OpenCloudOS-Kernel/drivers/gpu/drm/i915/intel_dpio_phy.c

1104 lines
32 KiB
C
Raw Normal View History

/*
* Copyright © 2014-2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "intel_drv.h"
/**
* DOC: DPIO
*
* VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
* ports. DPIO is the name given to such a display PHY. These PHYs
* don't follow the standard programming model using direct MMIO
* registers, and instead their registers must be accessed trough IOSF
* sideband. VLV has one such PHY for driving ports B and C, and CHV
* adds another PHY for driving port D. Each PHY responds to specific
* IOSF-SB port.
*
* Each display PHY is made up of one or two channels. Each channel
* houses a common lane part which contains the PLL and other common
* logic. CH0 common lane also contains the IOSF-SB logic for the
* Common Register Interface (CRI) ie. the DPIO registers. CRI clock
* must be running when any DPIO registers are accessed.
*
* In addition to having their own registers, the PHYs are also
* controlled through some dedicated signals from the display
* controller. These include PLL reference clock enable, PLL enable,
* and CRI clock selection, for example.
*
* Eeach channel also has two splines (also called data lanes), and
* each spline is made up of one Physical Access Coding Sub-Layer
* (PCS) block and two TX lanes. So each channel has two PCS blocks
* and four TX lanes. The TX lanes are used as DP lanes or TMDS
* data/clock pairs depending on the output type.
*
* Additionally the PHY also contains an AUX lane with AUX blocks
* for each channel. This is used for DP AUX communication, but
* this fact isn't really relevant for the driver since AUX is
* controlled from the display controller side. No DPIO registers
* need to be accessed during AUX communication,
*
* Generally on VLV/CHV the common lane corresponds to the pipe and
* the spline (PCS/TX) corresponds to the port.
*
* For dual channel PHY (VLV/CHV):
*
* pipe A == CMN/PLL/REF CH0
*
* pipe B == CMN/PLL/REF CH1
*
* port B == PCS/TX CH0
*
* port C == PCS/TX CH1
*
* This is especially important when we cross the streams
* ie. drive port B with pipe B, or port C with pipe A.
*
* For single channel PHY (CHV):
*
* pipe C == CMN/PLL/REF CH0
*
* port D == PCS/TX CH0
*
* On BXT the entire PHY channel corresponds to the port. That means
* the PLL is also now associated with the port rather than the pipe,
* and so the clock needs to be routed to the appropriate transcoder.
* Port A PLL is directly connected to transcoder EDP and port B/C
* PLLs can be routed to any transcoder A/B/C.
*
* Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
* digital port D (CHV) or port A (BXT). ::
*
*
* Dual channel PHY (VLV/CHV/BXT)
* ---------------------------------
* | CH0 | CH1 |
* | CMN/PLL/REF | CMN/PLL/REF |
* |---------------|---------------| Display PHY
* | PCS01 | PCS23 | PCS01 | PCS23 |
* |-------|-------|-------|-------|
* |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
* ---------------------------------
* | DDI0 | DDI1 | DP/HDMI ports
* ---------------------------------
*
* Single channel PHY (CHV/BXT)
* -----------------
* | CH0 |
* | CMN/PLL/REF |
* |---------------| Display PHY
* | PCS01 | PCS23 |
* |-------|-------|
* |TX0|TX1|TX2|TX3|
* -----------------
* | DDI2 | DP/HDMI port
* -----------------
*/
/**
* struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
*/
struct bxt_ddi_phy_info {
/**
* @dual_channel: true if this phy has a second channel.
*/
bool dual_channel;
/**
* @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
* Otherwise the GRC value will be copied from the phy indicated by
* this field.
*/
enum dpio_phy rcomp_phy;
/**
* @reset_delay: delay in us to wait before setting the common reset
* bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
*/
int reset_delay;
/**
* @pwron_mask: Mask with the appropriate bit set that would cause the
* punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
*/
u32 pwron_mask;
/**
* @channel: struct containing per channel information.
*/
struct {
/**
* @port: which port maps to this channel.
