OpenCloudOS-Kernel/arch/powerpc/kvm/book3s_32_mmu.c

413 lines
9.9 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright SUSE Linux Products GmbH 2009
*
* Authors: Alexander Graf <agraf@suse.de>
*/
#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
/* #define DEBUG_MMU */
/* #define DEBUG_MMU_PTE */
/* #define DEBUG_MMU_PTE_IP 0xfff14c40 */
#ifdef DEBUG_MMU
#define dprintk(X...) printk(KERN_INFO X)
#else
#define dprintk(X...) do { } while(0)
#endif
#ifdef DEBUG_MMU_PTE
#define dprintk_pte(X...) printk(KERN_INFO X)
#else
#define dprintk_pte(X...) do { } while(0)
#endif
#define PTEG_FLAG_ACCESSED 0x00000100
#define PTEG_FLAG_DIRTY 0x00000080
#ifndef SID_SHIFT
#define SID_SHIFT 28
#endif
static inline bool check_debug_ip(struct kvm_vcpu *vcpu)
{
#ifdef DEBUG_MMU_PTE_IP
return vcpu->arch.pc == DEBUG_MMU_PTE_IP;
#else
return true;
#endif
}
static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr,
struct kvmppc_pte *pte, bool data);
static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
u64 *vsid);
static struct kvmppc_sr *find_sr(struct kvmppc_vcpu_book3s *vcpu_book3s, gva_t eaddr)
{
return &vcpu_book3s->sr[(eaddr >> 28) & 0xf];
}
static u64 kvmppc_mmu_book3s_32_ea_to_vp(struct kvm_vcpu *vcpu, gva_t eaddr,
bool data)
{
u64 vsid;
struct kvmppc_pte pte;
if (!kvmppc_mmu_book3s_32_xlate_bat(vcpu, eaddr, &pte, data))
return pte.vpage;
kvmppc_mmu_book3s_32_esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
return (((u64)eaddr >> 12) & 0xffff) | (vsid << 16);
}
static void kvmppc_mmu_book3s_32_reset_msr(struct kvm_vcpu *vcpu)
{
kvmppc_set_msr(vcpu, 0);
}
static hva_t kvmppc_mmu_book3s_32_get_pteg(struct kvmppc_vcpu_book3s *vcpu_book3s,
struct kvmppc_sr *sre, gva_t eaddr,
bool primary)
{
u32 page, hash, pteg, htabmask;
hva_t r;
page = (eaddr & 0x0FFFFFFF) >> 12;
htabmask = ((vcpu_book3s->sdr1 & 0x1FF) << 16) | 0xFFC0;
hash = ((sre->vsid ^ page) << 6);
if (!primary)
hash = ~hash;
hash &= htabmask;
pteg = (vcpu_book3s->sdr1 & 0xffff0000) | hash;
dprintk("MMU: pc=0x%lx eaddr=0x%lx sdr1=0x%llx pteg=0x%x vsid=0x%x\n",
kvmppc_get_pc(&vcpu_book3s->vcpu), eaddr, vcpu_book3s->sdr1, pteg,
sre->vsid);
r = gfn_to_hva(vcpu_book3s->vcpu.kvm, pteg >> PAGE_SHIFT);
if (kvm_is_error_hva(r))
return r;
return r | (pteg & ~PAGE_MASK);
}
static u32 kvmppc_mmu_book3s_32_get_ptem(struct kvmppc_sr *sre, gva_t eaddr,
bool primary)
{
return ((eaddr & 0x0fffffff) >> 22) | (sre->vsid << 7) |
(primary ? 0 : 0x40) | 0x80000000;
}
static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr,
struct kvmppc_pte *pte, bool data)
{
struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
struct kvmppc_bat *bat;
int i;
for (i = 0; i < 8; i++) {
if (data)
bat = &vcpu_book3s->dbat[i];
else
bat = &vcpu_book3s->ibat[i];
if (vcpu->arch.shared->msr & MSR_PR) {
if (!bat->vp)
continue;
} else {
if (!bat->vs)
continue;
}
if (check_debug_ip(vcpu))
{
dprintk_pte("%cBAT %02d: 0x%lx - 0x%x (0x%x)\n",
