OpenCloudOS-Kernel/drivers/media/platform/ti-vpe/sc.h

212 lines
6.0 KiB
C
Raw Normal View History

/*
* Copyright (c) 2013 Texas Instruments Inc.
*
* David Griego, <dagriego@biglakesoftware.com>
* Dale Farnsworth, <dale@farnsworth.org>
* Archit Taneja, <archit@ti.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*/
#ifndef TI_SC_H
#define TI_SC_H
/* Scaler regs */
#define CFG_SC0 0x0
#define CFG_INTERLACE_O (1 << 0)
#define CFG_LINEAR (1 << 1)
#define CFG_SC_BYPASS (1 << 2)
#define CFG_INVT_FID (1 << 3)
#define CFG_USE_RAV (1 << 4)
#define CFG_ENABLE_EV (1 << 5)
#define CFG_AUTO_HS (1 << 6)
#define CFG_DCM_2X (1 << 7)
#define CFG_DCM_4X (1 << 8)
#define CFG_HP_BYPASS (1 << 9)
#define CFG_INTERLACE_I (1 << 10)
#define CFG_ENABLE_SIN2_VER_INTP (1 << 11)
#define CFG_Y_PK_EN (1 << 14)
#define CFG_TRIM (1 << 15)
#define CFG_SELFGEN_FID (1 << 16)
#define CFG_SC1 0x4
#define CFG_ROW_ACC_INC_MASK 0x07ffffff
#define CFG_ROW_ACC_INC_SHIFT 0
#define CFG_SC2 0x08
#define CFG_ROW_ACC_OFFSET_MASK 0x0fffffff
#define CFG_ROW_ACC_OFFSET_SHIFT 0
#define CFG_SC3 0x0c
#define CFG_ROW_ACC_OFFSET_B_MASK 0x0fffffff
#define CFG_ROW_ACC_OFFSET_B_SHIFT 0
#define CFG_SC4 0x10
#define CFG_TAR_H_MASK 0x07ff
#define CFG_TAR_H_SHIFT 0
#define CFG_TAR_W_MASK 0x07ff
#define CFG_TAR_W_SHIFT 12
#define CFG_LIN_ACC_INC_U_MASK 0x07
#define CFG_LIN_ACC_INC_U_SHIFT 24
#define CFG_NLIN_ACC_INIT_U_MASK 0x07
#define CFG_NLIN_ACC_INIT_U_SHIFT 28
#define CFG_SC5 0x14
#define CFG_SRC_H_MASK 0x07ff
#define CFG_SRC_H_SHIFT 0
#define CFG_SRC_W_MASK 0x07ff
#define CFG_SRC_W_SHIFT 12
#define CFG_NLIN_ACC_INC_U_MASK 0x07
#define CFG_NLIN_ACC_INC_U_SHIFT 24
#define CFG_SC6 0x18
#define CFG_ROW_ACC_INIT_RAV_MASK 0x03ff
#define CFG_ROW_ACC_INIT_RAV_SHIFT 0
#define CFG_ROW_ACC_INIT_RAV_B_MASK 0x03ff
#define CFG_ROW_ACC_INIT_RAV_B_SHIFT 10
#define CFG_SC8 0x20
#define CFG_NLIN_LEFT_MASK 0x07ff
#define CFG_NLIN_LEFT_SHIFT 0
#define CFG_NLIN_RIGHT_MASK 0x07ff
#define CFG_NLIN_RIGHT_SHIFT 12
#define CFG_SC9 0x24
#define CFG_LIN_ACC_INC CFG_SC9
#define CFG_SC10 0x28
#define CFG_NLIN_ACC_INIT CFG_SC10
#define CFG_SC11 0x2c
#define CFG_NLIN_ACC_INC CFG_SC11
#define CFG_SC12 0x30
#define CFG_COL_ACC_OFFSET_MASK 0x01ffffff
#define CFG_COL_ACC_OFFSET_SHIFT 0
#define CFG_SC13 0x34
#define CFG_SC_FACTOR_RAV_MASK 0xff
#define CFG_SC_FACTOR_RAV_SHIFT 0
#define CFG_CHROMA_INTP_THR_MASK 0x03ff
#define CFG_CHROMA_INTP_THR_SHIFT 12
#define CFG_DELTA_CHROMA_THR_MASK 0x0f
#define CFG_DELTA_CHROMA_THR_SHIFT 24
#define CFG_SC17 0x44
#define CFG_EV_THR_MASK 0x03ff
#define CFG_EV_THR_SHIFT 12
#define CFG_DELTA_LUMA_THR_MASK 0x0f
#define CFG_DELTA_LUMA_THR_SHIFT 24
#define CFG_DELTA_EV_THR_MASK 0x0f
#define CFG_DELTA_EV_THR_SHIFT 28
#define CFG_SC18 0x48
#define CFG_HS_FACTOR_MASK 0x03ff
#define CFG_HS_FACTOR_SHIFT 0
#define CFG_CONF_DEFAULT_MASK 0x01ff
#define CFG_CONF_DEFAULT_SHIFT 16
#define CFG_SC19 0x4c
#define CFG_HPF_COEFF0_MASK 0xff
#define CFG_HPF_COEFF0_SHIFT 0
#define CFG_HPF_COEFF1_MASK 0xff
#define CFG_HPF_COEFF1_SHIFT 8
#define CFG_HPF_COEFF2_MASK 0xff
#define CFG_HPF_COEFF2_SHIFT 16
#define CFG_HPF_COEFF3_MASK 0xff
#define CFG_HPF_COEFF3_SHIFT 23
#define CFG_SC20 0x50
#define CFG_HPF_COEFF4_MASK 0xff
#define CFG_HPF_COEFF4_SHIFT 0
#define CFG_HPF_COEFF5_MASK 0xff
#define CFG_HPF_COEFF5_SHIFT 8
#define CFG_HPF_NORM_SHIFT_MASK 0x07
#define CFG_HPF_NORM_SHIFT_SHIFT 16
#define CFG_NL_LIMIT_MASK 0x1ff
#define CFG_NL_LIMIT_SHIFT 20
#define CFG_SC21 0x54
