OpenCloudOS-Kernel/arch/x86/pci/acpi.c

426 lines
11 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/init.h>
#include <linux/irq.h>
#include <linux/dmi.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/pci-acpi.h>
#include <asm/numa.h>
#include <asm/pci_x86.h>
struct pci_root_info {
struct acpi_pci_root_info common;
struct pci_sysdata sd;
#ifdef CONFIG_PCI_MMCONFIG
bool mcfg_added;
u8 start_bus;
u8 end_bus;
#endif
};
static bool pci_use_crs = true;
static bool pci_ignore_seg = false;
static int __init set_use_crs(const struct dmi_system_id *id)
{
pci_use_crs = true;
return 0;
}
static int __init set_nouse_crs(const struct dmi_system_id *id)
{
pci_use_crs = false;
return 0;
}
static int __init set_ignore_seg(const struct dmi_system_id *id)
{
printk(KERN_INFO "PCI: %s detected: ignoring ACPI _SEG\n", id->ident);
pci_ignore_seg = true;
return 0;
}
static const struct dmi_system_id pci_crs_quirks[] __initconst = {
/* http://bugzilla.kernel.org/show_bug.cgi?id=14183 */
{
.callback = set_use_crs,
.ident = "IBM System x3800",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
DMI_MATCH(DMI_PRODUCT_NAME, "x3800"),
},
},
x86/PCI: use host bridge _CRS info on ASRock ALiveSATA2-GLAN This DMI quirk turns on "pci=use_crs" for the ALiveSATA2-GLAN because amd_bus.c doesn't handle this system correctly. The system has a single HyperTransport I/O chain, but has two PCI host bridges to buses 00 and 80. amd_bus.c learns the MMIO range associated with buses 00-ff and that this range is routed to the HT chain hosted at node 0, link 0: bus: [00, ff] on node 0 link 0 bus: 00 index 1 [mem 0x80000000-0xfcffffffff] This includes the address space for both bus 00 and bus 80, and amd_bus.c assumes it's all routed to bus 00. We find device 80:01.0, which BIOS left in the middle of that space, but we don't find a bridge from bus 00 to bus 80, so we conclude that 80:01.0 is unreachable from bus 00, and we move it from the original, working, address to something outside the bus 00 aperture, which does not work: pci 0000:80:01.0: reg 10: [mem 0xfebfc000-0xfebfffff 64bit] pci 0000:80:01.0: BAR 0: assigned [mem 0xfd00000000-0xfd00003fff 64bit] The BIOS told us everything we need to know to handle this correctly, so we're better off if we just pay attention, which lets us leave the 80:01.0 device at the original, working, address: ACPI: PCI Root Bridge [PCI0] (domain 0000 [bus 00-7f]) pci_root PNP0A03:00: host bridge window [mem 0x80000000-0xff37ffff] ACPI: PCI Root Bridge [PCI1] (domain 0000 [bus 80-ff]) pci_root PNP0A08:00: host bridge window [mem 0xfebfc000-0xfebfffff] This was a regression between 2.6.33 and 2.6.34. In 2.6.33, amd_bus.c was used only when we found multiple HT chains. 3e3da00c01d050, which enabled amd_bus.c even on systems with a single HT chain, caused this failure. This quirk was written by Graham. If we ever enable "pci=use_crs" for machines from 2006 or earlir, this quirk should be removed. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=16007 Cc: stable@kernel.org Reported-by: Graham Ramsey <ramsey.graham@ntlworld.com> Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2010-07-24 02:53:27 +08:00
/* https://bugzilla.kernel.org/show_bug.cgi?id=16007 */
/* 2006 AMD HT/VIA system with two host bridges */
{
.callback = set_use_crs,
.ident = "ASRock ALiveSATA2-GLAN",
.matches = {
DMI_MATCH(DMI_PRODUCT_NAME, "ALiveSATA2-GLAN"),
},
},