*/
enum port port;
} channel[2];
};
static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
[DPIO_PHY0] = {
.dual_channel = true,
.rcomp_phy = DPIO_PHY1,
.pwron_mask = BIT(0),
.channel = {
[DPIO_CH0] = { .port = PORT_B },
[DPIO_CH1] = { .port = PORT_C },
}
},
[DPIO_PHY1] = {
.dual_channel = false,
.rcomp_phy = -1,
.pwron_mask = BIT(1),
.channel = {
[DPIO_CH0] = { .port = PORT_A },
}
},
};
static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = {
[DPIO_PHY0] = {
.dual_channel = false,
.rcomp_phy = DPIO_PHY1,
.pwron_mask = BIT(0),
.reset_delay = 20,
.channel = {
[DPIO_CH0] = { .port = PORT_B },
}
},
[DPIO_PHY1] = {
.dual_channel = false,
.rcomp_phy = -1,
.pwron_mask = BIT(3),
.reset_delay = 20,
.channel = {
[DPIO_CH0] = { .port = PORT_A },
}
},
[DPIO_PHY2] = {
.dual_channel = false,
.rcomp_phy = DPIO_PHY1,
.pwron_mask = BIT(1),
.reset_delay = 20,
.channel = {
[DPIO_CH0] = { .port = PORT_C },
}
},
};
static u32 bxt_phy_port_mask(const struct bxt_ddi_phy_info *phy_info)
{
return (phy_info->dual_channel * BIT(phy_info->channel[DPIO_CH1].port)) |
BIT(phy_info->channel[DPIO_CH0].port);
}
static const struct bxt_ddi_phy_info *
bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
{
if (IS_GEMINILAKE(dev_priv)) {
*count = ARRAY_SIZE(glk_ddi_phy_info);
return glk_ddi_phy_info;
} else {
*count = ARRAY_SIZE(bxt_ddi_phy_info);
return bxt_ddi_phy_info;
}
}
static const struct bxt_ddi_phy_info *
bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
{
int count;
const struct bxt_ddi_phy_info *phy_list =
bxt_get_phy_list(dev_priv, &count);
return &phy_list[phy];
}
void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
enum dpio_phy *phy, enum dpio_channel *ch)
{
const struct bxt_ddi_phy_info *phy_info, *phys;
int i, count;
phys = bxt_get_phy_list(dev_priv, &count);
for (i = 0; i < count; i++) {
phy_info = &phys[i];
if (port == phy_info->channel[DPIO_CH0].port) {
*phy = i;
*ch = DPIO_CH0;
return;
}
if (phy_info->dual_channel &&
port == phy_info->channel[DPIO_CH1].port) {
*phy = i;
*ch = DPIO_CH1;
return;
}
}
WARN(1, "PHY not found for PORT %c", port_name(port));
*phy = DPIO_PHY0;
*ch = DPIO_CH0;
}
void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
enum port port, u32 margin, u32 scale,
u32 enable, u32 deemphasis)
{
u32 val;
enum dpio_phy phy;
enum dpio_channel ch;
bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
/*
* While we write to the group register to program all lanes at once we
* can read only lane registers and we pick lanes 0/1 for that.