#define CFG_NL_LO_THR_MASK 0x01ff
#define CFG_NL_LO_THR_SHIFT 0
#define CFG_NL_LO_SLOPE_MASK 0xff
#define CFG_NL_LO_SLOPE_SHIFT 16
#define CFG_SC22 0x58
#define CFG_NL_HI_THR_MASK 0x01ff
#define CFG_NL_HI_THR_SHIFT 0
#define CFG_NL_HI_SLOPE_SH_MASK 0x07
#define CFG_NL_HI_SLOPE_SH_SHIFT 16
#define CFG_SC23 0x5c
#define CFG_GRADIENT_THR_MASK 0x07ff
#define CFG_GRADIENT_THR_SHIFT 0
#define CFG_GRADIENT_THR_RANGE_MASK 0x0f
#define CFG_GRADIENT_THR_RANGE_SHIFT 12
#define CFG_MIN_GY_THR_MASK 0xff
#define CFG_MIN_GY_THR_SHIFT 16
#define CFG_MIN_GY_THR_RANGE_MASK 0x0f
#define CFG_MIN_GY_THR_RANGE_SHIFT 28
#define CFG_SC24 0x60
#define CFG_ORG_H_MASK 0x07ff
#define CFG_ORG_H_SHIFT 0
#define CFG_ORG_W_MASK 0x07ff
#define CFG_ORG_W_SHIFT 16
#define CFG_SC25 0x64
#define CFG_OFF_H_MASK 0x07ff
#define CFG_OFF_H_SHIFT 0
#define CFG_OFF_W_MASK 0x07ff
#define CFG_OFF_W_SHIFT 16
[media] v4l: ti-vpe: support loading of scaler coefficients The SC block in VPE/VIP contains a SRAM within it. This internal memory requires to be loaded with appropriate scaler coefficients from a contiguous block of memory through VPDMA. The horizontal and vertical scaler each require 2 sets of scaler coefficients for luma and chroma scaling. The horizontal polyphase scaler requires coefficients for a 32 phase and 8 tap filter. Similarly, the vertical scaler requires coefficients for a 5 tap filter. The choice of the scaler coefficients depends on the scaling ratio. Add coefficient tables for different scaling ratios in sc_coeffs.h. In the case of horizontal downscaling, we need to consider the change in ratio caused by decimation performed by the horizontal scaler. In order to load the scaler coefficients via VPDMA, a configuration descriptor is used in block mode. The payload for the descriptor is the scaler coefficients copied to memory. Coefficients for each phase have to be placed in memory in a particular order understood by the scaler hardware. The choice of the scaler coefficients, and the loading of the coefficients from our tables to a contiguous buffer is managed by the functions sc_set_hs_coefficients and sc_set_vs_coefficients. The sc_data handle is now added with some parameters to describe the state of the coefficients loaded in the SC block. 'loaded_coeff_h' and 'loaded_coeff_v' hold the address of the last dma buffer which was used by VPDMA to copy coefficients. This information can be used by a vpe mem-to-mem context to decide whether it should load coefficients or not. 'hs_index' and 'vs_index' provide some optimization by preventing loading of coefficients if the scaling ratio didn't change between 2 contexts. 'load_coeff_h' and 'load_coeff_v' tell the vpe/vip driver whether we need to load the coefficients through VPDMA or not. Signed-off-by: Archit Taneja <archit@ti.com> Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2013-12-12 16:35:58 +08:00
/* number of phases supported by the polyphase scalers */
#define SC_NUM_PHASES 32
/* number of taps used by horizontal polyphase scaler */
#define SC_H_NUM_TAPS 7
/* number of taps used by vertical polyphase scaler */
#define SC_V_NUM_TAPS 5
/* number of taps expected by the scaler in it's coefficient memory */
#define SC_NUM_TAPS_MEM_ALIGN 8
/* Maximum frame width the scaler can handle (in pixels) */
#define SC_MAX_PIXEL_WIDTH 2047
/* Maximum frame height the scaler can handle (in lines) */
#define SC_MAX_PIXEL_HEIGHT 2047
