OpenCloudOS-Kernel/arch/sparc/kernel/iommu.c

872 lines
21 KiB
C
Raw Normal View History

/* iommu.c: Generic sparc64 IOMMU support.
*
* Copyright (C) 1999, 2007, 2008 David S. Miller (davem@davemloft.net)
* Copyright (C) 1999, 2000 Jakub Jelinek (jakub@redhat.com)
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/iommu-helper.h>
#ifdef CONFIG_PCI
#include <linux/pci.h>
#endif
#include <asm/iommu.h>
#include "iommu_common.h"
#define STC_CTXMATCH_ADDR(STC, CTX) \
((STC)->strbuf_ctxmatch_base + ((CTX) << 3))
#define STC_FLUSHFLAG_INIT(STC) \
(*((STC)->strbuf_flushflag) = 0UL)
#define STC_FLUSHFLAG_SET(STC) \
(*((STC)->strbuf_flushflag) != 0UL)
#define iommu_read(__reg) \
({ u64 __ret; \
__asm__ __volatile__("ldxa [%1] %2, %0" \
: "=r" (__ret) \
: "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
: "memory"); \
__ret; \
})
#define iommu_write(__reg, __val) \
__asm__ __volatile__("stxa %0, [%1] %2" \
: /* no outputs */ \
: "r" (__val), "r" (__reg), \
"i" (ASI_PHYS_BYPASS_EC_E))
/* Must be invoked under the IOMMU lock. */
static void iommu_flushall(struct iommu *iommu)
{
if (iommu->iommu_flushinv) {
iommu_write(iommu->iommu_flushinv, ~(u64)0);
} else {
unsigned long tag;
int entry;
tag = iommu->iommu_tags;
for (entry = 0; entry < 16; entry++) {
iommu_write(tag, 0);
tag += 8;
}
/* Ensure completion of previous PIO writes. */
(void) iommu_read(iommu->write_complete_reg);
}
}
#define IOPTE_CONSISTENT(CTX) \
(IOPTE_VALID | IOPTE_CACHE | \
(((CTX) << 47) & IOPTE_CONTEXT))
#define IOPTE_STREAMING(CTX) \
(IOPTE_CONSISTENT(CTX) | IOPTE_STBUF)
/* Existing mappings are never marked invalid, instead they
* are pointed to a dummy page.
*/
#define IOPTE_IS_DUMMY(iommu, iopte) \
((iopte_val(*iopte) & IOPTE_PAGE) == (iommu)->dummy_page_pa)
static inline void iopte_make_dummy(struct iommu *iommu, iopte_t *iopte)
{
unsigned long val = iopte_val(*iopte);
val &= ~IOPTE_PAGE;
val |= iommu->dummy_page_pa;
iopte_val(*iopte) = val;
}
/* Based almost entirely upon the ppc64 iommu allocator. If you use the 'handle'
* facility it must all be done in one pass while under the iommu lock.
*
* On sun4u platforms, we only flush the IOMMU once every time we've passed
* over the entire page table doing allocations. Therefore we only ever advance
* the hint and cannot backtrack it.
*/
unsigned long iommu_range_alloc(struct device *dev,
struct iommu *iommu,
unsigned long npages,
unsigned long *handle)
{
unsigned long n, end, start, limit, boundary_size;
struct iommu_arena *arena = &iommu->arena;
int pass = 0;
/* This allocator was derived from x86_64's bit string search */
/* Sanity check */
if (unlikely(npages == 0)) {
if (printk_ratelimit())
WARN_ON(1);
return DMA_ERROR_CODE;
}
if (handle && *handle)
start = *handle;
else
start = arena->hint;
limit = arena->limit;
/* The case below can happen if we have a small segment appended
* to a large, or when the previous alloc was at the very end of
* the available space. If so, go back to the beginning and flush.
