net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-09 07:27:34 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
|
|
* Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "queueing.h"
|
|
|
|
#include "device.h"
|
|
|
|
#include "peer.h"
|
|
|
|
#include "timers.h"
|
|
|
|
#include "messages.h"
|
|
|
|
#include "cookie.h"
|
|
|
|
#include "socket.h"
|
|
|
|
|
|
|
|
#include <linux/ip.h>
|
|
|
|
#include <linux/ipv6.h>
|
|
|
|
#include <linux/udp.h>
|
|
|
|
#include <net/ip_tunnels.h>
|
|
|
|
|
|
|
|
/* Must be called with bh disabled. */
|
|
|
|
static void update_rx_stats(struct wg_peer *peer, size_t len)
|
|
|
|
{
|
|
|
|
struct pcpu_sw_netstats *tstats =
|
|
|
|
get_cpu_ptr(peer->device->dev->tstats);
|
|
|
|
|
|
|
|
u64_stats_update_begin(&tstats->syncp);
|
|
|
|
++tstats->rx_packets;
|
|
|
|
tstats->rx_bytes += len;
|
|
|
|
peer->rx_bytes += len;
|
|
|
|
u64_stats_update_end(&tstats->syncp);
|
|
|
|
put_cpu_ptr(tstats);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define SKB_TYPE_LE32(skb) (((struct message_header *)(skb)->data)->type)
|
|
|
|
|
|
|
|
static size_t validate_header_len(struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
if (unlikely(skb->len < sizeof(struct message_header)))
|
|
|
|
return 0;
|
|
|
|
if (SKB_TYPE_LE32(skb) == cpu_to_le32(MESSAGE_DATA) &&
|
|
|
|
skb->len >= MESSAGE_MINIMUM_LENGTH)
|
|
|
|
return sizeof(struct message_data);
|
|
|
|
if (SKB_TYPE_LE32(skb) == cpu_to_le32(MESSAGE_HANDSHAKE_INITIATION) &&
|
|
|
|
skb->len == sizeof(struct message_handshake_initiation))
|
|
|
|
return sizeof(struct message_handshake_initiation);
|
|
|
|
if (SKB_TYPE_LE32(skb) == cpu_to_le32(MESSAGE_HANDSHAKE_RESPONSE) &&
|
|
|
|
skb->len == sizeof(struct message_handshake_response))
|
|
|
|
return sizeof(struct message_handshake_response);
|
|
|
|
if (SKB_TYPE_LE32(skb) == cpu_to_le32(MESSAGE_HANDSHAKE_COOKIE) &&
|
|
|
|
skb->len == sizeof(struct message_handshake_cookie))
|
|
|
|
return sizeof(struct message_handshake_cookie);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int prepare_skb_header(struct sk_buff *skb, struct wg_device *wg)
|
|
|
|
{
|
|
|
|
size_t data_offset, data_len, header_len;
|
|
|
|
struct udphdr *udp;
|
|
|
|
|
|
|
|
if (unlikely(wg_skb_examine_untrusted_ip_hdr(skb) != skb->protocol ||
|
|
|
|
skb_transport_header(skb) < skb->head ||
|
|
|
|
(skb_transport_header(skb) + sizeof(struct udphdr)) >
|
|
|
|
skb_tail_pointer(skb)))
|
|
|
|
return -EINVAL; /* Bogus IP header */
|
|
|
|
udp = udp_hdr(skb);
|
|
|
|
data_offset = (u8 *)udp - skb->data;
|
|
|
|
if (unlikely(data_offset > U16_MAX ||
|
|
|
|
data_offset + sizeof(struct udphdr) > skb->len))
|
|
|
|
/* Packet has offset at impossible location or isn't big enough
|
|
|
|
* to have UDP fields.
