OpenCloudOS-Kernel/include/linux/kmemcheck.h

173 lines
4.3 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef LINUX_KMEMCHECK_H
#define LINUX_KMEMCHECK_H
#include <linux/mm_types.h>
#include <linux/types.h>
#ifdef CONFIG_KMEMCHECK
extern int kmemcheck_enabled;
2008-05-31 21:56:17 +08:00
/* The slab-related functions. */
void kmemcheck_alloc_shadow(struct page *page, int order, gfp_t flags, int node);
void kmemcheck_free_shadow(struct page *page, int order);
2008-05-31 21:56:17 +08:00
void kmemcheck_slab_alloc(struct kmem_cache *s, gfp_t gfpflags, void *object,
size_t size);
void kmemcheck_slab_free(struct kmem_cache *s, void *object, size_t size);
void kmemcheck_pagealloc_alloc(struct page *p, unsigned int order,
gfp_t gfpflags);
2008-05-31 21:56:17 +08:00
void kmemcheck_show_pages(struct page *p, unsigned int n);
void kmemcheck_hide_pages(struct page *p, unsigned int n);
bool kmemcheck_page_is_tracked(struct page *p);
void kmemcheck_mark_unallocated(void *address, unsigned int n);
void kmemcheck_mark_uninitialized(void *address, unsigned int n);
void kmemcheck_mark_initialized(void *address, unsigned int n);
void kmemcheck_mark_freed(void *address, unsigned int n);
void kmemcheck_mark_unallocated_pages(struct page *p, unsigned int n);
void kmemcheck_mark_uninitialized_pages(struct page *p, unsigned int n);
void kmemcheck_mark_initialized_pages(struct page *p, unsigned int n);
2008-05-31 21:56:17 +08:00
int kmemcheck_show_addr(unsigned long address);
int kmemcheck_hide_addr(unsigned long address);
kmemleak: Don't scan uninitialized memory when kmemcheck is enabled Ingo Molnar reported the following kmemcheck warning when running both kmemleak and kmemcheck enabled: PM: Adding info for No Bus:vcsa7 WARNING: kmemcheck: Caught 32-bit read from uninitialized memory (f6f6e1a4) d873f9f600000000c42ae4c1005c87f70000000070665f666978656400000000 i i i i u u u u i i i i i i i i i i i i i i i i i i i i i u u u ^ Pid: 3091, comm: kmemleak Not tainted (2.6.31-rc7-tip #1303) P4DC6 EIP: 0060:[<c110301f>] EFLAGS: 00010006 CPU: 0 EIP is at scan_block+0x3f/0xe0 EAX: f40bd700 EBX: f40bd780 ECX: f16b46c0 EDX: 00000001 ESI: f6f6e1a4 EDI: 00000000 EBP: f10f3f4c ESP: c2605fcc DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 CR0: 8005003b CR2: e89a4844 CR3: 30ff1000 CR4: 000006f0 DR0: 00000000 DR1: 00000000 DR2: 00000000 DR3: 00000000 DR6: ffff4ff0 DR7: 00000400 [<c110313c>] scan_object+0x7c/0xf0 [<c1103389>] kmemleak_scan+0x1d9/0x400 [<c1103a3c>] kmemleak_scan_thread+0x4c/0xb0 [<c10819d4>] kthread+0x74/0x80 [<c10257db>] kernel_thread_helper+0x7/0x3c [<ffffffff>] 0xffffffff kmemleak: 515 new suspected memory leaks (see /sys/kernel/debug/kmemleak) kmemleak: 42 new suspected memory leaks (see /sys/kernel/debug/kmemleak) The problem here is that kmemleak will scan partially initialized objects that makes kmemcheck complain. Fix that up by skipping uninitialized memory regions when kmemcheck is enabled. Reported-by: Ingo Molnar <mingo@elte.hu> Acked-by: Ingo Molnar <mingo@elte.hu> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
2009-08-27 21:50:00 +08:00
bool kmemcheck_is_obj_initialized(unsigned long addr, size_t size);
/*
* Bitfield annotations
*
* How to use: If you have a struct using bitfields, for example
*
* struct a {
* int x:8, y:8;
* };
*
* then this should be rewritten as
*
* struct a {
* kmemcheck_bitfield_begin(flags);
* int x:8, y:8;
* kmemcheck_bitfield_end(flags);
* };
*
* Now the "flags_begin" and "flags_end" members may be used to refer to the
* beginning and end, respectively, of the bitfield (and things like
* &x.flags_begin is allowed). As soon as the struct is allocated, the bit-
* fields should be annotated:
*
* struct a *a = kmalloc(sizeof(struct a), GFP_KERNEL);