[media] v4l: ti-vpe: support loading of scaler coefficients The SC block in VPE/VIP contains a SRAM within it. This internal memory requires to be loaded with appropriate scaler coefficients from a contiguous block of memory through VPDMA. The horizontal and vertical scaler each require 2 sets of scaler coefficients for luma and chroma scaling. The horizontal polyphase scaler requires coefficients for a 32 phase and 8 tap filter. Similarly, the vertical scaler requires coefficients for a 5 tap filter. The choice of the scaler coefficients depends on the scaling ratio. Add coefficient tables for different scaling ratios in sc_coeffs.h. In the case of horizontal downscaling, we need to consider the change in ratio caused by decimation performed by the horizontal scaler. In order to load the scaler coefficients via VPDMA, a configuration descriptor is used in block mode. The payload for the descriptor is the scaler coefficients copied to memory. Coefficients for each phase have to be placed in memory in a particular order understood by the scaler hardware. The choice of the scaler coefficients, and the loading of the coefficients from our tables to a contiguous buffer is managed by the functions sc_set_hs_coefficients and sc_set_vs_coefficients. The sc_data handle is now added with some parameters to describe the state of the coefficients loaded in the SC block. 'loaded_coeff_h' and 'loaded_coeff_v' hold the address of the last dma buffer which was used by VPDMA to copy coefficients. This information can be used by a vpe mem-to-mem context to decide whether it should load coefficients or not. 'hs_index' and 'vs_index' provide some optimization by preventing loading of coefficients if the scaling ratio didn't change between 2 contexts. 'load_coeff_h' and 'load_coeff_v' tell the vpe/vip driver whether we need to load the coefficients through VPDMA or not. Signed-off-by: Archit Taneja <archit@ti.com> Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2013-12-12 16:35:58 +08:00
/*
* coefficient memory size in bytes:
* num phases x num sets(luma and chroma) x num taps(aligned) x coeff size
*/
#define SC_COEF_SRAM_SIZE (SC_NUM_PHASES * 2 * SC_NUM_TAPS_MEM_ALIGN * 2)
struct sc_data {
void __iomem *base;
struct resource *res;
[media] v4l: ti-vpe: support loading of scaler coefficients The SC block in VPE/VIP contains a SRAM within it. This internal memory requires to be loaded with appropriate scaler coefficients from a contiguous block of memory through VPDMA. The horizontal and vertical scaler each require 2 sets of scaler coefficients for luma and chroma scaling. The horizontal polyphase scaler requires coefficients for a 32 phase and 8 tap filter. Similarly, the vertical scaler requires coefficients for a 5 tap filter. The choice of the scaler coefficients depends on the scaling ratio. Add coefficient tables for different scaling ratios in sc_coeffs.h. In the case of horizontal downscaling, we need to consider the change in ratio caused by decimation performed by the horizontal scaler. In order to load the scaler coefficients via VPDMA, a configuration descriptor is used in block mode. The payload for the descriptor is the scaler coefficients copied to memory. Coefficients for each phase have to be placed in memory in a particular order understood by the scaler hardware. The choice of the scaler coefficients, and the loading of the coefficients from our tables to a contiguous buffer is managed by the functions sc_set_hs_coefficients and sc_set_vs_coefficients. The sc_data handle is now added with some parameters to describe the state of the coefficients loaded in the SC block. 