x86/PCI: use host bridge _CRS info on ASUS M2V-MX SE In summary, this DMI quirk uses the _CRS info by default for the ASUS M2V-MX SE by turning on `pci=use_crs` and is similar to the quirk added by commit 2491762cfb47 ("x86/PCI: use host bridge _CRS info on ASRock ALiveSATA2-GLAN") whose commit message should be read for further information. Since commit 3e3da00c01d0 ("x86/pci: AMD one chain system to use pci read out res") Linux gives the following oops: parport0: PC-style at 0x378, irq 7 [PCSPP,TRISTATE] HDA Intel 0000:20:01.0: PCI INT A -> GSI 17 (level, low) -> IRQ 17 HDA Intel 0000:20:01.0: setting latency timer to 64 BUG: unable to handle kernel paging request at ffffc90011c08000 IP: [<ffffffffa0578402>] azx_probe+0x3ad/0x86b [snd_hda_intel] PGD 13781a067 PUD 13781b067 PMD 1300ba067 PTE 800000fd00000173 Oops: 0009 [#1] SMP last sysfs file: /sys/module/snd_pcm/initstate CPU 0 Modules linked in: snd_hda_intel(+) snd_hda_codec snd_hwdep snd_pcm_oss snd_mixer_oss snd_pcm snd_seq_midi snd_rawmidi snd_seq_midi_event tpm_tis tpm snd_seq tpm_bios psmouse parport_pc snd_timer snd_seq_device parport processor evdev snd i2c_viapro thermal_sys amd64_edac_mod k8temp i2c_core soundcore shpchp pcspkr serio_raw asus_atk0110 pci_hotplug edac_core button snd_page_alloc edac_mce_amd ext3 jbd mbcache sha256_generic cryptd aes_x86_64 aes_generic cbc dm_crypt dm_mod raid1 md_mod usbhid hid sg sd_mod crc_t10dif sr_mod cdrom ata_generic uhci_hcd sata_via pata_via libata ehci_hcd usbcore scsi_mod via_rhine mii nls_base [last unloaded: scsi_wait_scan] Pid: 1153, comm: work_for_cpu Not tainted 2.6.37-1-amd64 #1 M2V-MX SE/System Product Name RIP: 0010:[<ffffffffa0578402>] [<ffffffffa0578402>] azx_probe+0x3ad/0x86b [snd_hda_intel] RSP: 0018:ffff88013153fe50 EFLAGS: 00010286 RAX: ffffc90011c08000 RBX: ffff88013029ec00 RCX: 0000000000000006 RDX: 0000000000000000 RSI: 0000000000000246 RDI: 0000000000000246 RBP: ffff88013341d000 R08: 0000000000000000 R09: 0000000000000040 R10: 0000000000000286 R11: 0000000000003731 R12: ffff88013029c400 R13: 0000000000000000 R14: 0000000000000000 R15: ffff88013341d090 FS: 0000000000000000(0000) GS:ffff8800bfc00000(0000) knlGS:00000000f7610ab0 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: ffffc90011c08000 CR3: 0000000132f57000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process work_for_cpu (pid: 1153, threadinfo ffff88013153e000, task ffff8801303c86c0) Stack: 0000000000000005 ffffffff8123ad65 00000000000136c0 ffff88013029c400 ffff8801303c8998 ffff88013341d000 ffff88013341d090 ffff8801322d9dc8 ffff88013341d208 0000000000000000 0000000000000000 ffffffff811ad232 Call Trace: [<ffffffff8123ad65>] ? __pm_runtime_set_status+0x162/0x186 [<ffffffff811ad232>] ? local_pci_probe+0x49/0x92 [<ffffffff8105afc5>] ? do_work_for_cpu+0x0/0x1b [<ffffffff8105afc5>] ? do_work_for_cpu+0x0/0x1b [<ffffffff8105afd0>] ? do_work_for_cpu+0xb/0x1b [<ffffffff8105fd3f>] ? kthread+0x7a/0x82 [<ffffffff8100a824>] ? kernel_thread_helper+0x4/0x10 [<ffffffff8105fcc5>] ? kthread+0x0/0x82 [<ffffffff8100a820>] ? kernel_thread_helper+0x0/0x10 Code: f4 01 00 00 ef 31 f6 48 89 df e8 29 dd ff ff 85 c0 0f 88 2b 03 00 00 48 89 ef e8 b4 39 c3 e0 8b 7b 40 e8 fc 9d b1 e0 48 8b 43 38 <66> 8b 10 66 89 14 24 8b 43 14 83 e8 03 83 f8 01 77 32 31 d2 be RIP [<ffffffffa0578402>] azx_probe+0x3ad/0x86b [snd_hda_intel] RSP <ffff88013153fe50> CR2: ffffc90011c08000 ---[ end trace 8d1f3ebc136437fd ]--- Trusting the ACPI _CRS information (`pci=use_crs`) fixes this problem. $ dmesg | grep -i crs # with the quirk PCI: Using host bridge windows from ACPI; if necessary, use "pci=nocrs" and report a bug The match has to be against the DMI board entries though since the vendor entries are not populated. DMI: System manufacturer System Product Name/M2V-MX SE, BIOS 