|
|
|
|
*/
|
|
|
|
return -EINVAL;
|
|
|
|
data_len = ntohs(udp->len);
|
|
|
|
if (unlikely(data_len < sizeof(struct udphdr) ||
|
|
|
|
data_len > skb->len - data_offset))
|
|
|
|
/* UDP packet is reporting too small of a size or lying about
|
|
|
|
* its size.
|
|
|
|
*/
|
|
|
|
return -EINVAL;
|
|
|
|
data_len -= sizeof(struct udphdr);
|
|
|
|
data_offset = (u8 *)udp + sizeof(struct udphdr) - skb->data;
|
|
|
|
if (unlikely(!pskb_may_pull(skb,
|
|
|
|
data_offset + sizeof(struct message_header)) ||
|
|
|
|
pskb_trim(skb, data_len + data_offset) < 0))
|
|
|
|
return -EINVAL;
|
|
|
|
skb_pull(skb, data_offset);
|
|
|
|
if (unlikely(skb->len != data_len))
|
|
|
|
/* Final len does not agree with calculated len */
|
|
|
|
return -EINVAL;
|
|
|
|
header_len = validate_header_len(skb);
|
|
|
|
if (unlikely(!header_len))
|
|
|
|
return -EINVAL;
|
|
|
|
__skb_push(skb, data_offset);
|
|
|
|
if (unlikely(!pskb_may_pull(skb, data_offset + header_len)))
|
|
|
|
return -EINVAL;
|
|
|
|
__skb_pull(skb, data_offset);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void wg_receive_handshake_packet(struct wg_device *wg,
|
|
|
|
struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
enum cookie_mac_state mac_state;
|
|
|
|
struct wg_peer *peer = NULL;
|
|
|
|
/* This is global, so that our load calculation applies to the whole
|
|
|
|
* system. We don't care about races with it at all.
|
|
|
|
*/
|
|
|
|
static u64 last_under_load;
|
|
|
|
bool packet_needs_cookie;
|
|
|
|
bool under_load;
|
|
|
|
|
|
|
|
if (SKB_TYPE_LE32(skb) == cpu_to_le32(MESSAGE_HANDSHAKE_COOKIE)) {
|
|
|
|
net_dbg_skb_ratelimited("%s: Receiving cookie response from %pISpfsc\n",
|
|
|
|
wg->dev->name, skb);
|
|
|
|
wg_cookie_message_consume(
|
|
|
|
(struct message_handshake_cookie *)skb->data, wg);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
under_load = skb_queue_len(&wg->incoming_handshakes) >=
|
|
|
|
MAX_QUEUED_INCOMING_HANDSHAKES / 8;
|
|
|
|
if (under_load)
|
|
|
|
last_under_load = ktime_get_coarse_boottime_ns();
|
|
|
|
else if (last_under_load)
|
|
|
|
under_load = !wg_birthdate_has_expired(last_under_load, 1);
|
|
|
|
mac_state = wg_cookie_validate_packet(&wg->cookie_checker, skb,
|
|
|
|
under_load);
|
|
|
|
if ((under_load && mac_state == VALID_MAC_WITH_COOKIE) ||
|
|
|
|
(!under_load && mac_state == VALID_MAC_BUT_NO_COOKIE)) {
|
|
|
|
packet_needs_cookie = false;
|
|
|
|
} else if (under_load && mac_state == VALID_MAC_BUT_NO_COOKIE) {
|
|
|
|
packet_needs_cookie = true;
|
|
|
|
} else {
|
|
|
|
net_dbg_skb_ratelimited("%s: Invalid MAC of handshake, dropping packet from %pISpfsc\n",
|
|
|
|
wg->dev->name, skb);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (SKB_TYPE_LE32(skb)) {
|
|
|
|
case cpu_to_le32(MESSAGE_HANDSHAKE_INITIATION): {
|
|
|
|
struct message_handshake_initiation *message =
|
|
|
|
(struct message_handshake_initiation *)skb->data;
|
|
|
|
|
|
|
|
if (packet_needs_cookie) {
|
|
|
|
wg_packet_send_handshake_cookie(wg, skb,
|
|
|
|
message->sender_index);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
