OpenCloudOS-Kernel/arch/sparc/kernel/rtrap_32.S

266 lines
5.6 KiB
ArmAsm
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* rtrap.S: Return from Sparc trap low-level code.
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
*/
#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/psr.h>
#include <asm/asi.h>
#include <asm/smp.h>
#include <asm/contregs.h>
#include <asm/winmacro.h>
#include <asm/asmmacro.h>
#include <asm/thread_info.h>
#define t_psr l0
#define t_pc l1
#define t_npc l2
#define t_wim l3
#define twin_tmp1 l4
#define glob_tmp g4
#define curptr g6
/* 7 WINDOW SPARC PATCH INSTRUCTIONS */
.globl rtrap_7win_patch1, rtrap_7win_patch2, rtrap_7win_patch3
.globl rtrap_7win_patch4, rtrap_7win_patch5
rtrap_7win_patch1: srl %t_wim, 0x6, %glob_tmp
rtrap_7win_patch2: and %glob_tmp, 0x7f, %glob_tmp
rtrap_7win_patch3: srl %g1, 7, %g2
rtrap_7win_patch4: srl %g2, 6, %g2
rtrap_7win_patch5: and %g1, 0x7f, %g1
/* END OF PATCH INSTRUCTIONS */
/* We need to check for a few things which are:
* 1) The need to call schedule() because this
* processes quantum is up.
* 2) Pending signals for this process, if any
* exist we need to call do_signal() to do
* the needy.
*
* Else we just check if the rett would land us
* in an invalid window, if so we need to grab
* it off the user/kernel stack first.
*/
.globl ret_trap_entry, rtrap_patch1, rtrap_patch2
.globl rtrap_patch3, rtrap_patch4, rtrap_patch5
.globl ret_trap_lockless_ipi
ret_trap_entry:
ret_trap_lockless_ipi:
andcc %t_psr, PSR_PS, %g0
sparc: Fix debugger syscall restart interactions. So, forever, we've had this ptrace_signal_deliver implementation which tries to handle all of the nasties that can occur when the debugger looks at a process about to take a signal. It's meant to address all of these issues inside of the kernel so that the debugger need not be mindful of such things. Problem is, this doesn't work. The idea was that we should do the syscall restart business first, so that the debugger captures that state. Otherwise, if the debugger for example saves the child's state, makes the child execute something else, then restores the saved state, we won't handle the syscall restart properly because we lose the "we're in a syscall" state. The code here worked for most cases, but if the debugger actually passes the signal through to the child unaltered, it's possible that we would do a syscall restart when we shouldn't have. In particular this breaks the case of debugging a process under a gdb which is being debugged by yet another gdb. gdb uses sigsuspend to wait for SIGCHLD of the inferior, but if gdb itself is being debugged by a top-level gdb we get a ptrace_stop(). The top-level gdb does a PTRACE_CONT with SIGCHLD to let the inferior gdb see the signal. But ptrace_signal_deliver() assumed the debugger would cancel out the signal and therefore did a syscall restart, because the return error was ERESTARTNOHAND. Fix this by simply making ptrace_signal_deliver() a nop, and providing a way for the debugger to control system call restarting properly: 1) Report a "in syscall" software bit in regs->{tstate,psr}. It is set early on in trap entry to a system call and is fully visible to the debugger via ptrace() and regsets. 2) Test this bit right before doing a syscall restart. We have to do a final recheck right after get_signal_to_deliver() in case the debugger cleared the bit during ptrace_stop(). 3) Clear the bit in trap return so we don't accidently try to set that bit in the real register. As a result we also get a ptrace_{is,clear}_syscall() for sparc32 just like sparc64 has. M68K has this same exact bug, and is now the only other user of the ptrace_signal_deliver hook. It needs to be fixed in the same exact way as sparc. Signed-off-by: David S. Miller <davem@davemloft.net>
2008-05-11 17:07:19 +08:00
sethi %hi(PSR_SYSCALL), %g1
be 1f
sparc: Fix debugger syscall restart interactions. So, forever, we've had this ptrace_signal_deliver implementation which tries to handle all of the nasties that can occur when the debugger looks at a process about to take a signal. It's meant to address all of these issues inside of the kernel so that the debugger need not be mindful of such things. Problem is, this doesn't work. The idea was that we should do the syscall restart business first, so that the debugger captures that state. Otherwise, if the debugger for example saves the child's state, makes the child execute something else, then restores the saved state, we won't handle the syscall restart properly because we lose the "we're in a syscall" state. The code here worked for most cases, but if the debugger actually passes the signal through to the child unaltered, it's