data ? 'd' : 'i', i, eaddr, bat->bepi,
bat->bepi_mask);
}
if ((eaddr & bat->bepi_mask) == bat->bepi) {
u64 vsid;
kvmppc_mmu_book3s_32_esid_to_vsid(vcpu,
eaddr >> SID_SHIFT, &vsid);
vsid <<= 16;
pte->vpage = (((u64)eaddr >> 12) & 0xffff) | vsid;
pte->raddr = bat->brpn | (eaddr & ~bat->bepi_mask);
pte->may_read = bat->pp;
pte->may_write = bat->pp > 1;
pte->may_execute = true;
if (!pte->may_read) {
printk(KERN_INFO "BAT is not readable!\n");
continue;
}
if (!pte->may_write) {
/* let's treat r/o BATs as not-readable for now */
dprintk_pte("BAT is read-only!\n");
continue;
}
return 0;
}
}
return -ENOENT;
}
static int kvmppc_mmu_book3s_32_xlate_pte(struct kvm_vcpu *vcpu, gva_t eaddr,
struct kvmppc_pte *pte, bool data,
bool primary)
{
struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
struct kvmppc_sr *sre;
hva_t ptegp;
u32 pteg[16];
u32 ptem = 0;
int i;
int found = 0;
sre = find_sr(vcpu_book3s, eaddr);
dprintk_pte("SR 0x%lx: vsid=0x%x, raw=0x%x\n", eaddr >> 28,
sre->vsid, sre->raw);
pte->vpage = kvmppc_mmu_book3s_32_ea_to_vp(vcpu, eaddr, data);
ptegp = kvmppc_mmu_book3s_32_get_pteg(vcpu_book3s, sre, eaddr, primary);
if (kvm_is_error_hva(ptegp)) {
printk(KERN_INFO "KVM: Invalid PTEG!\n");
goto no_page_found;
}
ptem = kvmppc_mmu_book3s_32_get_ptem(sre, eaddr, primary);
if(copy_from_user(pteg, (void __user *)ptegp, sizeof(pteg))) {
printk(KERN_ERR "KVM: Can't copy data from 0x%lx!\n", ptegp);
goto no_page_found;
}
for (i=0; i<16; i+=2) {
if (ptem == pteg[i]) {
u8 pp;
pte->raddr = (pteg[i+1] & ~(0xFFFULL)) | (eaddr & 0xFFF);
pp = pteg[i+1] & 3;
if ((sre->Kp && (vcpu->arch.shared->msr & MSR_PR)) ||
(sre->Ks && !(vcpu->arch.shared->msr & MSR_PR)))
pp |= 4;
pte->may_write = false;
pte->may_read = false;
pte->may_execute = true;
switch (pp) {
case 0:
case 1:
case 2:
case 6:
pte->may_write = true;
case 3:
case 5:
case 7:
pte->may_read = true;
break;
}
if ( !pte->may_read )
continue;
dprintk_pte("MMU: Found PTE -> %x %x - %x\n",
pteg[i], pteg[i+1], pp);
found = 1;
break;
}
}
/* Update PTE C and A bits, so the guest's swapper knows we used the
page */
if (found) {
u32 oldpte = pteg[i+1];
if (pte->may_read)
pteg[i+1] |= PTEG_FLAG_ACCESSED;
if (pte->may_write)
pteg[i+1] |= PTEG_FLAG_DIRTY;
else
dprintk_pte("KVM: Mapping read-only page!\n");
/* Write back into the PTEG */
if (pteg[i+1] != oldpte)
copy_to_user((void __user *)ptegp, pteg, sizeof(pteg));
return 0;
}
no_page_found:
if (check_debug_ip(vcpu)) {
dprintk_pte("KVM MMU: No PTE found (sdr1=0x%llx ptegp=0x%lx)\n",
to_book3s(vcpu)->sdr1, ptegp);
for (i=0; i<16; i+=2) {
dprintk_pte(" %02d: 0x%x - 0x%x (0x%x)\n",
i, pteg[i], pteg[i+1], ptem);
}
}
return -ENOENT;
}
static int kvmppc_mmu_book3s_32_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
struct kvmppc_pte *pte, bool data)
{
int r;
ulong mp_ea = vcpu->arch.magic_page_ea;
pte->eaddr = eaddr;
/* Magic page override */
if (unlikely(mp_ea) &&