peer = wg_noise_handshake_consume_initiation(message, wg);
|
|
|
|
if (unlikely(!peer)) {
|
|
|
|
net_dbg_skb_ratelimited("%s: Invalid handshake initiation from %pISpfsc\n",
|
|
|
|
wg->dev->name, skb);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
wg_socket_set_peer_endpoint_from_skb(peer, skb);
|
|
|
|
net_dbg_ratelimited("%s: Receiving handshake initiation from peer %llu (%pISpfsc)\n",
|
|
|
|
wg->dev->name, peer->internal_id,
|
|
|
|
&peer->endpoint.addr);
|
|
|
|
wg_packet_send_handshake_response(peer);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case cpu_to_le32(MESSAGE_HANDSHAKE_RESPONSE): {
|
|
|
|
struct message_handshake_response *message =
|
|
|
|
(struct message_handshake_response *)skb->data;
|
|
|
|
|
|
|
|
if (packet_needs_cookie) {
|
|
|
|
wg_packet_send_handshake_cookie(wg, skb,
|
|
|
|
message->sender_index);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
peer = wg_noise_handshake_consume_response(message, wg);
|
|
|
|
if (unlikely(!peer)) {
|
|
|
|
net_dbg_skb_ratelimited("%s: Invalid handshake response from %pISpfsc\n",
|
|
|
|
wg->dev->name, skb);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
wg_socket_set_peer_endpoint_from_skb(peer, skb);
|
|
|
|
net_dbg_ratelimited("%s: Receiving handshake response from peer %llu (%pISpfsc)\n",
|
|
|
|
wg->dev->name, peer->internal_id,
|
|
|
|
&peer->endpoint.addr);
|
|
|
|
if (wg_noise_handshake_begin_session(&peer->handshake,
|
|
|
|
&peer->keypairs)) {
|
|
|
|
wg_timers_session_derived(peer);
|
|
|
|
wg_timers_handshake_complete(peer);
|
|
|
|
/* Calling this function will either send any existing
|
|
|
|
* packets in the queue and not send a keepalive, which
|
|
|
|
* is the best case, Or, if there's nothing in the
|
|
|
|
* queue, it will send a keepalive, in order to give
|
|
|
|
* immediate confirmation of the session.
|
|
|
|
*/
|
|
|
|
wg_packet_send_keepalive(peer);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unlikely(!peer)) {
|
|
|
|
WARN(1, "Somehow a wrong type of packet wound up in the handshake queue!\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
local_bh_disable();
|
|
|
|
update_rx_stats(peer, skb->len);
|
|
|
|
local_bh_enable();
|
|
|
|
|
|
|
|
wg_timers_any_authenticated_packet_received(peer);
|
|
|
|
wg_timers_any_authenticated_packet_traversal(peer);
|
|
|
|
wg_peer_put(peer);
|
|
|
|
}
|
|
|
|
|
|
|
|
void wg_packet_handshake_receive_worker(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct wg_device *wg = container_of(work, struct multicore_worker,
|
|
|
|
work)->ptr;
|
|
|
|
struct sk_buff *skb;
|
|
|
|
|
|
|
|
while ((skb = skb_dequeue(&wg->incoming_handshakes)) != NULL) {
|
|
|
|
wg_receive_handshake_packet(wg, skb);
|
|
|
|
dev_kfree_skb(skb);
|
|
|
|
cond_resched();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void keep_key_fresh(struct wg_peer *peer)
|
|
|
|
{
|
|
|
|
struct noise_keypair *keypair;
|
|
|
|
bool send = false;
|
|
|
|
|
|
|
|
if (peer->sent_lastminute_handshake)
|
|
|
|
return;
|
|
|
|
|
|
|
|
rcu_read_lock_bh();
|
|
|
|
keypair = rcu_dereference_bh(peer->keypairs.current_keypair);