0304 10/30/2007 This quirk should be removed when `pci=use_crs` is enabled for machines from 2006 or earlier or some other solution is implemented. Using coreboot [1] with this board the problem does not exist but this quirk also does not affect it either. To be safe though the check is tightened to only take effect when the BIOS from American Megatrends is used. 15:13 < ruik> but coreboot does not need that 15:13 < ruik> because i have there only one root bus 15:13 < ruik> the audio is behind a bridge $ sudo dmidecode BIOS Information Vendor: American Megatrends Inc. Version: 0304 Release Date: 10/30/2007 [1] http://www.coreboot.org/ Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=30552 Cc: stable@kernel.org (2.6.34) Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: x86@kernel.org Signed-off-by: Paul Menzel <paulepanter@users.sourceforge.net> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Acked-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-08-31 23:07:10 +08:00
/* https://bugzilla.kernel.org/show_bug.cgi?id=30552 */
/* 2006 AMD HT/VIA system with two host bridges */
{
.callback = set_use_crs,
.ident = "ASUS M2V-MX SE",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
DMI_MATCH(DMI_BOARD_NAME, "M2V-MX SE"),
DMI_MATCH(DMI_BIOS_VENDOR, "American Megatrends Inc."),
},
},
/* https://bugzilla.kernel.org/show_bug.cgi?id=42619 */
{
.callback = set_use_crs,
.ident = "MSI MS-7253",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "MICRO-STAR INTERNATIONAL CO., LTD"),
DMI_MATCH(DMI_BOARD_NAME, "MS-7253"),
DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
},
},
x86/PCI: Use host bridge _CRS info on Foxconn K8M890-8237A The Foxconn K8M890-8237A has two PCI host bridges, and we can't assign resources correctly without the information from _CRS that tells us which address ranges are claimed by which bridge. In the bugs mentioned below, we incorrectly assign a sound card address (this example is from 1033299): bus: 00 index 2 [mem 0x80000000-0xfcffffffff] ACPI: PCI Root Bridge [PCI0] (domain 0000 [bus 00-7f]) pci_root PNP0A08:00: host bridge window [mem 0x80000000-0xbfefffff] (ignored) pci_root PNP0A08:00: host bridge window [mem 0xc0000000-0xdfffffff] (ignored) pci_root PNP0A08:00: host bridge window [mem 0xf0000000-0xfebfffff] (ignored) ACPI: PCI Root Bridge [PCI1] (domain 0000 [bus 80-ff]) pci_root PNP0A08:01: host bridge window [mem 0xbff00000-0xbfffffff] (ignored) pci 0000:80:01.0: [1106:3288] type 0 class 0x000403 pci 0000:80:01.0: reg 10: [mem 0xbfffc000-0xbfffffff 64bit] pci 0000:80:01.0: address space collision: [mem 0xbfffc000-0xbfffffff 64bit] conflicts with PCI Bus #00 [mem 0x80000000-0xfcffffffff] pci 0000:80:01.0: BAR 0: assigned [mem 0xfd00000000-0xfd00003fff 64bit] BUG: unable to handle kernel paging request at ffffc90000378000 IP: [<ffffffffa0345f63>] azx_create+0x37c/0x822 [snd_hda_intel] We assigned 0xfd_0000_0000, but that is not in any of the host bridge windows, and the sound card doesn't work. Turn on pci=use_crs automatically for this system. Link: https://bugs.launchpad.net/ubuntu/+source/alsa-driver/+bug/931368 Link: https://bugs.launchpad.net/ubuntu/+source/alsa-driver/+bug/1033299 Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> CC: stable@vger.kernel.org
2015-06-10 07:54:07 +08:00
/* https://bugs.launchpad.net/ubuntu/+source/alsa-driver/+bug/931368 */
/* https://bugs.launchpad.net/ubuntu/+source/alsa-driver/+bug/1033299 */
{
.callback = set_use_crs,
.ident = "Foxconn K8M890-8237A",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "Foxconn"),
DMI_MATCH(DMI_BOARD_NAME, "K8M890-8237A"),
DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
},
},
/* Now for the blacklist.. */
/* https://bugzilla.redhat.com/show_bug.cgi?id=769657 */
{
.callback = set_nouse_crs,
.ident = "Dell Studio 1557",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "Dell Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "Studio 1557"),
DMI_MATCH(DMI_BIOS_VERSION, "A09"),
},
},
/* https://bugzilla.redhat.com/show_bug.cgi?id=769657 */
{
.callback = set_nouse_crs,
.ident = "Thinkpad SL510",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "LENOVO"),
DMI_MATCH(DMI_BOARD_NAME, "2847DFG"),
DMI_MATCH(DMI_BIOS_VERSION, "6JET85WW (1.43 )"),
},
},
/* https://bugzilla.kernel.org/show_bug.cgi?id=42606 */
{
.callback = set_nouse_crs,
.ident = "Supermicro X8DTH",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
DMI_MATCH(DMI_PRODUCT_NAME, "X8DTH-i/6/iF/6F"),
DMI_MATCH(DMI_BIOS_VERSION, "2.0a"),
},
},
/* https://bugzilla.kernel.org/show_bug.cgi?id=15362 */
{
.callback = set_ignore_seg,
.ident = "HP xw9300",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
DMI_MATCH(DMI_PRODUCT_NAME, "HP xw9300 Workstation"),
},
},
{}
};
void __init pci_acpi_crs_quirks(void)
{
int year = dmi_get_bios_year();
if (year >= 0 && year < 2008 && iomem_resource.end <= 0xffffffff)
pci_use_crs = false;
dmi_check_system(pci_crs_quirks);
/*
* If the user specifies "pci=use_crs" or "pci=nocrs" explicitly, that
* takes precedence over anything we figured out above.
*/
if (pci_probe & PCI_ROOT_NO_CRS)
pci_use_crs = false;
else if (pci_probe & PCI_USE__CRS)
pci_use_crs = true;
printk(KERN_INFO "PCI: %s host bridge windows from ACPI; "
"if necessary, use \"pci=%s\" and report a bug\n",
pci_use_crs ? "Using" : "Ignoring",
pci_use_crs ? "nocrs" : "use_crs");
}
#ifdef CONFIG_PCI_MMCONFIG
static int check_segment(u16 seg, struct device *dev, char *estr)
{
if (seg) {
dev_err(dev,
"%s can't access PCI configuration "
"space under this host bridge.\n",
estr);
return -EIO;
}
/*
* Failure in adding MMCFG information is not fatal,
* just can't access extended configuration space of
* devices under this host bridge.
*/
dev_warn(dev,
"%s can't access extended PCI configuration "
"space under this bridge.\n",
estr);
return 0;
}
static int setup_mcfg_map(struct acpi_pci_root_info *ci)
{
int result, seg;
struct pci_root_info *info;
struct acpi_pci_root *root = ci->root;
struct device *dev = &ci->bridge->dev;
info = container_of(ci, struct pci_root_info, common);
info->start_bus = (u8)root->secondary.start;
info->end_bus = (u8)root->secondary.end;
info->mcfg_added = false;
seg = info->sd.domain;
/* return success if MMCFG is not in use */
if (raw_pci_ext_ops && raw_pci_ext_ops != &pci_mmcfg)
return 0;
if (!(pci_probe & PCI_PROBE_MMCONF))
return check_segment(seg, dev, "MMCONFIG is disabled,");
result = pci_mmconfig_insert(dev, seg, info->start_bus, info->end_bus,
root->mcfg_addr);
if (result == 0) {
/* enable MMCFG if it hasn't been enabled yet */
if (raw_pci_ext_ops == NULL)
raw_pci_ext_ops = &pci_mmcfg;
info->mcfg_added = true;
} else if (result != -EEXIST)
return check_segment(seg, dev,
"fail to add MMCONFIG information,");
return 0;
}
static void teardown_mcfg_map(struct acpi_pci_root_info *ci)
{
struct pci_root_info *info;
info = container_of(ci, struct pci_root_info, common);
if (info->mcfg_added) {
pci_mmconfig_delete(info->sd.domain,
info->start_bus, info->end_bus);
info->mcfg_added = false;
}
}
#else
static int setup_mcfg_map(struct acpi_pci_root_info *ci)
{
return 0;
}
static void teardown_mcfg_map(struct acpi_pci_root_info *ci)
{
}
#endif