*/
if (start >= limit) {
start = 0;
if (iommu->flush_all)
iommu->flush_all(iommu);
}
again:
if (dev)
boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1 << IO_PAGE_SHIFT);
else
boundary_size = ALIGN(1UL << 32, 1 << IO_PAGE_SHIFT);
n = iommu_area_alloc(arena->map, limit, start, npages,
iommu->page_table_map_base >> IO_PAGE_SHIFT,
boundary_size >> IO_PAGE_SHIFT, 0);
if (n == -1) {
if (likely(pass < 1)) {
/* First failure, rescan from the beginning. */
start = 0;
if (iommu->flush_all)
iommu->flush_all(iommu);
pass++;
goto again;
} else {
/* Second failure, give up */
return DMA_ERROR_CODE;
}
}
end = n + npages;
arena->hint = end;
/* Update handle for SG allocations */
if (handle)
*handle = end;
return n;
}
void iommu_range_free(struct iommu *iommu, dma_addr_t dma_addr, unsigned long npages)
{
struct iommu_arena *arena = &iommu->arena;
unsigned long entry;
entry = (dma_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT;
iommu_area_free(arena->map, entry, npages);
}
int iommu_table_init(struct iommu *iommu, int tsbsize,
u32 dma_offset, u32 dma_addr_mask,
int numa_node)
{
unsigned long i, order, sz, num_tsb_entries;
struct page *page;
num_tsb_entries = tsbsize / sizeof(iopte_t);
/* Setup initial software IOMMU state. */
spin_lock_init(&iommu->lock);
iommu->ctx_lowest_free = 1;
iommu->page_table_map_base = dma_offset;
iommu->dma_addr_mask = dma_addr_mask;
/* Allocate and initialize the free area map. */
sz = num_tsb_entries / 8;
sz = (sz + 7UL) & ~7UL;
iommu->arena.map = kmalloc_node(sz, GFP_KERNEL, numa_node);
if (!iommu->arena.map) {
printk(KERN_ERR "IOMMU: Error, kmalloc(arena.map) failed.\n");
return -ENOMEM;
}
memset(iommu->arena.map, 0, sz);
iommu->arena.limit = num_tsb_entries;
if (tlb_type != hypervisor)
iommu->flush_all = iommu_flushall;
/* Allocate and initialize the dummy page which we
* set inactive IO PTEs to point to.
*/
page = alloc_pages_node(numa_node, GFP_KERNEL, 0);
if (!page) {
printk(KERN_ERR "IOMMU: Error, gfp(dummy_page) failed.\n");
goto out_free_map;
}
iommu->dummy_page = (unsigned long) page_address(page);
memset((void *)iommu->dummy_page, 0, PAGE_SIZE);
iommu->dummy_page_pa = (unsigned long) __pa(iommu->dummy_page);
/* Now allocate and setup the IOMMU page table itself. */
order = get_order(tsbsize);
page = alloc_pages_node(numa_node, GFP_KERNEL, order);
if (!page) {
printk(KERN_ERR "IOMMU: Error, gfp(tsb) failed.\n");
goto out_free_dummy_page;
}
iommu->page_table = (iopte_t *)page_address(page);
for (i = 0; i < num_tsb_entries; i++)
iopte_make_dummy(iommu, &iommu->page_table[i]);
return 0;
out_free_dummy_page:
free_page(iommu->dummy_page);
iommu->dummy_page = 0UL;
out_free_map:
kfree(iommu->arena.map);
iommu->arena.map = NULL;
return -ENOMEM;
}
static inline iopte_t *alloc_npages(struct device *dev, struct iommu *iommu,
unsigned long npages)
{
unsigned long entry;
entry = iommu_range_alloc(dev, iommu, npages, NULL);
if (unlikely(entry == DMA_ERROR_CODE))
return NULL;
return iommu->page_table + entry;
}
static int iommu_alloc_ctx(struct iommu *iommu)
{
int lowest = iommu->ctx_lowest_free;
int sz = IOMMU_NUM_CTXS - lowest;
int n = find_next_zero_bit(iommu->ctx_bitmap, sz, lowest);
if (unlikely(n == sz)) {
n = find_next_zero_bit(iommu->ctx_bitmap, lowest, 1);
if (unlikely(n == lowest)) {
printk(KERN_WARNING "IOMMU: Ran out of contexts.\n");
n = 0;
}
}
if (n)
__set_bit(n, iommu->ctx_bitmap);
return n;
}
static inline void iommu_free_ctx(struct iommu *iommu, int ctx)
{
if (likely(ctx)) {
__clear_bit(ctx, iommu->ctx_bitmap);
if (ctx < iommu->ctx_lowest_free)
iommu->ctx_lowest_free = ctx;
}
}
static void *dma_4u_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_addrp, gfp_t gfp)
{
unsigned long flags, order, first_page;
struct iommu *iommu;
struct page *page;
int npages, nid;
iopte_t *iopte;
