OpenCloudOS-Kernel/fs/jffs2/debug.c

867 lines
26 KiB
C
Raw Normal View History

/*
* JFFS2 -- Journalling Flash File System, Version 2.
*
* Copyright © 2001-2007 Red Hat, Inc.
* Copyright © 2004-2010 David Woodhouse <dwmw2@infradead.org>
*
* Created by David Woodhouse <dwmw2@infradead.org>
*
* For licensing information, see the file 'LICENCE' in this directory.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/pagemap.h>
#include <linux/crc32.h>
#include <linux/jffs2.h>
#include <linux/mtd/mtd.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include "nodelist.h"
#include "debug.h"
#ifdef JFFS2_DBG_SANITY_CHECKS
void
__jffs2_dbg_acct_sanity_check_nolock(struct jffs2_sb_info *c,
struct jffs2_eraseblock *jeb)
{
if (unlikely(jeb && jeb->used_size + jeb->dirty_size +
jeb->free_size + jeb->wasted_size +
jeb->unchecked_size != c->sector_size)) {
JFFS2_ERROR("eeep, space accounting for block at 0x%08x is screwed.\n", jeb->offset);
JFFS2_ERROR("free %#08x + dirty %#08x + used %#08x + wasted %#08x + unchecked %#08x != total %#08x.\n",
jeb->free_size, jeb->dirty_size, jeb->used_size,
jeb->wasted_size, jeb->unchecked_size, c->sector_size);
BUG();
}
if (unlikely(c->used_size + c->dirty_size + c->free_size + c->erasing_size + c->bad_size
+ c->wasted_size + c->unchecked_size != c->flash_size)) {
JFFS2_ERROR("eeep, space accounting superblock info is screwed.\n");
JFFS2_ERROR("free %#08x + dirty %#08x + used %#08x + erasing %#08x + bad %#08x + wasted %#08x + unchecked %#08x != total %#08x.\n",
c->free_size, c->dirty_size, c->used_size, c->erasing_size, c->bad_size,
c->wasted_size, c->unchecked_size, c->flash_size);
BUG();
}
}
void
__jffs2_dbg_acct_sanity_check(struct jffs2_sb_info *c,
struct jffs2_eraseblock *jeb)
{
spin_lock(&c->erase_completion_lock);
jffs2_dbg_acct_sanity_check_nolock(c, jeb);
spin_unlock(&c->erase_completion_lock);
}
#endif /* JFFS2_DBG_SANITY_CHECKS */
#ifdef JFFS2_DBG_PARANOIA_CHECKS
/*
* Check the fragtree.
*/
void
__jffs2_dbg_fragtree_paranoia_check(struct jffs2_inode_info *f)
{
mutex_lock(&f->sem);
__jffs2_dbg_fragtree_paranoia_check_nolock(f);
mutex_unlock(&f->sem);
}
void
__jffs2_dbg_fragtree_paranoia_check_nolock(struct jffs2_inode_info *f)
{
struct jffs2_node_frag *frag;
int bitched = 0;
for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
struct jffs2_full_dnode *fn = frag->node;
if (!fn || !fn->raw)
continue;
if (ref_flags(fn->raw) == REF_PRISTINE) {
if (fn->frags > 1) {
JFFS2_ERROR("REF_PRISTINE node at 0x%08x had %d frags. Tell dwmw2.\n",
ref_offset(fn->raw), fn->frags);
bitched = 1;
}
/* A hole node which isn't multi-page should be garbage-collected
and merged anyway, so we just check for the frag size here,
rather than mucking around with actually reading the node
and checking the compression type, which is the real way
to tell a hole node. */
if (frag->ofs & (PAGE_CACHE_SIZE-1) && frag_prev(frag)
&& frag_prev(frag)->size < PAGE_CACHE_SIZE && frag_prev(frag)->node) {
JFFS2_ERROR("REF_PRISTINE node at 0x%08x had a previous non-hole frag in the same page. Tell dwmw2.\n",
ref_offset(fn->raw));
bitched = 1;
}
if ((frag->ofs+frag->size) & (PAGE_CACHE_SIZE-1) && frag_next(frag)
&& frag_next(frag)->size < PAGE_CACHE_SIZE && frag_next(frag)->node) {
JFFS2_ERROR("REF_PRISTINE node at 0x%08x (%08x-%08x) had a following non-hole frag in the same page. Tell dwmw2.\n",
ref_offset(fn->raw), frag->ofs, frag->ofs+frag->size);
bitched = 1;
}
}
}
if (bitched) {
JFFS2_ERROR("fragtree is corrupted.\n");
__jffs2_dbg_dump_fragtree_nolock(f);
BUG();
}
}
/*
* Check if the flash contains all 0xFF before we start writing.