static int pci_acpi_root_get_node(struct acpi_pci_root *root)
{
int busnum = root->secondary.start;
struct acpi_device *device = root->device;
int node = acpi_get_node(device->handle);
if (node == NUMA_NO_NODE) {
node = x86_pci_root_bus_node(busnum);
if (node != 0 && node != NUMA_NO_NODE)
dev_info(&device->dev, FW_BUG "no _PXM; falling back to node %d from hardware (may be inconsistent with ACPI node numbers)\n",
node);
}
if (node != NUMA_NO_NODE && !node_online(node))
node = NUMA_NO_NODE;
return node;
}
static int pci_acpi_root_init_info(struct acpi_pci_root_info *ci)
{
return setup_mcfg_map(ci);
}
static void pci_acpi_root_release_info(struct acpi_pci_root_info *ci)
{
teardown_mcfg_map(ci);
kfree(container_of(ci, struct pci_root_info, common));
}
x86/PCI/ACPI: Make all resources except [io 0xcf8-0xcff] available on PCI bus An IO port or MMIO resource assigned to a PCI host bridge may be consumed by the host bridge itself or available to its child bus/devices. The ACPI specification defines a bit (Producer/Consumer) to tell whether the resource is consumed by the host bridge itself, but firmware hasn't used that bit consistently, so we can't rely on it. Before commit 593669c2ac0f ("x86/PCI/ACPI: Use common ACPI resource interfaces to simplify implementation"), arch/x86/pci/acpi.c ignored all IO port resources defined by acpi_resource_io and acpi_resource_fixed_io to filter out IO ports consumed by the host bridge itself. Commit 593669c2ac0f ("x86/PCI/ACPI: Use common ACPI resource interfaces to simplify implementation") started accepting all IO port and MMIO resources, which caused a regression that IO port resources consumed by the host bridge itself became available to its child devices. Then commit 63f1789ec716 ("x86/PCI/ACPI: Ignore resources consumed by host bridge itself") ignored resources consumed by the host bridge itself by checking the IORESOURCE_WINDOW flag, which accidently removed MMIO resources defined by acpi_resource_memory24, acpi_resource_memory32 and acpi_resource_fixed_memory32. On x86 and IA64 platforms, all IO port and MMIO resources are assumed to be available to child bus/devices except one special case: IO port [0xCF8-0xCFF] is consumed by the host bridge itself to access PCI configuration space. So explicitly filter out PCI CFG IO ports[0xCF8-0xCFF]. This solution will also ease the way to consolidate ACPI PCI host bridge common code from x86, ia64 and ARM64. Related ACPI table are archived at: https://bugzilla.kernel.org/show_bug.cgi?id=94221 Related discussions at: http://patchwork.ozlabs.org/patch/461633/ https://lkml.org/lkml/2015/3/29/304 Fixes: 63f1789ec716 (Ignore resources consumed by host bridge itself) Reported-by: Bernhard Thaler <bernhard.thaler@wvnet.at> Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com> Cc: 4.0+ <stable@vger.kernel.org> # 4.0+ Reviewed-by: Bjorn Helgaas <bhelgaas@google.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-04-30 12:41:28 +08:00
/*
* An IO port or MMIO resource assigned to a PCI host bridge may be
* consumed by the host bridge itself or available to its child
* bus/devices. The ACPI specification defines a bit (Producer/Consumer)
* to tell whether the resource is consumed by the host bridge itself,
* but firmware hasn't used that bit consistently, so we can't rely on it.
*
* On x86 and IA64 platforms, all IO port and MMIO resources are assumed
* to be available to child bus/devices except one special case:
* IO port [0xCF8-0xCFF] is consumed by the host bridge itself
* to access PCI configuration space.
*
* So explicitly filter out PCI CFG IO ports[0xCF8-0xCFF].