possible that we would do a syscall restart when we shouldn't have. In particular this breaks the case of debugging a process under a gdb which is being debugged by yet another gdb. gdb uses sigsuspend to wait for SIGCHLD of the inferior, but if gdb itself is being debugged by a top-level gdb we get a ptrace_stop(). The top-level gdb does a PTRACE_CONT with SIGCHLD to let the inferior gdb see the signal. But ptrace_signal_deliver() assumed the debugger would cancel out the signal and therefore did a syscall restart, because the return error was ERESTARTNOHAND. Fix this by simply making ptrace_signal_deliver() a nop, and providing a way for the debugger to control system call restarting properly: 1) Report a "in syscall" software bit in regs->{tstate,psr}. It is set early on in trap entry to a system call and is fully visible to the debugger via ptrace() and regsets. 2) Test this bit right before doing a syscall restart. We have to do a final recheck right after get_signal_to_deliver() in case the debugger cleared the bit during ptrace_stop(). 3) Clear the bit in trap return so we don't accidently try to set that bit in the real register. As a result we also get a ptrace_{is,clear}_syscall() for sparc32 just like sparc64 has. M68K has this same exact bug, and is now the only other user of the ptrace_signal_deliver hook. It needs to be fixed in the same exact way as sparc. Signed-off-by: David S. Miller <davem@davemloft.net>
2008-05-11 17:07:19 +08:00
andn %t_psr, %g1, %t_psr
wr %t_psr, 0x0, %psr
b ret_trap_kernel
nop
1:
ld [%curptr + TI_FLAGS], %g2
andcc %g2, (_TIF_NEED_RESCHED), %g0
be signal_p
nop
call schedule
nop
ld [%curptr + TI_FLAGS], %g2
signal_p:
andcc %g2, _TIF_DO_NOTIFY_RESUME_MASK, %g0
bz,a ret_trap_continue
ld [%sp + STACKFRAME_SZ + PT_PSR], %t_psr
mov %g2, %o2
mov %l5, %o1
call do_notify_resume
add %sp, STACKFRAME_SZ, %o0 ! pt_regs ptr
b signal_p
ld [%curptr + TI_FLAGS], %g2
ret_trap_continue:
sparc: Fix debugger syscall restart interactions. So, forever, we've had this ptrace_signal_deliver implementation which tries to handle all of the nasties that can occur when the debugger looks at a process about to take a signal. It's meant to address all of these issues inside of the kernel so that the debugger need not be mindful of such things. Problem is, this doesn't work. The idea was that we should do the syscall restart business first, so that the debugger captures that state. Otherwise, if the debugger for example saves the child's state, makes the child execute something else, then restores the saved state, we won't handle the syscall restart properly because we lose the "we're in a syscall" state. The code here worked for most cases, but if the debugger actually passes the signal through to the child unaltered, it's possible that we would do a syscall restart when we shouldn't have. In particular this breaks the case of debugging a process under a gdb which is being debugged by yet another gdb. gdb uses sigsuspend to wait for SIGCHLD of the inferior, but if gdb itself is being debugged by a top-level gdb we get a ptrace_stop(). The top-level gdb does a PTRACE_CONT with SIGCHLD to let the inferior gdb see the signal. But ptrace_signal_deliver() assumed the debugger would cancel out the signal and therefore did a syscall restart, because the return error was ERESTARTNOHAND. Fix this by simply making ptrace_signal_deliver() a nop, and providing a way for the debugger to control system call restarting properly: 1) Report a "in syscall" software bit in regs->{tstate,psr}. It is set early on in trap entry to a system call and is fully visible to the debugger via ptrace() and regsets. 2) Test this bit right before doing a syscall restart. We have to do a final recheck right after get_signal_to_deliver() in case the debugger cleared the bit during ptrace_stop(). 3) Clear the bit in trap return so we don't accidently try to set that bit in the real register. As a result we also get a ptrace_{is,clear}_syscall() for sparc32 just like sparc64 has. M68K has this same exact bug, and is now the only other user of the ptrace_signal_deliver hook. It needs to be fixed in the same exact way as sparc. Signed-off-by: David S. Miller <davem@davemloft.net>
2008-05-11 17:07:19 +08:00
sethi %hi(PSR_SYSCALL), %g1
andn %t_psr, %g1, %t_psr
wr %t_psr, 0x0, %psr
WRITE_PAUSE
ld [%curptr + TI_W_SAVED], %twin_tmp1
orcc %g0, %twin_tmp1, %g0
be ret_trap_nobufwins
nop
wr %t_psr, PSR_ET, %psr
WRITE_PAUSE
mov 1, %o1
call try_to_clear_window_buffer
add %sp, STACKFRAME_SZ, %o0
b signal_p
ld [%curptr + TI_FLAGS], %g2
ret_trap_nobufwins:
/* Load up the user's out registers so we can pull
* a window from the stack, if necessary.