*/
void
__jffs2_dbg_prewrite_paranoia_check(struct jffs2_sb_info *c,
uint32_t ofs, int len)
{
size_t retlen;
int ret, i;
unsigned char *buf;
buf = kmalloc(len, GFP_KERNEL);
if (!buf)
return;
ret = jffs2_flash_read(c, ofs, len, &retlen, buf);
if (ret || (retlen != len)) {
JFFS2_WARNING("read %d bytes failed or short. ret %d, retlen %zd.\n",
len, ret, retlen);
kfree(buf);
return;
}
ret = 0;
for (i = 0; i < len; i++)
if (buf[i] != 0xff)
ret = 1;
if (ret) {
JFFS2_ERROR("argh, about to write node to %#08x on flash, but there are data already there. The first corrupted byte is at %#08x offset.\n",
ofs, ofs + i);
__jffs2_dbg_dump_buffer(buf, len, ofs);
kfree(buf);
BUG();
}
kfree(buf);
}
void __jffs2_dbg_superblock_counts(struct jffs2_sb_info *c)
{
struct jffs2_eraseblock *jeb;
uint32_t free = 0, dirty = 0, used = 0, wasted = 0,
erasing = 0, bad = 0, unchecked = 0;
int nr_counted = 0;
int dump = 0;
if (c->gcblock) {
nr_counted++;
free += c->gcblock->free_size;
dirty += c->gcblock->dirty_size;
used += c->gcblock->used_size;
wasted += c->gcblock->wasted_size;
unchecked += c->gcblock->unchecked_size;
}
if (c->nextblock) {
nr_counted++;
free += c->nextblock->free_size;
dirty += c->nextblock->dirty_size;
used += c->nextblock->used_size;
wasted += c->nextblock->wasted_size;
unchecked += c->nextblock->unchecked_size;
}
list_for_each_entry(jeb, &c->clean_list, list) {
nr_counted++;
free += jeb->free_size;
dirty += jeb->dirty_size;
used += jeb->used_size;
wasted += jeb->wasted_size;
unchecked += jeb->unchecked_size;
}
list_for_each_entry(jeb, &c->very_dirty_list, list) {
nr_counted++;
free += jeb->free_size;
dirty += jeb->dirty_size;
used += jeb->used_size;
wasted += jeb->wasted_size;
unchecked += jeb->unchecked_size;
}
list_for_each_entry(jeb, &c->dirty_list, list) {
nr_counted++;
free += jeb->free_size;
dirty += jeb->dirty_size;
used += jeb->used_size;
wasted += jeb->wasted_size;
unchecked += jeb->unchecked_size;
}
list_for_each_entry(jeb, &c->erasable_list, list) {
nr_counted++;
free += jeb->free_size;
dirty += jeb->dirty_size;
used += jeb->used_size;
wasted += jeb->wasted_size;
unchecked += jeb->unchecked_size;
}
list_for_each_entry(jeb, &c->erasable_pending_wbuf_list, list) {
nr_counted++;
free += jeb->free_size;
dirty += jeb->dirty_size;
used += jeb->used_size;
wasted += jeb->wasted_size;
unchecked += jeb->unchecked_size;
}
list_for_each_entry(jeb, &c->erase_pending_list, list) {
nr_counted++;
free += jeb->free_size;
dirty += jeb->dirty_size;
used += jeb->used_size;
wasted += jeb->wasted_size;
unchecked += jeb->unchecked_size;
}
list_for_each_entry(jeb, &c->free_list, list) {
nr_counted++;
free += jeb->free_size;
dirty += jeb->dirty_size;
used += jeb->used_size;
wasted += jeb->wasted_size;
unchecked += jeb->unchecked_size;
}
list_for_each_entry(jeb, &c->bad_used_list, list) {
nr_counted++;
free += jeb->free_size;
dirty += jeb->dirty_size;
used += jeb->used_size;
wasted += jeb->wasted_size;
unchecked += jeb->unchecked_size;
}
list_for_each_entry(jeb, &c->erasing_list, list) {
nr_counted++;
erasing += c->sector_size;
}
list_for_each_entry(jeb, &c->erase_checking_list, list) {
nr_counted++;
erasing += c->sector_size;
}
list_for_each_entry(jeb, &c->erase_complete_list, list) {