*/
static bool resource_is_pcicfg_ioport(struct resource *res)
{
return (res->flags & IORESOURCE_IO) &&
res->start == 0xCF8 && res->end == 0xCFF;
}
static int pci_acpi_root_prepare_resources(struct acpi_pci_root_info *ci)
{
struct acpi_device *device = ci->bridge;
int busnum = ci->root->secondary.start;
struct resource_entry *entry, *tmp;
int status;
status = acpi_pci_probe_root_resources(ci);
if (pci_use_crs) {
resource_list_for_each_entry_safe(entry, tmp, &ci->resources)
if (resource_is_pcicfg_ioport(entry->res))
resource_list_destroy_entry(entry);
return status;
}
resource_list_for_each_entry_safe(entry, tmp, &ci->resources) {
dev_printk(KERN_DEBUG, &device->dev,
"host bridge window %pR (ignored)\n", entry->res);
resource_list_destroy_entry(entry);
}
x86_pci_root_bus_resources(busnum, &ci->resources);
return 0;
}
static struct acpi_pci_root_ops acpi_pci_root_ops = {
.pci_ops = &pci_root_ops,
.init_info = pci_acpi_root_init_info,
.release_info = pci_acpi_root_release_info,
.prepare_resources = pci_acpi_root_prepare_resources,
};
struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
{
int domain = root->segment;
int busnum = root->secondary.start;
int node = pci_acpi_root_get_node(root);
struct pci_bus *bus;
if (pci_ignore_seg)
root->segment = domain = 0;
if (domain && !pci_domains_supported) {
printk(KERN_WARNING "pci_bus %04x:%02x: "
"ignored (multiple domains not supported)\n",
domain, busnum);
return NULL;
}
bus = pci_find_bus(domain, busnum);
if (bus) {
/*
* If the desired bus has been scanned already, replace
* its bus->sysdata.
*/
struct pci_sysdata sd = {
.domain = domain,
.node = node,
.companion = root->device
};
memcpy(bus->sysdata, &sd, sizeof(sd));
} else {
struct pci_root_info *info;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
dev_err(&root->device->dev,
"pci_bus %04x:%02x: ignored (out of memory)\n",
domain, busnum);
else {
info->sd.domain = domain;
info->sd.node = node;
info->sd.companion = root->device;
bus = acpi_pci_root_create(root, &acpi_pci_root_ops,
&info->common, &info->sd);
}
}
PCI: Set PCI-E Max Payload Size on fabric On a given PCI-E fabric, each device, bridge, and root port can have a different PCI-E maximum payload size. There is a sizable performance boost for having the largest possible maximum payload size on each PCI-E device. However, if improperly configured, fatal bus errors can occur. Thus, it is important to ensure that PCI-E payloads sends by a device are never larger than the MPS setting of all devices on the way to the destination. This can be achieved two ways: - A conservative approach is to use the smallest common denominator of the entire tree below a root complex for every device on that fabric. This means for example that having a 128 bytes MPS USB controller on one leg of a switch will dramatically reduce performances of a video card or 10GE adapter on another leg of that same switch. It also means that any hierarchy supporting hotplug slots (including expresscard or thunderbolt I suppose, dbl check that) will have to be entirely clamped to 128 bytes since we cannot predict what will be plugged into those slots, and we cannot change the MPS on a "live" system. - A more optimal way is possible, if it falls within a couple of constraints: * The top-level host bridge will never generate packets larger than the smallest TLP (or if it can be controlled independently from its MPS at least) * The device will never generate packets larger than MPS (which can be configured via MRRS) * No support of direct PCI-E <-> PCI-E transfers between devices without some additional code to specifically deal with that case Then we can use an approach that basically ignores downstream requests and focuses exclusively on upstream requests. In that case, all we need to care about is that a device MPS is no larger than its parent MPS, which allows us to keep all switches/bridges to the max MPS supported by their parent and eventually the PHB. In this case, your USB controller would no longer "starve" your 10GE Ethernet and your hotplug slots won't affect your global MPS. Additionally, the hotplugged devices themselves can be configured to a larger MPS up to the value configured in the hotplug bridge. To choose between the two available options, two PCI kernel boot args have been added to the PCI calls. "pcie_bus_safe" will provide the former behavior, while "pcie_bus_perf" will perform the latter behavior. By default, the latter behavior is used. NOTE: due to the location of the enablement, each arch will need to add calls to this function. This patch only enables x86. This patch includes a number of changes recommended by Benjamin Herrenschmidt. Tested-by: Jordan_Hargrave@dell.com Signed-off-by: Jon Mason <mason@myri.com> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2011-07-21 04:20:54 +08:00
/* After the PCI-E bus has been walked and all devices discovered,
* configure any settings of the fabric that might be necessary.