void *ret;
size = IO_PAGE_ALIGN(size);
order = get_order(size);
if (order >= 10)
return NULL;
nid = dev->archdata.numa_node;
page = alloc_pages_node(nid, gfp, order);
if (unlikely(!page))
return NULL;
first_page = (unsigned long) page_address(page);
memset((char *)first_page, 0, PAGE_SIZE << order);
iommu = dev->archdata.iommu;
spin_lock_irqsave(&iommu->lock, flags);
iopte = alloc_npages(dev, iommu, size >> IO_PAGE_SHIFT);
spin_unlock_irqrestore(&iommu->lock, flags);
if (unlikely(iopte == NULL)) {
free_pages(first_page, order);
return NULL;
}
*dma_addrp = (iommu->page_table_map_base +
((iopte - iommu->page_table) << IO_PAGE_SHIFT));
ret = (void *) first_page;
npages = size >> IO_PAGE_SHIFT;
first_page = __pa(first_page);
while (npages--) {
iopte_val(*iopte) = (IOPTE_CONSISTENT(0UL) |
IOPTE_WRITE |
(first_page & IOPTE_PAGE));
iopte++;
first_page += IO_PAGE_SIZE;
}
return ret;
}
static void dma_4u_free_coherent(struct device *dev, size_t size,
void *cpu, dma_addr_t dvma)
{
struct iommu *iommu;
iopte_t *iopte;
unsigned long flags, order, npages;
npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
iommu = dev->archdata.iommu;
iopte = iommu->page_table +
((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
spin_lock_irqsave(&iommu->lock, flags);
iommu_range_free(iommu, dvma, npages);
spin_unlock_irqrestore(&iommu->lock, flags);
order = get_order(size);
if (order < 10)
free_pages((unsigned long)cpu, order);
}
static dma_addr_t dma_4u_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t sz,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct iommu *iommu;
struct strbuf *strbuf;
iopte_t *base;
unsigned long flags, npages, oaddr;
unsigned long i, base_paddr, ctx;
u32 bus_addr, ret;
unsigned long iopte_protection;
iommu = dev->archdata.iommu;
strbuf = dev->archdata.stc;
if (unlikely(direction == DMA_NONE))
goto bad_no_ctx;
oaddr = (unsigned long)(page_address(page) + offset);
npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
npages >>= IO_PAGE_SHIFT;
spin_lock_irqsave(&iommu->lock, flags);
base = alloc_npages(dev, iommu, npages);
ctx = 0;
if (iommu->iommu_ctxflush)
ctx = iommu_alloc_ctx(iommu);
spin_unlock_irqrestore(&iommu->lock, flags);
if (unlikely(!base))
goto bad;
bus_addr = (iommu->page_table_map_base +
((base - iommu->page_table) << IO_PAGE_SHIFT));
ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
base_paddr = __pa(oaddr & IO_PAGE_MASK);
if (strbuf->strbuf_enabled)
iopte_protection = IOPTE_STREAMING(ctx);
else
iopte_protection = IOPTE_CONSISTENT(ctx);
if (direction != DMA_TO_DEVICE)
iopte_protection |= IOPTE_WRITE;
for (i = 0; i < npages; i++, base++, base_paddr += IO_PAGE_SIZE)
iopte_val(*base) = iopte_protection | base_paddr;
return ret;
bad:
iommu_free_ctx(iommu, ctx);
bad_no_ctx:
if (printk_ratelimit())
WARN_ON(1);
return DMA_ERROR_CODE;
}
static void strbuf_flush(struct strbuf *strbuf, struct iommu *iommu,
u32 vaddr, unsigned long ctx, unsigned long npages,
enum dma_data_direction direction)
{
int limit;
if (strbuf->strbuf_ctxflush &&
iommu->iommu_ctxflush) {
unsigned long matchreg, flushreg;
u64 val;
flushreg = strbuf->strbuf_ctxflush;
matchreg = STC_CTXMATCH_ADDR(strbuf, ctx);
iommu_write(flushreg, ctx);
val = iommu_read(matchreg);
val &= 0xffff;
if (!val)
goto do_flush_sync;
while (val) {
if (val & 0x1)
iommu_write(flushreg, ctx);
val >>= 1;
}
val = iommu_read(matchreg);
if (unlikely(val)) {
printk(KERN_WARNING "strbuf_flush: ctx flush "
"timeout matchreg[%llx] ctx[%lx]\n",
val, ctx);
goto do_page_flush;
}
} else {
unsigned long i;
do_page_flush:
for (i = 0; i < npages; i++, vaddr += IO_PAGE_SIZE)
iommu_write(strbuf->strbuf_pflush, vaddr);
}
do_flush_sync:
/* If the device could not have possibly put dirty data into
* the streaming cache, no flush-flag synchronization needs
* to be performed.