nr_counted++;
erasing += c->sector_size;
}
list_for_each_entry(jeb, &c->bad_list, list) {
nr_counted++;
bad += c->sector_size;
}
#define check(sz) \
do { \
if (sz != c->sz##_size) { \
pr_warn("%s_size mismatch counted 0x%x, c->%s_size 0x%x\n", \
#sz, sz, #sz, c->sz##_size); \
dump = 1; \
} \
} while (0)
check(free);
check(dirty);
check(used);
check(wasted);
check(unchecked);
check(bad);
check(erasing);
#undef check
if (nr_counted != c->nr_blocks) {
pr_warn("%s counted only 0x%x blocks of 0x%x. Where are the others?\n",
__func__, nr_counted, c->nr_blocks);
dump = 1;
}
if (dump) {
__jffs2_dbg_dump_block_lists_nolock(c);
BUG();
}
}
/*
* Check the space accounting and node_ref list correctness for the JFFS2 erasable block 'jeb'.
*/
void
__jffs2_dbg_acct_paranoia_check(struct jffs2_sb_info *c,
struct jffs2_eraseblock *jeb)
{
spin_lock(&c->erase_completion_lock);
__jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
spin_unlock(&c->erase_completion_lock);
}
void
__jffs2_dbg_acct_paranoia_check_nolock(struct jffs2_sb_info *c,
struct jffs2_eraseblock *jeb)
{
uint32_t my_used_size = 0;
uint32_t my_unchecked_size = 0;
uint32_t my_dirty_size = 0;
struct jffs2_raw_node_ref *ref2 = jeb->first_node;
while (ref2) {
uint32_t totlen = ref_totlen(c, jeb, ref2);
if (ref_offset(ref2) < jeb->offset ||
ref_offset(ref2) > jeb->offset + c->sector_size) {
JFFS2_ERROR("node_ref %#08x shouldn't be in block at %#08x.\n",
ref_offset(ref2), jeb->offset);
goto error;
}
if (ref_flags(ref2) == REF_UNCHECKED)
my_unchecked_size += totlen;
else if (!ref_obsolete(ref2))
my_used_size += totlen;
else
my_dirty_size += totlen;
if ((!ref_next(ref2)) != (ref2 == jeb->last_node)) {
JFFS2_ERROR("node_ref for node at %#08x (mem %p) has next at %#08x (mem %p), last_node is at %#08x (mem %p).\n",
ref_offset(ref2), ref2, ref_offset(ref_next(ref2)), ref_next(ref2),
ref_offset(jeb->last_node), jeb->last_node);
goto error;
}
ref2 = ref_next(ref2);
}
if (my_used_size != jeb->used_size) {
JFFS2_ERROR("Calculated used size %#08x != stored used size %#08x.\n",
my_used_size, jeb->used_size);
goto error;
}
if (my_unchecked_size != jeb->unchecked_size) {
JFFS2_ERROR("Calculated unchecked size %#08x != stored unchecked size %#08x.\n",
my_unchecked_size, jeb->unchecked_size);
goto error;
}
#if 0
/* This should work when we implement ref->__totlen elemination */
if (my_dirty_size != jeb->dirty_size + jeb->wasted_size) {
JFFS2_ERROR("Calculated dirty+wasted size %#08x != stored dirty + wasted size %#08x\n",
my_dirty_size, jeb->dirty_size + jeb->wasted_size);
goto error;
}
if (jeb->free_size == 0
&& my_used_size + my_unchecked_size + my_dirty_size != c->sector_size) {
JFFS2_ERROR("The sum of all nodes in block (%#x) != size of block (%#x)\n",
my_used_size + my_unchecked_size + my_dirty_size,
c->sector_size);
goto error;
}
#endif
if (!(c->flags & (JFFS2_SB_FLAG_BUILDING|JFFS2_SB_FLAG_SCANNING)))
__jffs2_dbg_superblock_counts(c);
return;
error:
__jffs2_dbg_dump_node_refs_nolock(c, jeb);
__jffs2_dbg_dump_jeb_nolock(jeb);
__jffs2_dbg_dump_block_lists_nolock(c);
BUG();
}
#endif /* JFFS2_DBG_PARANOIA_CHECKS */
#if defined(JFFS2_DBG_DUMPS) || defined(JFFS2_DBG_PARANOIA_CHECKS)
/*
* Dump the node_refs of the 'jeb' JFFS2 eraseblock.