*/
if (bus) {
struct pci_bus *child;
list_for_each_entry(child, &bus->children, node)
pcie_bus_configure_settings(child);
PCI: Set PCI-E Max Payload Size on fabric On a given PCI-E fabric, each device, bridge, and root port can have a different PCI-E maximum payload size. There is a sizable performance boost for having the largest possible maximum payload size on each PCI-E device. However, if improperly configured, fatal bus errors can occur. Thus, it is important to ensure that PCI-E payloads sends by a device are never larger than the MPS setting of all devices on the way to the destination. This can be achieved two ways: - A conservative approach is to use the smallest common denominator of the entire tree below a root complex for every device on that fabric. This means for example that having a 128 bytes MPS USB controller on one leg of a switch will dramatically reduce performances of a video card or 10GE adapter on another leg of that same switch. It also means that any hierarchy supporting hotplug slots (including expresscard or thunderbolt I suppose, dbl check that) will have to be entirely clamped to 128 bytes since we cannot predict what will be plugged into those slots, and we cannot change the MPS on a "live" system. - A more optimal way is possible, if it falls within a couple of constraints: * The top-level host bridge will never generate packets larger than the smallest TLP (or if it can be controlled independently from its MPS at least) * The device will never generate packets larger than MPS (which can be configured via MRRS) * No support of direct PCI-E <-> PCI-E transfers between devices without some additional code to specifically deal with that case Then we can use an approach that basically ignores downstream requests and focuses exclusively on upstream requests. In that case, all we need to care about is that a device MPS is no larger than its parent MPS, which allows us to keep all switches/bridges to the max MPS supported by their parent and eventually the PHB. In this case, your USB controller would no longer "starve" your 10GE Ethernet and your hotplug slots won't affect your global MPS. Additionally, the hotplugged devices themselves can be configured to a larger MPS up to the value configured in the hotplug bridge. To choose between the two available options, two PCI kernel boot args have been added to the PCI calls. "pcie_bus_safe" will provide the former behavior, while "pcie_bus_perf" will perform the latter behavior. By default, the latter behavior is used. NOTE: due to the location of the enablement, each arch will need to add calls to this function. This patch only enables x86. This patch includes a number of changes recommended by Benjamin Herrenschmidt. Tested-by: Jordan_Hargrave@dell.com Signed-off-by: Jon Mason <mason@myri.com> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2011-07-21 04:20:54 +08:00
}
return bus;
}
ACPI / PCI: Set root bridge ACPI handle in advance The ACPI handles of PCI root bridges need to be known to acpi_bind_one(), so that it can create the appropriate "firmware_node" and "physical_node" files for them, but currently the way it gets to know those handles is not exactly straightforward (to put it lightly). This is how it works, roughly: 1. acpi_bus_scan() finds the handle of a PCI root bridge, creates a struct acpi_device object for it and passes that object to acpi_pci_root_add(). 2. acpi_pci_root_add() creates a struct acpi_pci_root object, populates its "device" field with its argument's address (device->handle is the ACPI handle found in step 1). 3. The struct acpi_pci_root object created in step 2 is passed to pci_acpi_scan_root() and used to get resources that are passed to pci_create_root_bus(). 4. pci_create_root_bus() creates a struct pci_host_bridge object and passes its "dev" member to device_register(). 5. platform_notify(), which for systems with ACPI is set to acpi_platform_notify(), is called. So far, so good. Now it starts to be "interesting". 6. acpi_find_bridge_device() is used to find the ACPI handle of the given device (which is the PCI root bridge) and executes acpi_pci_find_root_bridge(), among other things, for the given device object. 7. acpi_pci_find_root_bridge() uses the name (sic!) of the given device object to extract the segment and bus numbers of the PCI root bridge and passes them to acpi_get_pci_rootbridge_handle(). 8. acpi_get_pci_rootbridge_handle() browses the list of ACPI PCI root bridges and finds the one that matches the given segment and bus numbers. Its handle is then used to initialize the ACPI handle of the PCI root bridge's device object by acpi_bind_one(). However, this is *exactly* the ACPI handle we started with in step 1. Needless to say, this is quite embarassing, but it may be avoided thanks to commit f3fd0c8 (ACPI: Allow ACPI handles of devices to be initialized in advance), which makes it possible to initialize the ACPI handle of a device before passing it to device_register(). Accordingly, add a new __weak routine, pcibios_root_bridge_prepare(), defaulting to an empty implementation that can be replaced by the interested architecutres (x86 and ia64 at the moment) with functions that will set the root bridge's ACPI handle before its dev member is passed to device_register(). Make both x86 and ia64 provide such implementations of pcibios_root_bridge_prepare() and remove acpi_pci_find_root_bridge() and acpi_get_pci_rootbridge_handle() that aren't necessary any more. Included is a fix for breakage on systems with non-ACPI PCI host bridges from Bjorn Helgaas. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
2013-01-10 05:33:37 +08:00
int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
{
/*
* We pass NULL as parent to pci_create_root_bus(), so if it is not NULL
* here, pci_create_root_bus() has been called by someone else and
* sysdata is likely to be different from what we expect. Let it go in
* that case.