*/
val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
val = I915_READ(BXT_PORT_TX_DW2_LN0(phy, ch));
val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
val |= margin << MARGIN_000_SHIFT | scale << UNIQ_TRANS_SCALE_SHIFT;
I915_WRITE(BXT_PORT_TX_DW2_GRP(phy, ch), val);
val = I915_READ(BXT_PORT_TX_DW3_LN0(phy, ch));
val &= ~SCALE_DCOMP_METHOD;
if (enable)
val |= SCALE_DCOMP_METHOD;
if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
I915_WRITE(BXT_PORT_TX_DW3_GRP(phy, ch), val);
val = I915_READ(BXT_PORT_TX_DW4_LN0(phy, ch));
val &= ~DE_EMPHASIS;
val |= deemphasis << DEEMPH_SHIFT;
I915_WRITE(BXT_PORT_TX_DW4_GRP(phy, ch), val);
val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
}
bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
enum dpio_phy phy)
{
const struct bxt_ddi_phy_info *phy_info;
enum port port;
phy_info = bxt_get_phy_info(dev_priv, phy);
if (!(I915_READ(BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
return false;
if ((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
(PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
DRM_DEBUG_DRIVER("DDI PHY %d powered, but power hasn't settled\n",
phy);
return false;
}
if (!(I915_READ(BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
DRM_DEBUG_DRIVER("DDI PHY %d powered, but still in reset\n",
phy);
return false;
}
for_each_port_masked(port, bxt_phy_port_mask(phy_info)) {
u32 tmp = I915_READ(BXT_PHY_CTL(port));
if (tmp & BXT_PHY_CMNLANE_POWERDOWN_ACK) {
DRM_DEBUG_DRIVER("DDI PHY %d powered, but common lane "
"for port %c powered down "
"(PHY_CTL %08x)\n",
phy, port_name(port), tmp);
return false;
}
}
return true;
}
static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
{
u32 val = I915_READ(BXT_PORT_REF_DW6(phy));
return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
}
static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
enum dpio_phy phy)
{
if (intel_wait_for_register(dev_priv,
BXT_PORT_REF_DW3(phy),
GRC_DONE, GRC_DONE,
10))
DRM_ERROR("timeout waiting for PHY%d GRC\n", phy);
}
static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
enum dpio_phy phy)
{
const struct bxt_ddi_phy_info *phy_info;
u32 val;
phy_info = bxt_get_phy_info(dev_priv, phy);
if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
/* Still read out the GRC value for state verification */
if (phy_info->rcomp_phy != -1)
dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);
if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
DRM_DEBUG_DRIVER("DDI PHY %d already enabled, "
"won't reprogram it\n", phy);
return;
}
DRM_DEBUG_DRIVER("DDI PHY %d enabled with invalid state, "
"force reprogramming it\n", phy);
}
val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
val |= phy_info->pwron_mask;
I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
/*
* The PHY registers start out inaccessible and respond to reads with
* all 1s. Eventually they become accessible as they power up, then
* the reserved bit will give the default 0. Poll on the reserved bit
* becoming 0 to find when the PHY is accessible.
* HW team confirmed that the time to reach phypowergood status is
* anywhere between 50 us and 100us.
*/
if (wait_for_us(((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
(PHY_RESERVED | PHY_POWER_GOOD)) == PHY_POWER_GOOD), 100)) {
DRM_ERROR("timeout during PHY%d power on\n", phy);
}
/* Program PLL Rcomp code offset */
val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
val &= ~IREF0RC_OFFSET_MASK;
val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
val &= ~IREF1RC_OFFSET_MASK;
val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
/* Program power gating */
val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
SUS_CLK_CONFIG;
I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
if (phy_info->dual_channel) {
val = I915_READ(BXT_PORT_CL2CM_DW6(phy));
val |= DW6_OLDO_DYN_PWR_DOWN_EN;
I915_WRITE(BXT_PORT_CL2CM_DW6(phy), val);
}
if (phy_info->rcomp_phy != -1) {
uint32_t grc_code;
bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);
/*
* PHY0 isn't connected to an RCOMP resistor so copy over
* the corresponding calibrated value from PHY1, and disable
* the automatic calibration on PHY0.
*/
val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv,
phy_info->rcomp_phy);
grc_code = val << GRC_CODE_FAST_SHIFT |
val << GRC_CODE_SLOW_SHIFT |
val;
I915_WRITE(BXT_PORT_REF_DW6(phy), grc_code);
val = I915_READ(BXT_PORT_REF_DW8(phy));
val |= GRC_DIS | GRC_RDY_OVRD;
I915_WRITE(BXT_PORT_REF_DW8(phy), val);
}
if (phy_info->reset_delay)
udelay(phy_info->reset_delay);
val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
val |= COMMON_RESET_DIS;
I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}
void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
{
const struct bxt_ddi_phy_info *phy_info;
uint32_t val;
phy_info = bxt_get_phy_info(dev_priv, phy);
val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
val &= ~COMMON_RESET_DIS;
I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
val &= ~phy_info->pwron_mask;
I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
}
void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
{
const struct bxt_ddi_phy_info *phy_info =
bxt_get_phy_info(dev_priv, phy);
enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
bool was_enabled;
lockdep_assert_held(&dev_priv->power_domains.lock);
if (rcomp_phy != -1) {
was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);
/*
* We need to copy the GRC calibration value from rcomp_phy,
* so make sure it's powered up.