*/
void
__jffs2_dbg_dump_node_refs(struct jffs2_sb_info *c,
struct jffs2_eraseblock *jeb)
{
spin_lock(&c->erase_completion_lock);
__jffs2_dbg_dump_node_refs_nolock(c, jeb);
spin_unlock(&c->erase_completion_lock);
}
void
__jffs2_dbg_dump_node_refs_nolock(struct jffs2_sb_info *c,
struct jffs2_eraseblock *jeb)
{
struct jffs2_raw_node_ref *ref;
int i = 0;
printk(JFFS2_DBG_MSG_PREFIX " Dump node_refs of the eraseblock %#08x\n", jeb->offset);
if (!jeb->first_node) {
printk(JFFS2_DBG_MSG_PREFIX " no nodes in the eraseblock %#08x\n", jeb->offset);
return;
}
printk(JFFS2_DBG);
for (ref = jeb->first_node; ; ref = ref_next(ref)) {
printk("%#08x", ref_offset(ref));
#ifdef TEST_TOTLEN
printk("(%x)", ref->__totlen);
#endif
if (ref_next(ref))
printk("->");
else
break;
if (++i == 4) {
i = 0;
printk("\n" JFFS2_DBG);
}
}
printk("\n");
}
/*
* Dump an eraseblock's space accounting.
*/
void
__jffs2_dbg_dump_jeb(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
{
spin_lock(&c->erase_completion_lock);
__jffs2_dbg_dump_jeb_nolock(jeb);
spin_unlock(&c->erase_completion_lock);
}
void
__jffs2_dbg_dump_jeb_nolock(struct jffs2_eraseblock *jeb)
{
if (!jeb)
return;
printk(JFFS2_DBG_MSG_PREFIX " dump space accounting for the eraseblock at %#08x:\n",
jeb->offset);
printk(JFFS2_DBG "used_size: %#08x\n", jeb->used_size);
printk(JFFS2_DBG "dirty_size: %#08x\n", jeb->dirty_size);
printk(JFFS2_DBG "wasted_size: %#08x\n", jeb->wasted_size);
printk(JFFS2_DBG "unchecked_size: %#08x\n", jeb->unchecked_size);
printk(JFFS2_DBG "free_size: %#08x\n", jeb->free_size);
}
void
__jffs2_dbg_dump_block_lists(struct jffs2_sb_info *c)
{
spin_lock(&c->erase_completion_lock);
__jffs2_dbg_dump_block_lists_nolock(c);
spin_unlock(&c->erase_completion_lock);
}
void
__jffs2_dbg_dump_block_lists_nolock(struct jffs2_sb_info *c)
{
printk(JFFS2_DBG_MSG_PREFIX " dump JFFS2 blocks lists:\n");
printk(JFFS2_DBG "flash_size: %#08x\n", c->flash_size);
printk(JFFS2_DBG "used_size: %#08x\n", c->used_size);
printk(JFFS2_DBG "dirty_size: %#08x\n", c->dirty_size);
printk(JFFS2_DBG "wasted_size: %#08x\n", c->wasted_size);
printk(JFFS2_DBG "unchecked_size: %#08x\n", c->unchecked_size);
printk(JFFS2_DBG "free_size: %#08x\n", c->free_size);
printk(JFFS2_DBG "erasing_size: %#08x\n", c->erasing_size);
printk(JFFS2_DBG "bad_size: %#08x\n", c->bad_size);
printk(JFFS2_DBG "sector_size: %#08x\n", c->sector_size);
printk(JFFS2_DBG "jffs2_reserved_blocks size: %#08x\n",
c->sector_size * c->resv_blocks_write);
if (c->nextblock)
printk(JFFS2_DBG "nextblock: %#08x (used %#08x, dirty %#08x, wasted %#08x, unchecked %#08x, free %#08x)\n",
c->nextblock->offset, c->nextblock->used_size,
c->nextblock->dirty_size, c->nextblock->wasted_size,
c->nextblock->unchecked_size, c->nextblock->free_size);
else