*/
if (!bridge->dev.parent) {
struct pci_sysdata *sd = bridge->bus->sysdata;
ACPI_COMPANION_SET(&bridge->dev, sd->companion);
}
ACPI / PCI: Set root bridge ACPI handle in advance The ACPI handles of PCI root bridges need to be known to acpi_bind_one(), so that it can create the appropriate "firmware_node" and "physical_node" files for them, but currently the way it gets to know those handles is not exactly straightforward (to put it lightly). This is how it works, roughly: 1. acpi_bus_scan() finds the handle of a PCI root bridge, creates a struct acpi_device object for it and passes that object to acpi_pci_root_add(). 2. acpi_pci_root_add() creates a struct acpi_pci_root object, populates its "device" field with its argument's address (device->handle is the ACPI handle found in step 1). 3. The struct acpi_pci_root object created in step 2 is passed to pci_acpi_scan_root() and used to get resources that are passed to pci_create_root_bus(). 4. pci_create_root_bus() creates a struct pci_host_bridge object and passes its "dev" member to device_register(). 5. platform_notify(), which for systems with ACPI is set to acpi_platform_notify(), is called. So far, so good. Now it starts to be "interesting". 6. acpi_find_bridge_device() is used to find the ACPI handle of the given device (which is the PCI root bridge) and executes acpi_pci_find_root_bridge(), among other things, for the given device object. 7. acpi_pci_find_root_bridge() uses the name (sic!) of the given device object to extract the segment and bus numbers of the PCI root bridge and passes them to acpi_get_pci_rootbridge_handle(). 8. acpi_get_pci_rootbridge_handle() browses the list of ACPI PCI root bridges and finds the one that matches the given segment and bus numbers. Its handle is then used to initialize the ACPI handle of the PCI root bridge's device object by acpi_bind_one(). However, this is *exactly* the ACPI handle we started with in step 1. Needless to say, this is quite embarassing, but it may be avoided thanks to commit f3fd0c8 (ACPI: Allow ACPI handles of devices to be initialized in advance), which makes it possible to initialize the ACPI handle of a device before passing it to device_register(). Accordingly, add a new __weak routine, pcibios_root_bridge_prepare(), defaulting to an empty implementation that can be replaced by the interested architecutres (x86 and ia64 at the moment) with functions that will set the root bridge's ACPI handle before its dev member is passed to device_register(). Make both x86 and ia64 provide such implementations of pcibios_root_bridge_prepare() and remove acpi_pci_find_root_bridge() and acpi_get_pci_rootbridge_handle() that aren't necessary any more. Included is a fix for breakage on systems with non-ACPI PCI host bridges from Bjorn Helgaas. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
2013-01-10 05:33:37 +08:00
return 0;
}
int __init pci_acpi_init(void)
{
struct pci_dev *dev = NULL;
if (acpi_noirq)
return -ENODEV;
printk(KERN_INFO "PCI: Using ACPI for IRQ routing\n");
acpi_irq_penalty_init();
pcibios_enable_irq = acpi_pci_irq_enable;
pcibios_disable_irq = acpi_pci_irq_disable;
x86_init.pci.init_irq = x86_init_noop;
if (pci_routeirq) {
/*
* PCI IRQ routing is set up by pci_enable_device(), but we
* also do it here in case there are still broken drivers that
* don't use pci_enable_device().
*/
printk(KERN_INFO "PCI: Routing PCI interrupts for all devices because \"pci=routeirq\" specified\n");
for_each_pci_dev(dev)
acpi_pci_irq_enable(dev);
}
return 0;
}