*/
LOAD_PT_INS(sp)
/* If there are already live user windows in the
* set we can return from trap safely.
*/
ld [%curptr + TI_UWINMASK], %twin_tmp1
orcc %g0, %twin_tmp1, %g0
bne ret_trap_userwins_ok
nop
/* Calculate new %wim, we have to pull a register
* window from the users stack.
*/
ret_trap_pull_one_window:
rd %wim, %t_wim
sll %t_wim, 0x1, %twin_tmp1
rtrap_patch1: srl %t_wim, 0x7, %glob_tmp
or %glob_tmp, %twin_tmp1, %glob_tmp
rtrap_patch2: and %glob_tmp, 0xff, %glob_tmp
wr %glob_tmp, 0x0, %wim
/* Here comes the architecture specific
* branch to the user stack checking routine
* for return from traps.
*/
b srmmu_rett_stackchk
andcc %fp, 0x7, %g0
ret_trap_userwins_ok:
LOAD_PT_PRIV(sp, t_psr, t_pc, t_npc)
or %t_pc, %t_npc, %g2
andcc %g2, 0x3, %g0
sethi %hi(PSR_SYSCALL), %g2
be 1f
sparc: Fix debugger syscall restart interactions. So, forever, we've had this ptrace_signal_deliver implementation which tries to handle all of the nasties that can occur when the debugger looks at a process about to take a signal. It's meant to address all of these issues inside of the kernel so that the debugger need not be mindful of such things. Problem is, this doesn't work. The idea was that we should do the syscall restart business first, so that the debugger captures that state. Otherwise, if the debugger for example saves the child's state, makes the child execute something else, then restores the saved state, we won't handle the syscall restart properly because we lose the "we're in a syscall" state. The code here worked for most cases, but if the debugger actually passes the signal through to the child unaltered, it's possible that we would do a syscall restart when we shouldn't have. In particular this breaks the case of debugging a process under a gdb which is being debugged by yet another gdb. gdb uses sigsuspend to wait for SIGCHLD of the inferior, but if gdb itself is being debugged by a top-level gdb we get a ptrace_stop(). The top-level gdb does a PTRACE_CONT with SIGCHLD to let the inferior gdb see the signal. But ptrace_signal_deliver() assumed the debugger would cancel out the signal and therefore did a syscall restart, because the return error was ERESTARTNOHAND. Fix this by simply making ptrace_signal_deliver() a nop, and providing a way for the debugger to control system call restarting properly: 1) Report a "in syscall" software bit in regs->{tstate,psr}. It is set early on in trap entry to a system call and is fully visible to the debugger via ptrace() and regsets. 2) Test this bit right before doing a syscall restart. We have to do a final recheck right after get_signal_to_deliver() in case the debugger cleared the bit during ptrace_stop(). 3) Clear the bit in trap return so we don't accidently try to set that bit in the real register. As a result we also get a ptrace_{is,clear}_syscall() for sparc32 just like sparc64 has. M68K has this same exact bug, and is now the only other user of the ptrace_signal_deliver hook. It needs to be fixed in the same exact way as sparc. Signed-off-by: David S. Miller <davem@davemloft.net>
2008-05-11 17:07:19 +08:00
andn %t_psr, %g2, %t_psr
b ret_trap_unaligned_pc
add %sp, STACKFRAME_SZ, %o0
1:
LOAD_PT_YREG(sp, g1)
LOAD_PT_GLOBALS(sp)
wr %t_psr, 0x0, %psr
WRITE_PAUSE
jmp %t_pc
rett %t_npc
ret_trap_unaligned_pc:
ld [%sp + STACKFRAME_SZ + PT_PC], %o1
ld [%sp + STACKFRAME_SZ + PT_NPC], %o2
ld [%sp + STACKFRAME_SZ + PT_PSR], %o3
wr %t_wim, 0x0, %wim ! or else...
wr %t_psr, PSR_ET, %psr
WRITE_PAUSE
call do_memaccess_unaligned
nop
b signal_p
ld [%curptr + TI_FLAGS], %g2
ret_trap_kernel:
/* Will the rett land us in the invalid window? */
mov 2, %g1
sll %g1, %t_psr, %g1
rtrap_patch3: srl %g1, 8, %g2
or %g1, %g2, %g1
rd %wim, %g2
andcc %g2, %g1, %g0
be 1f ! Nope, just return from the trap
sll %g2, 0x1, %g1
/* We have to grab a window before returning. */
rtrap_patch4: srl %g2, 7, %g2
or %g1, %g2, %g1
rtrap_patch5: and %g1, 0xff, %g1
wr %g1, 0x0, %wim
/* Grrr, make sure we load from the right %sp... */
LOAD_PT_ALL(sp, t_psr, t_pc, t_npc, g1)
restore %g0, %g0, %g0
LOAD_WINDOW(sp)
b 2f
save %g0, %g0, %g0
/* Reload the entire frame in case this is from a
* kernel system call or whatever...