printk(JFFS2_DBG "nextblock: NULL\n");
if (c->gcblock)
printk(JFFS2_DBG "gcblock: %#08x (used %#08x, dirty %#08x, wasted %#08x, unchecked %#08x, free %#08x)\n",
c->gcblock->offset, c->gcblock->used_size, c->gcblock->dirty_size,
c->gcblock->wasted_size, c->gcblock->unchecked_size, c->gcblock->free_size);
else
printk(JFFS2_DBG "gcblock: NULL\n");
if (list_empty(&c->clean_list)) {
printk(JFFS2_DBG "clean_list: empty\n");
} else {
struct list_head *this;
int numblocks = 0;
uint32_t dirty = 0;
list_for_each(this, &c->clean_list) {
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
numblocks ++;
dirty += jeb->wasted_size;
if (!(jeb->used_size == 0 && jeb->dirty_size == 0 && jeb->wasted_size == 0)) {
printk(JFFS2_DBG "clean_list: %#08x (used %#08x, dirty %#08x, wasted %#08x, unchecked %#08x, free %#08x)\n",
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size,
jeb->unchecked_size, jeb->free_size);
}
}
printk (JFFS2_DBG "Contains %d blocks with total wasted size %u, average wasted size: %u\n",
numblocks, dirty, dirty / numblocks);
}
if (list_empty(&c->very_dirty_list)) {
printk(JFFS2_DBG "very_dirty_list: empty\n");
} else {
struct list_head *this;
int numblocks = 0;
uint32_t dirty = 0;
list_for_each(this, &c->very_dirty_list) {
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
numblocks ++;
dirty += jeb->dirty_size;
if (!(jeb->used_size == 0 && jeb->dirty_size == 0 && jeb->wasted_size == 0)) {
printk(JFFS2_DBG "very_dirty_list: %#08x (used %#08x, dirty %#08x, wasted %#08x, unchecked %#08x, free %#08x)\n",
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size,
jeb->unchecked_size, jeb->free_size);
}
}
printk (JFFS2_DBG "Contains %d blocks with total dirty size %u, average dirty size: %u\n",
numblocks, dirty, dirty / numblocks);
}
if (list_empty(&c->dirty_list)) {
printk(JFFS2_DBG "dirty_list: empty\n");
} else {
struct list_head *this;
int numblocks = 0;
uint32_t dirty = 0;
list_for_each(this, &c->dirty_list) {
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
numblocks ++;
dirty += jeb->dirty_size;
if (!(jeb->used_size == 0 && jeb->dirty_size == 0 && jeb->wasted_size == 0)) {
printk(JFFS2_DBG "dirty_list: %#08x (used %#08x, dirty %#08x, wasted %#08x, unchecked %#08x, free %#08x)\n",
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size,
jeb->unchecked_size, jeb->free_size);
}
}
printk (JFFS2_DBG "contains %d blocks with total dirty size %u, average dirty size: %u\n",
numblocks, dirty, dirty / numblocks);
}
if (list_empty(&c->erasable_list)) {
printk(JFFS2_DBG "erasable_list: empty\n");
} else {
struct list_head *this;
list_for_each(this, &c->erasable_list) {
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
if (!(jeb->used_size == 0 && jeb->dirty_size == 0 && jeb->wasted_size == 0)) {