*/
if (!was_enabled)
_bxt_ddi_phy_init(dev_priv, rcomp_phy);
}
_bxt_ddi_phy_init(dev_priv, phy);
if (rcomp_phy != -1 && !was_enabled)
bxt_ddi_phy_uninit(dev_priv, phy_info->rcomp_phy);
}
static bool __printf(6, 7)
__phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
i915_reg_t reg, u32 mask, u32 expected,
const char *reg_fmt, ...)
{
struct va_format vaf;
va_list args;
u32 val;
val = I915_READ(reg);
if ((val & mask) == expected)
return true;
va_start(args, reg_fmt);
vaf.fmt = reg_fmt;
vaf.va = &args;
DRM_DEBUG_DRIVER("DDI PHY %d reg %pV [%08x] state mismatch: "
"current %08x, expected %08x (mask %08x)\n",
phy, &vaf, reg.reg, val, (val & ~mask) | expected,
mask);
va_end(args);
return false;
}
bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
enum dpio_phy phy)
{
const struct bxt_ddi_phy_info *phy_info;
uint32_t mask;
bool ok;
phy_info = bxt_get_phy_info(dev_priv, phy);
#define _CHK(reg, mask, exp, fmt, ...) \
__phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \
## __VA_ARGS__)
if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
return false;
ok = true;
/* PLL Rcomp code offset */
ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
"BXT_PORT_CL1CM_DW9(%d)", phy);
ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
"BXT_PORT_CL1CM_DW10(%d)", phy);
/* Power gating */
mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
"BXT_PORT_CL1CM_DW28(%d)", phy);
if (phy_info->dual_channel)
ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
"BXT_PORT_CL2CM_DW6(%d)", phy);
if (phy_info->rcomp_phy != -1) {
u32 grc_code = dev_priv->bxt_phy_grc;
grc_code = grc_code << GRC_CODE_FAST_SHIFT |
grc_code << GRC_CODE_SLOW_SHIFT |
grc_code;
mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
GRC_CODE_NOM_MASK;
ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
"BXT_PORT_REF_DW6(%d)", phy);
mask = GRC_DIS | GRC_RDY_OVRD;
ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
"BXT_PORT_REF_DW8(%d)", phy);
}
return ok;
#undef _CHK
}
uint8_t
bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
uint8_t lane_count)
{
switch (lane_count) {
case 1:
return 0;
case 2:
return BIT(2) | BIT(0);
case 4:
return BIT(3) | BIT(2) | BIT(0);
default:
MISSING_CASE(lane_count);
return 0;
}
}
void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
uint8_t lane_lat_optim_mask)
{
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
enum port port = dport->port;
enum dpio_phy phy;
enum dpio_channel ch;
int lane;
bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
for (lane = 0; lane < 4; lane++) {
u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));
/*
* Note that on CHV this flag is called UPAR, but has
* the same function.
*/
val &= ~LATENCY_OPTIM;
if (lane_lat_optim_mask & BIT(lane))
val |= LATENCY_OPTIM;
I915_WRITE(BXT_PORT_TX_DW14_LN(phy, ch, lane), val);
}
}
uint8_t
bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
{
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
enum port port = dport->port;
enum dpio_phy phy;
enum dpio_channel ch;
int lane;
uint8_t mask;
bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
mask = 0;
for (lane = 0; lane < 4; lane++) {
u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));
if (val & LATENCY_OPTIM)
mask |= BIT(lane);
}
return mask;
}
void chv_set_phy_signal_level(struct intel_encoder *encoder,
u32 deemph_reg_value, u32 margin_reg_value,
bool uniq_trans_scale)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
enum dpio_channel ch = vlv_dport_to_channel(dport);
enum pipe pipe = intel_crtc->pipe;
u32 val;
int i;
mutex_lock(&dev_priv->sb_lock);
/* Clear calc init */
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
if (intel_crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
}
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
if (intel_crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
}
/* Program swing deemph */
for (i = 0; i < intel_crtc->config->lane_count; i++) {
val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
val &= ~DPIO_SWING_DEEMPH9P5_MASK;
val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
}
/* Program swing margin */
for (i = 0; i < intel_crtc->config->lane_count; i++) {
val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
val &= ~DPIO_SWING_MARGIN000_MASK;
val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
/*
* Supposedly this value shouldn't matter when unique transition
* scale is disabled, but in fact it does matter. Let's just
* always program the same value and hope it's OK.