unlikely((eaddr & ~0xfffULL) == (mp_ea & ~0xfffULL)) &&
!(vcpu->arch.shared->msr & MSR_PR)) {
pte->vpage = kvmppc_mmu_book3s_32_ea_to_vp(vcpu, eaddr, data);
pte->raddr = vcpu->arch.magic_page_pa | (pte->raddr & 0xfff);
pte->raddr &= KVM_PAM;
pte->may_execute = true;
pte->may_read = true;
pte->may_write = true;
return 0;
}
r = kvmppc_mmu_book3s_32_xlate_bat(vcpu, eaddr, pte, data);
if (r < 0)
r = kvmppc_mmu_book3s_32_xlate_pte(vcpu, eaddr, pte, data, true);
if (r < 0)
r = kvmppc_mmu_book3s_32_xlate_pte(vcpu, eaddr, pte, data, false);
return r;
}
static u32 kvmppc_mmu_book3s_32_mfsrin(struct kvm_vcpu *vcpu, u32 srnum)
{
return to_book3s(vcpu)->sr[srnum].raw;
}
static void kvmppc_mmu_book3s_32_mtsrin(struct kvm_vcpu *vcpu, u32 srnum,
ulong value)
{
struct kvmppc_sr *sre;
sre = &to_book3s(vcpu)->sr[srnum];
/* Flush any left-over shadows from the previous SR */
/* XXX Not necessary? */
/* kvmppc_mmu_pte_flush(vcpu, ((u64)sre->vsid) << 28, 0xf0000000ULL); */
/* And then put in the new SR */
sre->raw = value;
sre->vsid = (value & 0x0fffffff);
sre->valid = (value & 0x80000000) ? false : true;
sre->Ks = (value & 0x40000000) ? true : false;
sre->Kp = (value & 0x20000000) ? true : false;
sre->nx = (value & 0x10000000) ? true : false;
/* Map the new segment */
kvmppc_mmu_map_segment(vcpu, srnum << SID_SHIFT);
}
static void kvmppc_mmu_book3s_32_tlbie(struct kvm_vcpu *vcpu, ulong ea, bool large)
{
kvmppc_mmu_pte_flush(vcpu, ea, 0x0FFFF000);
}
static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
u64 *vsid)
{
ulong ea = esid << SID_SHIFT;
struct kvmppc_sr *sr;
u64 gvsid = esid;
if (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) {
sr = find_sr(to_book3s(vcpu), ea);
if (sr->valid)
gvsid = sr->vsid;
}
/* In case we only have one of MSR_IR or MSR_DR set, let's put
that in the real-mode context (and hope RM doesn't access
high memory) */
switch (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) {
case 0:
*vsid = VSID_REAL | esid;
break;
case MSR_IR:
*vsid = VSID_REAL_IR | gvsid;
break;
case MSR_DR:
*vsid = VSID_REAL_DR | gvsid;
break;
case MSR_DR|MSR_IR:
if (sr->valid)
*vsid = sr->vsid;
else
*vsid = VSID_BAT | gvsid;
break;
default:
BUG();
}
if (vcpu->arch.shared->msr & MSR_PR)
*vsid |= VSID_PR;
return 0;
}
static bool kvmppc_mmu_book3s_32_is_dcbz32(struct kvm_vcpu *vcpu)
{
return true;
}
void kvmppc_mmu_book3s_32_init(struct kvm_vcpu *vcpu)
{
struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
mmu->mtsrin = kvmppc_mmu_book3s_32_mtsrin;
mmu->mfsrin = kvmppc_mmu_book3s_32_mfsrin;
mmu->xlate = kvmppc_mmu_book3s_32_xlate;
mmu->reset_msr = kvmppc_mmu_book3s_32_reset_msr;
mmu->tlbie = kvmppc_mmu_book3s_32_tlbie;
mmu->esid_to_vsid = kvmppc_mmu_book3s_32_esid_to_vsid;
mmu->ea_to_vp = kvmppc_mmu_book3s_32_ea_to_vp;
mmu->is_dcbz32 = kvmppc_mmu_book3s_32_is_dcbz32;
mmu->slbmte = NULL;
mmu->slbmfee = NULL;
mmu->slbmfev = NULL;
mmu->slbie = NULL;
mmu->slbia = NULL;
}