printk(JFFS2_DBG "erasable_list: %#08x (used %#08x, dirty %#08x, wasted %#08x, unchecked %#08x, free %#08x)\n",
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size,
jeb->unchecked_size, jeb->free_size);
}
}
}
if (list_empty(&c->erasing_list)) {
printk(JFFS2_DBG "erasing_list: empty\n");
} else {
struct list_head *this;
list_for_each(this, &c->erasing_list) {
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
if (!(jeb->used_size == 0 && jeb->dirty_size == 0 && jeb->wasted_size == 0)) {
printk(JFFS2_DBG "erasing_list: %#08x (used %#08x, dirty %#08x, wasted %#08x, unchecked %#08x, free %#08x)\n",
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size,
jeb->unchecked_size, jeb->free_size);
}
}
}
if (list_empty(&c->erase_checking_list)) {
printk(JFFS2_DBG "erase_checking_list: empty\n");
} else {
struct list_head *this;
list_for_each(this, &c->erase_checking_list) {
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
if (!(jeb->used_size == 0 && jeb->dirty_size == 0 && jeb->wasted_size == 0)) {
printk(JFFS2_DBG "erase_checking_list: %#08x (used %#08x, dirty %#08x, wasted %#08x, unchecked %#08x, free %#08x)\n",
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size,
jeb->unchecked_size, jeb->free_size);
}
}
}
if (list_empty(&c->erase_pending_list)) {
printk(JFFS2_DBG "erase_pending_list: empty\n");
} else {
struct list_head *this;
list_for_each(this, &c->erase_pending_list) {
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
if (!(jeb->used_size == 0 && jeb->dirty_size == 0 && jeb->wasted_size == 0)) {
printk(JFFS2_DBG "erase_pending_list: %#08x (used %#08x, dirty %#08x, wasted %#08x, unchecked %#08x, free %#08x)\n",
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size,
jeb->unchecked_size, jeb->free_size);
}
}
}
if (list_empty(&c->erasable_pending_wbuf_list)) {
printk(JFFS2_DBG "erasable_pending_wbuf_list: empty\n");
} else {
struct list_head *this;
list_for_each(this, &c->erasable_pending_wbuf_list) {
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
if (!(jeb->used_size == 0 && jeb->dirty_size == 0 && jeb->wasted_size == 0)) {
printk(JFFS2_DBG "erasable_pending_wbuf_list: %#08x (used %#08x, dirty %#08x, wasted %#08x, unchecked %#08x, free %#08x)\n",
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size,
jeb->unchecked_size, jeb->free_size);
}
}
}
if (list_empty(&c->free_list)) {
printk(JFFS2_DBG "free_list: empty\n");
} else {
struct list_head *this;
list_for_each(this, &c->free_list) {
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
if (!(jeb->used_size == 0 && jeb->dirty_size == 0 && jeb->wasted_size == 0)) {
printk(JFFS2_DBG "free_list: %#08x (used %#08x, dirty %#08x, wasted %#08x, unchecked %#08x, free %#08x)\n",
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size,
jeb->unchecked_size, jeb->free_size);
}
