trace/ftrace.h:50:1: warning: this is the location of the previous definition In file included from include/trace/events/napi.h:5, from net/core/net-traces.c:28: include/linux/tracepoint.h:285:1: warning: "TRACE_EVENT_FN" redefined In file included from include/trace/define_trace.h:61, from include/trace/events/skb.h:40, from net/core/net-traces.c:27: include/trace/ftrace.h:50:1: warning: this is the location of the previous definition Reported-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Masami Hiramatsu <mhiramat@redhat.com> Cc: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <20090827161732.GA7618@nowhere> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-28 00:17:34 +08:00
#undef TRACE_EVENT_FN
#undef TRACE_EVENT_FN_COND
#undef TRACE_EVENT_CONDITION
#undef DECLARE_EVENT_CLASS
tracing: Create new TRACE_EVENT_TEMPLATE There are some places in the kernel that define several tracepoints and they are all identical besides the name. The code to enable, disable and record is created for every trace point even if most of the code is identical. This patch adds TRACE_EVENT_TEMPLATE that lets the developer create a template TRACE_EVENT and create trace points with DEFINE_EVENT, which is based off of a given template. Each trace point used by this will share most of the code, and bring down the size of the kernel when there are several duplicate events. Usage is: TRACE_EVENT_TEMPLATE(name, proto, args, tstruct, assign, print); Which would be the same as defining a normal TRACE_EVENT. To create the trace events that the trace points will use: DEFINE_EVENT(template, name, proto, args) is done. The template is the name of the TRACE_EVENT_TEMPLATE to use. The name is the name of the trace point. The parameters proto and args must be the same as the proto and args of the template. If they are not the same, then a compile error will result. I tried hard removing this duplication but the C preprocessor is not powerful enough (or my CPP magic experience points is not at a high enough level) to not need them. A lot of trace events are coming in with new XFS development. Most of the trace points are identical except for the name. The following shows the advantage of having TRACE_EVENT_TEMPLATE: $ size fs/xfs/xfs.o.* text data bss dec hex filename 452114 2788 3520 458422 6feb6 fs/xfs/xfs.o.old 638482 38116 3744 680342 a6196 fs/xfs/xfs.o.template 996954 38116 4480 1039550 fdcbe fs/xfs/xfs.o.trace xfs.o.old is without any tracepoints. xfs.o.template uses the new TRACE_EVENT_TEMPLATE. xfs.o.trace uses the current TRACE_EVENT macros. Requested-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:27:27 +08:00
#undef DEFINE_EVENT
#undef DEFINE_EVENT_FN
tracing: Create new DEFINE_EVENT_PRINT After creating the TRACE_EVENT_TEMPLATE I started to look at other trace points to see what duplication was made. I noticed that there are several trace points where they are almost identical except for the name and the output format. Since TRACE_EVENT_TEMPLATE was successful in bringing down the size of trace events, I added a DEFINE_EVENT_PRINT. DEFINE_EVENT_PRINT is used just like DEFINE_EVENT is. That is, the DEFINE_EVENT_PRINT also uses a TRACE_EVENT_TEMPLATE, but it allows the developer to overwrite the print format. If there are two or more TRACE_EVENTS that are identical except for the name and print, then they can be converted to use a TRACE_EVENT_TEMPLATE. Since the TRACE_EVENT_TEMPLATE already does the print output, the first trace event would have its print format held in the TRACE_EVENT_TEMPLATE and be defined with a DEFINE_EVENT. The rest will use the DEFINE_EVENT_PRINT and override the print format. Converting the sched trace points to both DEFINE_EVENT and DEFINE_EVENT_PRINT. Five were converted to DEFINE_EVENT and two were converted to DEFINE_EVENT_PRINT. I was able to get the following: $ size kernel/sched.o-* text data bss dec hex filename 79299 6776 2520 88595 15a13 kernel/sched.o-notrace 101941 11896 2584 116421 1c6c5 kernel/sched.o-templ 104779 11896 2584 119259 1d1db kernel/sched.o-trace sched.o-notrace is the scheduler compiled with no trace points. sched.o-templ is with the use of DEFINE_EVENT and DEFINE_EVENT_PRINT sched.o-trace is the current trace events. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:36:26 +08:00
#undef DEFINE_EVENT_PRINT
#undef DEFINE_EVENT_CONDITION
tracing: create automated trace defines This patch lowers the number of places a developer must modify to add new tracepoints. The current method to add a new tracepoint into an existing system is to write the trace point macro in the trace header with one of the macros TRACE_EVENT, TRACE_FORMAT or DECLARE_TRACE, then they must add the same named item into the C file with the macro DEFINE_TRACE(name) and then add the trace point. This change cuts out the needing to add the DEFINE_TRACE(name). Every file that uses the tracepoint must still include the trace/<type>.h file, but the one C file must also add a define before the including of that file. #define CREATE_TRACE_POINTS #include <trace/mytrace.h> This will cause the trace/mytrace.h file to also produce the C code necessary to implement the trace point. Note, if more than one trace/<type>.h is used to create the C code it is best to list them all together. #define CREATE_TRACE_POINTS #include <trace/foo.h> #include <trace/bar.h> #include <trace/fido.h> Thanks to Mathieu Desnoyers and Christoph Hellwig for coming up with the cleaner solution of the define above the includes over my first design to have the C code include a "special" header. This patch converts sched, irq and lockdep and skb to use this new method. Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: Zhao Lei <zhaolei@cn.fujitsu.com> Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-10 21:36:00 +08:00
#undef TRACE_HEADER_MULTI_READ
#undef DECLARE_TRACE