* kmemcheck_annotate_bitfield(a, flags);
*/
#define kmemcheck_bitfield_begin(name) \
int name##_begin[0];
#define kmemcheck_bitfield_end(name) \
int name##_end[0];
#define kmemcheck_annotate_bitfield(ptr, name) \
do { \
int _n; \
\
if (!ptr) \
break; \
\
_n = (long) &((ptr)->name##_end) \
- (long) &((ptr)->name##_begin); \
BUILD_BUG_ON(_n < 0); \
\
kmemcheck_mark_initialized(&((ptr)->name##_begin), _n); \
} while (0)
#define kmemcheck_annotate_variable(var) \
do { \
kmemcheck_mark_initialized(&(var), sizeof(var)); \
} while (0) \
#else
#define kmemcheck_enabled 0
2008-05-31 21:56:17 +08:00
static inline void
kmemcheck_alloc_shadow(struct page *page, int order, gfp_t flags, int node)
2008-05-31 21:56:17 +08:00
{
}
static inline void
kmemcheck_free_shadow(struct page *page, int order)
2008-05-31 21:56:17 +08:00
{
}
static inline void
kmemcheck_slab_alloc(struct kmem_cache *s, gfp_t gfpflags, void *object,
size_t size)
{
}
static inline void kmemcheck_slab_free(struct kmem_cache *s, void *object,
size_t size)
{
}
static inline void kmemcheck_pagealloc_alloc(struct page *p,
unsigned int order, gfp_t gfpflags)
{
}
2008-05-31 21:56:17 +08:00
static inline bool kmemcheck_page_is_tracked(struct page *p)
{
return false;
}
static inline void kmemcheck_mark_unallocated(void *address, unsigned int n)
{
}
static inline void kmemcheck_mark_uninitialized(void *address, unsigned int n)
{
}
static inline void kmemcheck_mark_initialized(void *address, unsigned int n)
{
}
static inline void kmemcheck_mark_freed(void *address, unsigned int n)
{
}
static inline void kmemcheck_mark_unallocated_pages(struct page *p,
unsigned int n)
{
}
static inline void kmemcheck_mark_uninitialized_pages(struct page *p,
unsigned int n)
{
}
static inline void kmemcheck_mark_initialized_pages(struct page *p,
unsigned int n)
{
}
kmemleak: Don't scan uninitialized memory when kmemcheck is enabled Ingo Molnar reported the following kmemcheck warning when running both kmemleak and kmemcheck enabled: PM: Adding info for No Bus:vcsa7 WARNING: kmemcheck: Caught 32-bit read from uninitialized memory (f6f6e1a4) d873f9f600000000c42ae4c1005c87f70000000070665f666978656400000000 i i i i u u u u i i i i i i i i i i i i i i i i i i i i i u u u ^ Pid: 3091, comm: kmemleak Not tainted (2.6.31-rc7-tip #1303) P4DC6 EIP: 0060:[<c110301f>] EFLAGS: 00010006 CPU: 0 EIP is at scan_block+0x3f/0xe0 EAX: f40bd700 EBX: f40bd780 ECX: f16b46c0 EDX: 00000001 ESI: f6f6e1a4 EDI: 00000000 EBP: f10f3f4c ESP: c2605fcc DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 CR0: 8005003b CR2: e89a4844 CR3: 30ff1000 CR4: 000006f0 DR0: 00000000 DR1: 00000000 DR2: 00000000 DR3: 00000000 DR6: ffff4ff0 DR7: 00000400 [<c110313c>] scan_object+0x7c/0xf0 [<c1103389>] kmemleak_scan+0x1d9/0x400 [<c1103a3c>] kmemleak_scan_thread+0x4c/0xb0 [<c10819d4>] kthread+0x74/0x80 [<c10257db>] kernel_thread_helper+0x7/0x3c [<ffffffff>] 0xffffffff kmemleak: 515 new suspected memory leaks (see /sys/kernel/debug/kmemleak) kmemleak: 42 new suspected memory leaks (see /sys/kernel/debug/kmemleak) The problem here is that kmemleak will scan partially initialized objects that makes kmemcheck complain. Fix that up by skipping uninitialized memory regions when kmemcheck is enabled. Reported-by: Ingo Molnar <mingo@elte.hu> Acked-by: Ingo Molnar <mingo@elte.hu> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
2009-08-27 21:50:00 +08:00
static inline bool kmemcheck_is_obj_initialized(unsigned long addr, size_t size)
{
return true;
}
#define kmemcheck_bitfield_begin(name)
#define kmemcheck_bitfield_end(name)
#define kmemcheck_annotate_bitfield(ptr, name) \
do { \
} while (0)
#define kmemcheck_annotate_variable(var) \
do { \
} while (0)
#endif /* CONFIG_KMEMCHECK */
#endif /* LINUX_KMEMCHECK_H */