}
}
if (list_empty(&c->bad_list)) {
printk(JFFS2_DBG "bad_list: empty\n");
} else {
struct list_head *this;
list_for_each(this, &c->bad_list) {
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
if (!(jeb->used_size == 0 && jeb->dirty_size == 0 && jeb->wasted_size == 0)) {
printk(JFFS2_DBG "bad_list: %#08x (used %#08x, dirty %#08x, wasted %#08x, unchecked %#08x, free %#08x)\n",
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size,
jeb->unchecked_size, jeb->free_size);
}
}
}
if (list_empty(&c->bad_used_list)) {
printk(JFFS2_DBG "bad_used_list: empty\n");
} else {
struct list_head *this;
list_for_each(this, &c->bad_used_list) {
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
if (!(jeb->used_size == 0 && jeb->dirty_size == 0 && jeb->wasted_size == 0)) {
printk(JFFS2_DBG "bad_used_list: %#08x (used %#08x, dirty %#08x, wasted %#08x, unchecked %#08x, free %#08x)\n",
jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size,
jeb->unchecked_size, jeb->free_size);
}
}
}
}
void
__jffs2_dbg_dump_fragtree(struct jffs2_inode_info *f)
{
mutex_lock(&f->sem);
jffs2_dbg_dump_fragtree_nolock(f);
mutex_unlock(&f->sem);
}
void
__jffs2_dbg_dump_fragtree_nolock(struct jffs2_inode_info *f)
{
struct jffs2_node_frag *this = frag_first(&f->fragtree);
uint32_t lastofs = 0;
int buggy = 0;
printk(JFFS2_DBG_MSG_PREFIX " dump fragtree of ino #%u\n", f->inocache->ino);
while(this) {
if (this->node)
printk(JFFS2_DBG "frag %#04x-%#04x: %#08x(%d) on flash (*%p), left (%p), right (%p), parent (%p)\n",
this->ofs, this->ofs+this->size, ref_offset(this->node->raw),
ref_flags(this->node->raw), this, frag_left(this), frag_right(this),
frag_parent(this));
else
printk(JFFS2_DBG "frag %#04x-%#04x: hole (*%p). left (%p), right (%p), parent (%p)\n",
this->ofs, this->ofs+this->size, this, frag_left(this),
frag_right(this), frag_parent(this));
if (this->ofs != lastofs)
buggy = 1;
lastofs = this->ofs + this->size;
this = frag_next(this);
}
if (f->metadata)
printk(JFFS2_DBG "metadata at 0x%08x\n", ref_offset(f->metadata->raw));
if (buggy) {
JFFS2_ERROR("frag tree got a hole in it.\n");
BUG();
}
}
#define JFFS2_BUFDUMP_BYTES_PER_LINE 32
void
__jffs2_dbg_dump_buffer(unsigned char *buf, int len, uint32_t offs)
{
int skip;
int i;
printk(JFFS2_DBG_MSG_PREFIX " dump from offset %#08x to offset %#08x (%x bytes).\n",
offs, offs + len, len);
i = skip = offs % JFFS2_BUFDUMP_BYTES_PER_LINE;
offs = offs & ~(JFFS2_BUFDUMP_BYTES_PER_LINE - 1);
if (skip != 0)
printk(JFFS2_DBG "%#08x: ", offs);
while (skip--)
printk(" ");
while (i < len) {
if ((i % JFFS2_BUFDUMP_BYTES_PER_LINE) == 0 && i != len -1) {
if (i != 0)
printk("\n");
offs += JFFS2_BUFDUMP_BYTES_PER_LINE;
printk(JFFS2_DBG "%0#8x: ", offs);
}
printk("%02x ", buf[i]);
i += 1;
}
printk("\n");
}
/*
* Dump a JFFS2 node.