*/
1:
LOAD_PT_ALL(sp, t_psr, t_pc, t_npc, g1)
2:
sparc: Fix debugger syscall restart interactions. So, forever, we've had this ptrace_signal_deliver implementation which tries to handle all of the nasties that can occur when the debugger looks at a process about to take a signal. It's meant to address all of these issues inside of the kernel so that the debugger need not be mindful of such things. Problem is, this doesn't work. The idea was that we should do the syscall restart business first, so that the debugger captures that state. Otherwise, if the debugger for example saves the child's state, makes the child execute something else, then restores the saved state, we won't handle the syscall restart properly because we lose the "we're in a syscall" state. The code here worked for most cases, but if the debugger actually passes the signal through to the child unaltered, it's possible that we would do a syscall restart when we shouldn't have. In particular this breaks the case of debugging a process under a gdb which is being debugged by yet another gdb. gdb uses sigsuspend to wait for SIGCHLD of the inferior, but if gdb itself is being debugged by a top-level gdb we get a ptrace_stop(). The top-level gdb does a PTRACE_CONT with SIGCHLD to let the inferior gdb see the signal. But ptrace_signal_deliver() assumed the debugger would cancel out the signal and therefore did a syscall restart, because the return error was ERESTARTNOHAND. Fix this by simply making ptrace_signal_deliver() a nop, and providing a way for the debugger to control system call restarting properly: 1) Report a "in syscall" software bit in regs->{tstate,psr}. It is set early on in trap entry to a system call and is fully visible to the debugger via ptrace() and regsets. 2) Test this bit right before doing a syscall restart. We have to do a final recheck right after get_signal_to_deliver() in case the debugger cleared the bit during ptrace_stop(). 3) Clear the bit in trap return so we don't accidently try to set that bit in the real register. As a result we also get a ptrace_{is,clear}_syscall() for sparc32 just like sparc64 has. M68K has this same exact bug, and is now the only other user of the ptrace_signal_deliver hook. It needs to be fixed in the same exact way as sparc. Signed-off-by: David S. Miller <davem@davemloft.net>
2008-05-11 17:07:19 +08:00
sethi %hi(PSR_SYSCALL), %twin_tmp1
andn %t_psr, %twin_tmp1, %t_psr
wr %t_psr, 0x0, %psr
WRITE_PAUSE
jmp %t_pc
rett %t_npc
ret_trap_user_stack_is_bolixed:
wr %t_wim, 0x0, %wim
wr %t_psr, PSR_ET, %psr
WRITE_PAUSE
call window_ret_fault
add %sp, STACKFRAME_SZ, %o0
b signal_p
ld [%curptr + TI_FLAGS], %g2
.globl srmmu_rett_stackchk
srmmu_rett_stackchk:
bne ret_trap_user_stack_is_bolixed
sethi %hi(PAGE_OFFSET), %g1
cmp %g1, %fp
bleu ret_trap_user_stack_is_bolixed
mov AC_M_SFSR, %g1
LEON_PI(lda [%g1] ASI_LEON_MMUREGS, %g0)
SUN_PI_(lda [%g1] ASI_M_MMUREGS, %g0)
LEON_PI(lda [%g0] ASI_LEON_MMUREGS, %g1)
SUN_PI_(lda [%g0] ASI_M_MMUREGS, %g1)
or %g1, 0x2, %g1
LEON_PI(sta %g1, [%g0] ASI_LEON_MMUREGS)
SUN_PI_(sta %g1, [%g0] ASI_M_MMUREGS)
restore %g0, %g0, %g0
LOAD_WINDOW(sp)
save %g0, %g0, %g0
andn %g1, 0x2, %g1
LEON_PI(sta %g1, [%g0] ASI_LEON_MMUREGS)
SUN_PI_(sta %g1, [%g0] ASI_M_MMUREGS)
mov AC_M_SFAR, %g2
LEON_PI(lda [%g2] ASI_LEON_MMUREGS, %g2)
SUN_PI_(lda [%g2] ASI_M_MMUREGS, %g2)
mov AC_M_SFSR, %g1
LEON_PI(lda [%g1] ASI_LEON_MMUREGS, %g1)
SUN_PI_(lda [%g1] ASI_M_MMUREGS, %g1)
andcc %g1, 0x2, %g0
be ret_trap_userwins_ok
nop
b,a ret_trap_user_stack_is_bolixed