tracing: create automated trace defines This patch lowers the number of places a developer must modify to add new tracepoints. The current method to add a new tracepoint into an existing system is to write the trace point macro in the trace header with one of the macros TRACE_EVENT, TRACE_FORMAT or DECLARE_TRACE, then they must add the same named item into the C file with the macro DEFINE_TRACE(name) and then add the trace point. This change cuts out the needing to add the DEFINE_TRACE(name). Every file that uses the tracepoint must still include the trace/<type>.h file, but the one C file must also add a define before the including of that file. #define CREATE_TRACE_POINTS #include <trace/mytrace.h> This will cause the trace/mytrace.h file to also produce the C code necessary to implement the trace point. Note, if more than one trace/<type>.h is used to create the C code it is best to list them all together. #define CREATE_TRACE_POINTS #include <trace/foo.h> #include <trace/bar.h> #include <trace/fido.h> Thanks to Mathieu Desnoyers and Christoph Hellwig for coming up with the cleaner solution of the define above the includes over my first design to have the C code include a "special" header. This patch converts sched, irq and lockdep and skb to use this new method. Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: Zhao Lei <zhaolei@cn.fujitsu.com> Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-10 21:36:00 +08:00
/* Only undef what we defined in this file */
#ifdef UNDEF_TRACE_INCLUDE_FILE
# undef TRACE_INCLUDE_FILE
tracing: create automated trace defines This patch lowers the number of places a developer must modify to add new tracepoints. The current method to add a new tracepoint into an existing system is to write the trace point macro in the trace header with one of the macros TRACE_EVENT, TRACE_FORMAT or DECLARE_TRACE, then they must add the same named item into the C file with the macro DEFINE_TRACE(name) and then add the trace point. This change cuts out the needing to add the DEFINE_TRACE(name). Every file that uses the tracepoint must still include the trace/<type>.h file, but the one C file must also add a define before the including of that file. #define CREATE_TRACE_POINTS #include <trace/mytrace.h> This will cause the trace/mytrace.h file to also produce the C code necessary to implement the trace point. Note, if more than one trace/<type>.h is used to create the C code it is best to list them all together. #define CREATE_TRACE_POINTS #include <trace/foo.h> #include <trace/bar.h> #include <trace/fido.h> Thanks to Mathieu Desnoyers and Christoph Hellwig for coming up with the cleaner solution of the define above the includes over my first design to have the C code include a "special" header. This patch converts sched, irq and lockdep and skb to use this new method. Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: Zhao Lei <zhaolei@cn.fujitsu.com> Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-10 21:36:00 +08:00
# undef UNDEF_TRACE_INCLUDE_FILE
#endif
#ifdef UNDEF_TRACE_INCLUDE_PATH
tracing: create automated trace defines This patch lowers the number of places a developer must modify to add new tracepoints. The current method to add a new tracepoint into an existing system is to write the trace point macro in the trace header with one of the macros TRACE_EVENT, TRACE_FORMAT or DECLARE_TRACE, then they must add the same named item into the C file with the macro DEFINE_TRACE(name) and then add the trace point. This change cuts out the needing to add the DEFINE_TRACE(name). Every file that uses the tracepoint must still include the trace/<type>.h file, but the one C file must also add a define before the including of that file. #define CREATE_TRACE_POINTS #include <trace/mytrace.h> This will cause the trace/mytrace.h file to also produce the C code necessary to implement the trace point. Note, if more than one trace/<type>.h is used to create the C code it is best to list them all together. #define CREATE_TRACE_POINTS #include <trace/foo.h> #include <trace/bar.h> #include <trace/fido.h> Thanks to Mathieu Desnoyers and Christoph Hellwig for coming up with the cleaner solution of the define above the includes over my first design to have the C code include a "special" header. This patch converts sched, irq and lockdep and skb to use this new method. Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: Zhao Lei <zhaolei@cn.fujitsu.com> Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-10 21:36:00 +08:00
# undef TRACE_INCLUDE_PATH
# undef UNDEF_TRACE_INCLUDE_PATH
tracing: create automated trace defines This patch lowers the number of places a developer must modify to add new tracepoints. The current method to add a new tracepoint into an existing system is to write the trace point macro in the trace header with one of the macros TRACE_EVENT, TRACE_FORMAT or DECLARE_TRACE, then they must add the same named item into the C file with the macro DEFINE_TRACE(name) and then add the trace point. This change cuts out the needing to add the DEFINE_TRACE(name). Every file that uses the tracepoint must still include the trace/<type>.h file, but the one C file must also add a define before the including of that file. #define CREATE_TRACE_POINTS #include <trace/mytrace.h> This will cause the trace/mytrace.h file to also produce the C code necessary to implement the trace point. Note, if more than one trace/<type>.h is used to create the C code it is best to list them all together. #define CREATE_TRACE_POINTS #include <trace/foo.h> #include <trace/bar.h> #include <trace/fido.h> Thanks to Mathieu Desnoyers and Christoph Hellwig for coming up with the cleaner solution of the define above the includes over my first design to have the C code include a "special" header. This patch converts sched, irq and lockdep and skb to use this new method. Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: Zhao Lei <zhaolei@cn.fujitsu.com> Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-10 21:36:00 +08:00
#endif
/* We may be processing more files */
#define CREATE_TRACE_POINTS
#endif /* CREATE_TRACE_POINTS */