*/
void
__jffs2_dbg_dump_node(struct jffs2_sb_info *c, uint32_t ofs)
{
union jffs2_node_union node;
int len = sizeof(union jffs2_node_union);
size_t retlen;
uint32_t crc;
int ret;
printk(JFFS2_DBG_MSG_PREFIX " dump node at offset %#08x.\n", ofs);
ret = jffs2_flash_read(c, ofs, len, &retlen, (unsigned char *)&node);
if (ret || (retlen != len)) {
JFFS2_ERROR("read %d bytes failed or short. ret %d, retlen %zd.\n",
len, ret, retlen);
return;
}
printk(JFFS2_DBG "magic:\t%#04x\n", je16_to_cpu(node.u.magic));
printk(JFFS2_DBG "nodetype:\t%#04x\n", je16_to_cpu(node.u.nodetype));
printk(JFFS2_DBG "totlen:\t%#08x\n", je32_to_cpu(node.u.totlen));
printk(JFFS2_DBG "hdr_crc:\t%#08x\n", je32_to_cpu(node.u.hdr_crc));
crc = crc32(0, &node.u, sizeof(node.u) - 4);
if (crc != je32_to_cpu(node.u.hdr_crc)) {
JFFS2_ERROR("wrong common header CRC.\n");
return;
}
if (je16_to_cpu(node.u.magic) != JFFS2_MAGIC_BITMASK &&
je16_to_cpu(node.u.magic) != JFFS2_OLD_MAGIC_BITMASK)
{
JFFS2_ERROR("wrong node magic: %#04x instead of %#04x.\n",
je16_to_cpu(node.u.magic), JFFS2_MAGIC_BITMASK);
return;
}
switch(je16_to_cpu(node.u.nodetype)) {
case JFFS2_NODETYPE_INODE:
printk(JFFS2_DBG "the node is inode node\n");
printk(JFFS2_DBG "ino:\t%#08x\n", je32_to_cpu(node.i.ino));
printk(JFFS2_DBG "version:\t%#08x\n", je32_to_cpu(node.i.version));
printk(JFFS2_DBG "mode:\t%#08x\n", node.i.mode.m);
printk(JFFS2_DBG "uid:\t%#04x\n", je16_to_cpu(node.i.uid));
printk(JFFS2_DBG "gid:\t%#04x\n", je16_to_cpu(node.i.gid));
printk(JFFS2_DBG "isize:\t%#08x\n", je32_to_cpu(node.i.isize));
printk(JFFS2_DBG "atime:\t%#08x\n", je32_to_cpu(node.i.atime));
printk(JFFS2_DBG "mtime:\t%#08x\n", je32_to_cpu(node.i.mtime));
printk(JFFS2_DBG "ctime:\t%#08x\n", je32_to_cpu(node.i.ctime));
printk(JFFS2_DBG "offset:\t%#08x\n", je32_to_cpu(node.i.offset));
printk(JFFS2_DBG "csize:\t%#08x\n", je32_to_cpu(node.i.csize));
printk(JFFS2_DBG "dsize:\t%#08x\n", je32_to_cpu(node.i.dsize));
printk(JFFS2_DBG "compr:\t%#02x\n", node.i.compr);
printk(JFFS2_DBG "usercompr:\t%#02x\n", node.i.usercompr);
printk(JFFS2_DBG "flags:\t%#04x\n", je16_to_cpu(node.i.flags));
printk(JFFS2_DBG "data_crc:\t%#08x\n", je32_to_cpu(node.i.data_crc));
printk(JFFS2_DBG "node_crc:\t%#08x\n", je32_to_cpu(node.i.node_crc));
crc = crc32(0, &node.i, sizeof(node.i) - 8);
if (crc != je32_to_cpu(node.i.node_crc)) {
JFFS2_ERROR("wrong node header CRC.\n");
return;
}
break;
case JFFS2_NODETYPE_DIRENT:
printk(JFFS2_DBG "the node is dirent node\n");
printk(JFFS2_DBG "pino:\t%#08x\n", je32_to_cpu(node.d.pino));
printk(JFFS2_DBG "version:\t%#08x\n", je32_to_cpu(node.d.version));
printk(JFFS2_DBG "ino:\t%#08x\n", je32_to_cpu(node.d.ino));
printk(JFFS2_DBG "mctime:\t%#08x\n", je32_to_cpu(node.d.mctime));
printk(JFFS2_DBG "nsize:\t%#02x\n", node.d.nsize);
printk(JFFS2_DBG "type:\t%#02x\n", node.d.type);
printk(JFFS2_DBG "node_crc:\t%#08x\n", je32_to_cpu(node.d.node_crc));
printk(JFFS2_DBG "name_crc:\t%#08x\n", je32_to_cpu(node.d.name_crc));
node.d.name[node.d.nsize] = '\0';
printk(JFFS2_DBG "name:\t\"%s\"\n", node.d.name);
crc = crc32(0, &node.d, sizeof(node.d) - 8);
if (crc != je32_to_cpu(node.d.node_crc)) {
JFFS2_ERROR("wrong node header CRC.\n");
return;
}
break;
default:
printk(JFFS2_DBG "node type is unknown\n");
break;
}
}
#endif /* JFFS2_DBG_DUMPS || JFFS2_DBG_PARANOIA_CHECKS */