'loaded_coeff_h' and 'loaded_coeff_v' hold the address of the last dma buffer which was used by VPDMA to copy coefficients. This information can be used by a vpe mem-to-mem context to decide whether it should load coefficients or not. 'hs_index' and 'vs_index' provide some optimization by preventing loading of coefficients if the scaling ratio didn't change between 2 contexts. 'load_coeff_h' and 'load_coeff_v' tell the vpe/vip driver whether we need to load the coefficients through VPDMA or not. Signed-off-by: Archit Taneja <archit@ti.com> Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2013-12-12 16:35:58 +08:00
dma_addr_t loaded_coeff_h; /* loaded h coeffs in SC */
dma_addr_t loaded_coeff_v; /* loaded v coeffs in SC */
bool load_coeff_h; /* have new h SC coeffs */
bool load_coeff_v; /* have new v SC coeffs */
struct platform_device *pdev;
};
void sc_dump_regs(struct sc_data *sc);
[media] v4l: ti-vpe: support loading of scaler coefficients The SC block in VPE/VIP contains a SRAM within it. This internal memory requires to be loaded with appropriate scaler coefficients from a contiguous block of memory through VPDMA. The horizontal and vertical scaler each require 2 sets of scaler coefficients for luma and chroma scaling. The horizontal polyphase scaler requires coefficients for a 32 phase and 8 tap filter. Similarly, the vertical scaler requires coefficients for a 5 tap filter. The choice of the scaler coefficients depends on the scaling ratio. Add coefficient tables for different scaling ratios in sc_coeffs.h. In the case of horizontal downscaling, we need to consider the change in ratio caused by decimation performed by the horizontal scaler. In order to load the scaler coefficients via VPDMA, a configuration descriptor is used in block mode. The payload for the descriptor is the scaler coefficients copied to memory. Coefficients for each phase have to be placed in memory in a particular order understood by the scaler hardware. The choice of the scaler coefficients, and the loading of the coefficients from our tables to a contiguous buffer is managed by the functions sc_set_hs_coefficients and sc_set_vs_coefficients. The sc_data handle is now added with some parameters to describe the state of the coefficients loaded in the SC block. 'loaded_coeff_h' and 'loaded_coeff_v' hold the address of the last dma buffer which was used by VPDMA to copy coefficients. This information can be used by a vpe mem-to-mem context to decide whether it should load coefficients or not. 'hs_index' and 'vs_index' provide some optimization by preventing loading of coefficients if the scaling ratio didn't change between 2 contexts. 'load_coeff_h' and 'load_coeff_v' tell the vpe/vip driver whether we need to load the coefficients through VPDMA or not. Signed-off-by: Archit Taneja <archit@ti.com> Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2013-12-12 16:35:58 +08:00
void sc_set_hs_coeffs(struct sc_data *sc, void *addr, unsigned int src_w,
unsigned int dst_w);
void sc_set_vs_coeffs(struct sc_data *sc, void *addr, unsigned int src_h,
unsigned int dst_h);
void sc_config_scaler(struct sc_data *sc, u32 *sc_reg0, u32 *sc_reg8,
u32 *sc_reg17, unsigned int src_w, unsigned int src_h,
unsigned int dst_w, unsigned int dst_h);
struct sc_data *sc_create(struct platform_device *pdev, const char *res_name);
#endif