*/
if (direction == DMA_TO_DEVICE)
return;
STC_FLUSHFLAG_INIT(strbuf);
iommu_write(strbuf->strbuf_fsync, strbuf->strbuf_flushflag_pa);
(void) iommu_read(iommu->write_complete_reg);
limit = 100000;
while (!STC_FLUSHFLAG_SET(strbuf)) {
limit--;
if (!limit)
break;
udelay(1);
rmb();
}
if (!limit)
printk(KERN_WARNING "strbuf_flush: flushflag timeout "
"vaddr[%08x] ctx[%lx] npages[%ld]\n",
vaddr, ctx, npages);
}
static void dma_4u_unmap_page(struct device *dev, dma_addr_t bus_addr,
size_t sz, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct iommu *iommu;
struct strbuf *strbuf;
iopte_t *base;
unsigned long flags, npages, ctx, i;
if (unlikely(direction == DMA_NONE)) {
if (printk_ratelimit())
WARN_ON(1);
return;
}
iommu = dev->archdata.iommu;
strbuf = dev->archdata.stc;
npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
npages >>= IO_PAGE_SHIFT;
base = iommu->page_table +
((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
bus_addr &= IO_PAGE_MASK;
spin_lock_irqsave(&iommu->lock, flags);
/* Record the context, if any. */
ctx = 0;
if (iommu->iommu_ctxflush)
ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL;
/* Step 1: Kick data out of streaming buffers if necessary. */
if (strbuf->strbuf_enabled)
strbuf_flush(strbuf, iommu, bus_addr, ctx,
npages, direction);
/* Step 2: Clear out TSB entries. */
for (i = 0; i < npages; i++)
iopte_make_dummy(iommu, base + i);
iommu_range_free(iommu, bus_addr, npages);
iommu_free_ctx(iommu, ctx);
spin_unlock_irqrestore(&iommu->lock, flags);
}
static int dma_4u_map_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct scatterlist *s, *outs, *segstart;
unsigned long flags, handle, prot, ctx;
dma_addr_t dma_next = 0, dma_addr;
unsigned int max_seg_size;
unsigned long seg_boundary_size;
int outcount, incount, i;
struct strbuf *strbuf;
struct iommu *iommu;
unsigned long base_shift;
BUG_ON(direction == DMA_NONE);
iommu = dev->archdata.iommu;
strbuf = dev->archdata.stc;
if (nelems == 0 || !iommu)
return 0;
spin_lock_irqsave(&iommu->lock, flags);
ctx = 0;
if (iommu->iommu_ctxflush)
ctx = iommu_alloc_ctx(iommu);
if (strbuf->strbuf_enabled)
prot = IOPTE_STREAMING(ctx);
else
prot = IOPTE_CONSISTENT(ctx);
if (direction != DMA_TO_DEVICE)
prot |= IOPTE_WRITE;
outs = s = segstart = &sglist[0];
outcount = 1;
incount = nelems;
handle = 0;
/* Init first segment length for backout at failure */
outs->dma_length = 0;
max_seg_size = dma_get_max_seg_size(dev);
seg_boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
IO_PAGE_SIZE) >> IO_PAGE_SHIFT;