*/
val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
}
/*
* The document said it needs to set bit 27 for ch0 and bit 26
* for ch1. Might be a typo in the doc.
* For now, for this unique transition scale selection, set bit
* 27 for ch0 and ch1.
*/
for (i = 0; i < intel_crtc->config->lane_count; i++) {
val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
if (uniq_trans_scale)
val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
else
val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
}
/* Start swing calculation */
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
if (intel_crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
}
mutex_unlock(&dev_priv->sb_lock);
}
void chv_data_lane_soft_reset(struct intel_encoder *encoder,
bool reset)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
enum pipe pipe = crtc->pipe;
uint32_t val;
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
if (reset)
val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
else
val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
if (crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
if (reset)
val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
else
val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
}
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
val |= CHV_PCS_REQ_SOFTRESET_EN;
if (reset)
val &= ~DPIO_PCS_CLK_SOFT_RESET;
else
val |= DPIO_PCS_CLK_SOFT_RESET;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
if (crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
val |= CHV_PCS_REQ_SOFTRESET_EN;
if (reset)
val &= ~DPIO_PCS_CLK_SOFT_RESET;
else
val |= DPIO_PCS_CLK_SOFT_RESET;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
}
}
void chv_phy_pre_pll_enable(struct intel_encoder *encoder)
{
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc =
to_intel_crtc(encoder->base.crtc);
enum dpio_channel ch = vlv_dport_to_channel(dport);
enum pipe pipe = intel_crtc->pipe;
unsigned int lane_mask =
intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
u32 val;
/*
* Must trick the second common lane into life.
* Otherwise we can't even access the PLL.
*/
if (ch == DPIO_CH0 && pipe == PIPE_B)
dport->release_cl2_override =
!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
chv_phy_powergate_lanes(encoder, true, lane_mask);
mutex_lock(&dev_priv->sb_lock);
/* Assert data lane reset */
chv_data_lane_soft_reset(encoder, true);
/* program left/right clock distribution */
if (pipe != PIPE_B) {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
if (ch == DPIO_CH0)
val |= CHV_BUFLEFTENA1_FORCE;
if (ch == DPIO_CH1)
val |= CHV_BUFRIGHTENA1_FORCE;
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
} else {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
if (ch == DPIO_CH0)
val |= CHV_BUFLEFTENA2_FORCE;
if (ch == DPIO_CH1)
val |= CHV_BUFRIGHTENA2_FORCE;
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
}
/* program clock channel usage */
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
if (pipe != PIPE_B)
val &= ~CHV_PCS_USEDCLKCHANNEL;
else
val |= CHV_PCS_USEDCLKCHANNEL;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
if (intel_crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
if (pipe != PIPE_B)
val &= ~CHV_PCS_USEDCLKCHANNEL;
else
val |= CHV_PCS_USEDCLKCHANNEL;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
}
/*
* This a a bit weird since generally CL
* matches the pipe, but here we need to
* pick the CL based on the port.
