OpenCloudOS-Kernel/arch/arm/include/asm/highmem.h

42 lines
1.0 KiB
C
Raw Normal View History

#ifndef _ASM_HIGHMEM_H
#define _ASM_HIGHMEM_H
#include <asm/kmap_types.h>
#define PKMAP_BASE (PAGE_OFFSET - PMD_SIZE)
#define LAST_PKMAP PTRS_PER_PTE
#define LAST_PKMAP_MASK (LAST_PKMAP - 1)
#define PKMAP_NR(virt) (((virt) - PKMAP_BASE) >> PAGE_SHIFT)
#define PKMAP_ADDR(nr) (PKMAP_BASE + ((nr) << PAGE_SHIFT))
#define kmap_prot PAGE_KERNEL
ARM: 6007/1: fix highmem with VIPT cache and DMA The VIVT cache of a highmem page is always flushed before the page is unmapped. This cache flush is explicit through flush_cache_kmaps() in flush_all_zero_pkmaps(), or through __cpuc_flush_dcache_area() in kunmap_atomic(). There is also an implicit flush of those highmem pages that were part of a process that just terminated making those pages free as the whole VIVT cache has to be flushed on every task switch. Hence unmapped highmem pages need no cache maintenance in that case. However unmapped pages may still be cached with a VIPT cache because the cache is tagged with physical addresses. There is no need for a whole cache flush during task switching for that reason, and despite the explicit cache flushes in flush_all_zero_pkmaps() and kunmap_atomic(), some highmem pages that were mapped in user space end up still cached even when they become unmapped. So, we do have to perform cache maintenance on those unmapped highmem pages in the context of DMA when using a VIPT cache. Unfortunately, it is not possible to perform that cache maintenance using physical addresses as all the L1 cache maintenance coprocessor functions accept virtual addresses only. Therefore we have no choice but to set up a temporary virtual mapping for that purpose. And of course the explicit cache flushing when unmapping a highmem page on a system with a VIPT cache now can go, which should increase performance. While at it, because the code in __flush_dcache_page() has to be modified anyway, let's also make sure the mapped highmem pages are pinned with kmap_high_get() for the duration of the cache maintenance operation. Because kunmap() does unmap highmem pages lazily, it was reported by Gary King <GKing@nvidia.com> that those pages ended up being unmapped during cache maintenance on SMP causing segmentation faults. Signed-off-by: Nicolas Pitre <nico@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2010-03-30 04:46:02 +08:00
#define flush_cache_kmaps() \
do { \
if (cache_is_vivt()) \
flush_cache_all(); \
} while (0)
extern pte_t *pkmap_page_table;
#define ARCH_NEEDS_KMAP_HIGH_GET
extern void *kmap_high(struct page *page);
extern void *kmap_high_get(struct page *page);
extern void kunmap_high(struct page *page);
ARM: 6007/1: fix highmem with VIPT cache and DMA The VIVT cache of a highmem page is always flushed before the page is unmapped. This cache flush is explicit through flush_cache_kmaps() in flush_all_zero_pkmaps(), or through __cpuc_flush_dcache_area() in kunmap_atomic(). There is also an implicit flush of those highmem pages that were part of a process that just terminated making those pages free as the whole VIVT cache has to be flushed on every task switch. Hence unmapped highmem pages need no cache maintenance in that case. However unmapped pages may still be cached with a VIPT cache because the cache is tagged with physical addresses. There is no need for a whole cache flush during task switching for that reason, and despite the explicit cache flushes in flush_all_zero_pkmaps() and kunmap_atomic(), some highmem pages that were mapped in user space end up still cached even when they become unmapped. So, we do have to perform cache maintenance on those unmapped highmem pages in the context of DMA when using a VIPT cache. Unfortunately, it is not possible to perform that cache maintenance using physical addresses as all the L1 cache maintenance coprocessor functions accept virtual addresses only. Therefore we have no choice but to set up a temporary virtual mapping for that purpose. And of course the explicit cache flushing when unmapping a highmem page on a system with a VIPT cache now can go, which should increase performance. While at it, because the code in __flush_dcache_page() has to be modified anyway, let's also make sure the mapped highmem pages are pinned with kmap_high_get() for the duration of the cache maintenance operation. Because kunmap() does unmap highmem pages lazily, it was reported by Gary King <GKing@nvidia.com> that those pages ended up being unmapped during cache maintenance on SMP causing segmentation faults. Signed-off-by: Nicolas Pitre <nico@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2010-03-30 04:46:02 +08:00
/*
* The following functions are already defined by <linux/highmem.h>
* when CONFIG_HIGHMEM is not set.
*/
#ifdef CONFIG_HIGHMEM
extern void *kmap(struct page *page);
extern void kunmap(struct page *page);
mm: stack based kmap_atomic() Keep the current interface but ignore the KM_type and use a stack based approach. The advantage is that we get rid of crappy code like: #define __KM_PTE \ (in_nmi() ? KM_NMI_PTE : \ in_irq() ? KM_IRQ_PTE : \ KM_PTE0) and in general can stop worrying about what context we're in and what kmap slots might be appropriate for that. The downside is that FRV kmap_atomic() gets more expensive. For now we use a CPP trick suggested by Andrew: #define kmap_atomic(page, args...) __kmap_atomic(page) to avoid having to touch all kmap_atomic() users in a single patch. [ not compiled on: - mn10300: the arch doesn't actually build with highmem to begin with ] [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix up drivers/gpu/drm/i915/intel_overlay.c] Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Chris Metcalf <cmetcalf@tilera.com> Cc: David Howells <dhowells@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: David Miller <davem@davemloft.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Airlie <airlied@linux.ie> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-27 05:21:51 +08:00
extern void *__kmap_atomic(struct page *page);
extern void __kunmap_atomic(void *kvaddr);
extern void *kmap_atomic_pfn(unsigned long pfn);
extern struct page *kmap_atomic_to_page(const void *ptr);
ARM: 6007/1: fix highmem with VIPT cache and DMA The VIVT cache of a highmem page is always flushed before the page is unmapped. This cache flush is explicit through flush_cache_kmaps() in flush_all_zero_pkmaps(), or through __cpuc_flush_dcache_area() in kunmap_atomic(). There is also an implicit flush of those highmem pages that were part of a process that just terminated making those pages free as the whole VIVT cache has to be flushed on every task switch. Hence unmapped highmem pages need no cache maintenance in that case. However unmapped pages may still be cached with a VIPT cache because the cache is tagged with physical addresses. There is no need for a whole cache flush during task switching for that reason, and despite the explicit cache flushes in flush_all_zero_pkmaps() and kunmap_atomic(), some highmem pages that were mapped in user space end up still cached even when they become unmapped. So, we do have to perform cache maintenance on those unmapped highmem pages in the context of DMA when using a VIPT cache. Unfortunately, it is not possible to perform that cache maintenance using physical addresses as all the L1 cache maintenance coprocessor functions accept virtual addresses only. Therefore we have no choice but to set up a temporary virtual mapping for that purpose. And of course the explicit cache flushing when unmapping a highmem page on a system with a VIPT cache now can go, which should increase performance. While at it, because the code in __flush_dcache_page() has to be modified anyway, let's also make sure the mapped highmem pages are pinned with kmap_high_get() for the duration of the cache maintenance operation. Because kunmap() does unmap highmem pages lazily, it was reported by Gary King <GKing@nvidia.com> that those pages ended up being unmapped during cache maintenance on SMP causing segmentation faults. Signed-off-by: Nicolas Pitre <nico@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2010-03-30 04:46:02 +08:00
#endif
#endif