base_shift = iommu->page_table_map_base >> IO_PAGE_SHIFT;
for_each_sg(sglist, s, nelems, i) {
unsigned long paddr, npages, entry, out_entry = 0, slen;
iopte_t *base;
slen = s->length;
/* Sanity check */
if (slen == 0) {
dma_next = 0;
continue;
}
/* Allocate iommu entries for that segment */
paddr = (unsigned long) SG_ENT_PHYS_ADDRESS(s);
npages = iommu_num_pages(paddr, slen, IO_PAGE_SIZE);
entry = iommu_range_alloc(dev, iommu, npages, &handle);
/* Handle failure */
if (unlikely(entry == DMA_ERROR_CODE)) {
if (printk_ratelimit())
printk(KERN_INFO "iommu_alloc failed, iommu %p paddr %lx"
" npages %lx\n", iommu, paddr, npages);
goto iommu_map_failed;
}
base = iommu->page_table + entry;
/* Convert entry to a dma_addr_t */
dma_addr = iommu->page_table_map_base +
(entry << IO_PAGE_SHIFT);
dma_addr |= (s->offset & ~IO_PAGE_MASK);
/* Insert into HW table */
paddr &= IO_PAGE_MASK;
while (npages--) {
iopte_val(*base) = prot | paddr;
base++;
paddr += IO_PAGE_SIZE;
}
/* If we are in an open segment, try merging */
if (segstart != s) {
/* We cannot merge if:
* - allocated dma_addr isn't contiguous to previous allocation
*/
if ((dma_addr != dma_next) ||
(outs->dma_length + s->length > max_seg_size) ||
(is_span_boundary(out_entry, base_shift,
seg_boundary_size, outs, s))) {
/* Can't merge: create a new segment */
segstart = s;
outcount++;
outs = sg_next(outs);
} else {
outs->dma_length += s->length;
}
}
if (segstart == s) {
/* This is a new segment, fill entries */
outs->dma_address = dma_addr;
outs->dma_length = slen;
out_entry = entry;
}
/* Calculate next page pointer for contiguous check */
dma_next = dma_addr + slen;
}
spin_unlock_irqrestore(&iommu->lock, flags);
if (outcount < incount) {
outs = sg_next(outs);
outs->dma_address = DMA_ERROR_CODE;
outs->dma_length = 0;
}
return outcount;
iommu_map_failed:
for_each_sg(sglist, s, nelems, i) {
if (s->dma_length != 0) {
unsigned long vaddr, npages, entry, j;
iopte_t *base;
vaddr = s->dma_address & IO_PAGE_MASK;
npages = iommu_num_pages(s->dma_address, s->dma_length,
IO_PAGE_SIZE);
iommu_range_free(iommu, vaddr, npages);
entry = (vaddr - iommu->page_table_map_base)
>> IO_PAGE_SHIFT;
base = iommu->page_table + entry;
for (j = 0; j < npages; j++)
iopte_make_dummy(iommu, base + j);
s->dma_address = DMA_ERROR_CODE;
s->dma_length = 0;
}
if (s == outs)
break;
}
spin_unlock_irqrestore(&iommu->lock, flags);
return 0;
}
/* If contexts are being used, they are the same in all of the mappings
* we make for a particular SG.