*/
val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
if (pipe != PIPE_B)
val &= ~CHV_CMN_USEDCLKCHANNEL;
else
val |= CHV_CMN_USEDCLKCHANNEL;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
mutex_unlock(&dev_priv->sb_lock);
}
void chv_phy_pre_encoder_enable(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc =
to_intel_crtc(encoder->base.crtc);
enum dpio_channel ch = vlv_dport_to_channel(dport);
int pipe = intel_crtc->pipe;
int data, i, stagger;
u32 val;
mutex_lock(&dev_priv->sb_lock);
/* allow hardware to manage TX FIFO reset source */
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
if (intel_crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
}
/* Program Tx lane latency optimal setting*/
for (i = 0; i < intel_crtc->config->lane_count; i++) {
/* Set the upar bit */
if (intel_crtc->config->lane_count == 1)
data = 0x0;
else
data = (i == 1) ? 0x0 : 0x1;
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
data << DPIO_UPAR_SHIFT);
}
/* Data lane stagger programming */
if (intel_crtc->config->port_clock > 270000)
stagger = 0x18;
else if (intel_crtc->config->port_clock > 135000)
stagger = 0xd;
else if (intel_crtc->config->port_clock > 67500)
stagger = 0x7;
else if (intel_crtc->config->port_clock > 33750)
stagger = 0x4;
else
stagger = 0x2;
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
val |= DPIO_TX2_STAGGER_MASK(0x1f);
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
if (intel_crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
val |= DPIO_TX2_STAGGER_MASK(0x1f);
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
}
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
DPIO_LANESTAGGER_STRAP(stagger) |
DPIO_LANESTAGGER_STRAP_OVRD |
DPIO_TX1_STAGGER_MASK(0x1f) |
DPIO_TX1_STAGGER_MULT(6) |
DPIO_TX2_STAGGER_MULT(0));
if (intel_crtc->config->lane_count > 2) {
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
DPIO_LANESTAGGER_STRAP(stagger) |
DPIO_LANESTAGGER_STRAP_OVRD |
DPIO_TX1_STAGGER_MASK(0x1f) |
DPIO_TX1_STAGGER_MULT(7) |
DPIO_TX2_STAGGER_MULT(5));
}
/* Deassert data lane reset */
chv_data_lane_soft_reset(encoder, false);
mutex_unlock(&dev_priv->sb_lock);
}
void chv_phy_release_cl2_override(struct intel_encoder *encoder)
{
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (dport->release_cl2_override) {
chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
dport->release_cl2_override = false;
}
}
void chv_phy_post_pll_disable(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
u32 val;
mutex_lock(&dev_priv->sb_lock);
/* disable left/right clock distribution */
if (pipe != PIPE_B) {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
} else {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
}
mutex_unlock(&dev_priv->sb_lock);
/*
* Leave the power down bit cleared for at least one
* lane so that chv_powergate_phy_ch() will power
* on something when the channel is otherwise unused.
* When the port is off and the override is removed
* the lanes power down anyway, so otherwise it doesn't
* really matter what the state of power down bits is
* after this.
*/
chv_phy_powergate_lanes(encoder, false, 0x0);
}
void vlv_set_phy_signal_level(struct intel_encoder *encoder,
u32 demph_reg_value, u32 preemph_reg_value,
u32 uniqtranscale_reg_value, u32 tx3_demph)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
enum dpio_channel port = vlv_dport_to_channel(dport);
int pipe = intel_crtc->pipe;
mutex_lock(&dev_priv->sb_lock);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
uniqtranscale_reg_value);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
if (tx3_demph)
vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
mutex_unlock(&dev_priv->sb_lock);
}
void vlv_phy_pre_pll_enable(struct intel_encoder *encoder)
{
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc =
to_intel_crtc(encoder->base.crtc);
enum dpio_channel port = vlv_dport_to_channel(dport);
int pipe = intel_crtc->pipe;
/* Program Tx lane resets to default */
mutex_lock(&dev_priv->sb_lock);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
DPIO_PCS_TX_LANE2_RESET |
DPIO_PCS_TX_LANE1_RESET);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
(1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
DPIO_PCS_CLK_SOFT_RESET);
/* Fix up inter-pair skew failure */
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
mutex_unlock(&dev_priv->sb_lock);
}
void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
enum dpio_channel port = vlv_dport_to_channel(dport);
int pipe = intel_crtc->pipe;
u32 val;
mutex_lock(&dev_priv->sb_lock);
/* Enable clock channels for this port */
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
val = 0;
if (pipe)
val |= (1<<21);
else
val &= ~(1<<21);
val |= 0x001000c4;
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
/* Program lane clock */
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
mutex_unlock(&dev_priv->sb_lock);
}
void vlv_phy_reset_lanes(struct intel_encoder *encoder)
{
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *intel_crtc =
to_intel_crtc(encoder->base.crtc);
enum dpio_channel port = vlv_dport_to_channel(dport);
int pipe = intel_crtc->pipe;
mutex_lock(&dev_priv->sb_lock);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
mutex_unlock(&dev_priv->sb_lock);
}