*/
static unsigned long fetch_sg_ctx(struct iommu *iommu, struct scatterlist *sg)
{
unsigned long ctx = 0;
if (iommu->iommu_ctxflush) {
iopte_t *base;
u32 bus_addr;
bus_addr = sg->dma_address & IO_PAGE_MASK;
base = iommu->page_table +
((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL;
}
return ctx;
}
static void dma_4u_unmap_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
unsigned long flags, ctx;
struct scatterlist *sg;
struct strbuf *strbuf;
struct iommu *iommu;
BUG_ON(direction == DMA_NONE);
iommu = dev->archdata.iommu;
strbuf = dev->archdata.stc;
ctx = fetch_sg_ctx(iommu, sglist);
spin_lock_irqsave(&iommu->lock, flags);
sg = sglist;
while (nelems--) {
dma_addr_t dma_handle = sg->dma_address;
unsigned int len = sg->dma_length;
unsigned long npages, entry;
iopte_t *base;
int i;
if (!len)
break;
npages = iommu_num_pages(dma_handle, len, IO_PAGE_SIZE);
iommu_range_free(iommu, dma_handle, npages);
entry = ((dma_handle - iommu->page_table_map_base)
>> IO_PAGE_SHIFT);
base = iommu->page_table + entry;
dma_handle &= IO_PAGE_MASK;
if (strbuf->strbuf_enabled)
strbuf_flush(strbuf, iommu, dma_handle, ctx,
npages, direction);
for (i = 0; i < npages; i++)
iopte_make_dummy(iommu, base + i);
sg = sg_next(sg);
}
iommu_free_ctx(iommu, ctx);
spin_unlock_irqrestore(&iommu->lock, flags);
}
static void dma_4u_sync_single_for_cpu(struct device *dev,
dma_addr_t bus_addr, size_t sz,
enum dma_data_direction direction)
{
struct iommu *iommu;
struct strbuf *strbuf;
unsigned long flags, ctx, npages;
iommu = dev->archdata.iommu;
strbuf = dev->archdata.stc;
if (!strbuf->strbuf_enabled)
return;
spin_lock_irqsave(&iommu->lock, flags);
npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
npages >>= IO_PAGE_SHIFT;
bus_addr &= IO_PAGE_MASK;
/* Step 1: Record the context, if any. */
ctx = 0;
if (iommu->iommu_ctxflush &&
strbuf->strbuf_ctxflush) {
iopte_t *iopte;
iopte = iommu->page_table +
((bus_addr - iommu->page_table_map_base)>>IO_PAGE_SHIFT);
ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL;
}
/* Step 2: Kick data out of streaming buffers. */
strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
spin_unlock_irqrestore(&iommu->lock, flags);
}
static void dma_4u_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sglist, int nelems,
enum dma_data_direction direction)
{
struct iommu *iommu;
struct strbuf *strbuf;
unsigned long flags, ctx, npages, i;
struct scatterlist *sg, *sgprv;
u32 bus_addr;
iommu = dev->archdata.iommu;
strbuf = dev->archdata.stc;
if (!strbuf->strbuf_enabled)
return;
spin_lock_irqsave(&iommu->lock, flags);
/* Step 1: Record the context, if any. */
ctx = 0;
if (iommu->iommu_ctxflush &&
strbuf->strbuf_ctxflush) {
iopte_t *iopte;
iopte = iommu->page_table +
((sglist[0].dma_address - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL;
}
/* Step 2: Kick data out of streaming buffers. */
bus_addr = sglist[0].dma_address & IO_PAGE_MASK;
sgprv = NULL;
for_each_sg(sglist, sg, nelems, i) {
if (sg->dma_length == 0)
break;
sgprv = sg;
}
npages = (IO_PAGE_ALIGN(sgprv->dma_address + sgprv->dma_length)
- bus_addr) >> IO_PAGE_SHIFT;
strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
spin_unlock_irqrestore(&iommu->lock, flags);
}
static struct dma_map_ops sun4u_dma_ops = {
.alloc_coherent = dma_4u_alloc_coherent,
.free_coherent = dma_4u_free_coherent,
.map_page = dma_4u_map_page,
.unmap_page = dma_4u_unmap_page,
.map_sg = dma_4u_map_sg,
.unmap_sg = dma_4u_unmap_sg,
.sync_single_for_cpu = dma_4u_sync_single_for_cpu,
.sync_sg_for_cpu = dma_4u_sync_sg_for_cpu,
};
struct dma_map_ops *dma_ops = &sun4u_dma_ops;
EXPORT_SYMBOL(dma_ops);
int dma_supported(struct device *dev, u64 device_mask)
{
struct iommu *iommu = dev->archdata.iommu;
u64 dma_addr_mask = iommu->dma_addr_mask;
if (device_mask >= (1UL << 32UL))
return 0;
if ((device_mask & dma_addr_mask) == dma_addr_mask)
return 1;
#ifdef CONFIG_PCI
if (dev->bus == &pci_bus_type)
return pci_dma_supported(to_pci_dev(dev), device_mask);
#endif
return 0;
}
EXPORT_SYMBOL(dma_supported);
int dma_set_mask(struct device *dev, u64 dma_mask)
{
#ifdef CONFIG_PCI
if (dev->bus == &pci_bus_type)
return pci_set_dma_mask(to_pci_dev(dev), dma_mask);
#endif
return -EINVAL;
}
EXPORT_SYMBOL(dma_set_mask);