|
|
|
|
if (likely(keypair && READ_ONCE(keypair->sending.is_valid)) &&
|
|
|
|
keypair->i_am_the_initiator &&
|
|
|
|
unlikely(wg_birthdate_has_expired(keypair->sending.birthdate,
|
|
|
|
REJECT_AFTER_TIME - KEEPALIVE_TIMEOUT - REKEY_TIMEOUT)))
|
|
|
|
send = true;
|
|
|
|
rcu_read_unlock_bh();
|
|
|
|
|
|
|
|
if (send) {
|
|
|
|
peer->sent_lastminute_handshake = true;
|
|
|
|
wg_packet_send_queued_handshake_initiation(peer, false);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool decrypt_packet(struct sk_buff *skb, struct noise_symmetric_key *key)
|
|
|
|
{
|
|
|
|
struct scatterlist sg[MAX_SKB_FRAGS + 8];
|
|
|
|
struct sk_buff *trailer;
|
|
|
|
unsigned int offset;
|
|
|
|
int num_frags;
|
|
|
|
|
|
|
|
if (unlikely(!key))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (unlikely(!READ_ONCE(key->is_valid) ||
|
|
|
|
wg_birthdate_has_expired(key->birthdate, REJECT_AFTER_TIME) ||
|
|
|
|
key->counter.receive.counter >= REJECT_AFTER_MESSAGES)) {
|
|
|
|
WRITE_ONCE(key->is_valid, false);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
PACKET_CB(skb)->nonce =
|
|
|
|
le64_to_cpu(((struct message_data *)skb->data)->counter);
|
|
|
|
|
|
|
|
/* We ensure that the network header is part of the packet before we
|
|
|
|
* call skb_cow_data, so that there's no chance that data is removed
|
|
|
|
* from the skb, so that later we can extract the original endpoint.
|
|
|
|
*/
|
|
|
|
offset = skb->data - skb_network_header(skb);
|
|
|
|
skb_push(skb, offset);
|
|
|
|
num_frags = skb_cow_data(skb, 0, &trailer);
|
|
|
|
offset += sizeof(struct message_data);
|
|
|
|
skb_pull(skb, offset);
|
|
|
|
if (unlikely(num_frags < 0 || num_frags > ARRAY_SIZE(sg)))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
sg_init_table(sg, num_frags);
|
|
|
|
if (skb_to_sgvec(skb, sg, 0, skb->len) <= 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (!chacha20poly1305_decrypt_sg_inplace(sg, skb->len, NULL, 0,
|
|
|
|
PACKET_CB(skb)->nonce,
|
|
|
|
key->key))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/* Another ugly situation of pushing and pulling the header so as to
|
|
|
|
* keep endpoint information intact.
|
|
|
|
*/
|
|
|
|
skb_push(skb, offset);
|
|
|
|
if (pskb_trim(skb, skb->len - noise_encrypted_len(0)))
|
|
|
|
return false;
|
|
|
|
skb_pull(skb, offset);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This is RFC6479, a replay detection bitmap algorithm that avoids bitshifts */
|
|
|
|
static bool counter_validate(union noise_counter *counter, u64 their_counter)
|
|
|
|
{
|
|
|
|
unsigned long index, index_current, top, i;
|
|
|
|
bool ret = false;
|
|
|
|
|
|
|
|
spin_lock_bh(&counter->receive.lock);
|
|
|
|
|
|
|
|
if (unlikely(counter->receive.counter >= REJECT_AFTER_MESSAGES + 1 ||
|
|
|
|
their_counter >= REJECT_AFTER_MESSAGES))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
++their_counter;
|
|
|
|
|
|
|
|
if (unlikely((COUNTER_WINDOW_SIZE + their_counter) <
|
|
|
|
counter->receive.counter))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
index = their_counter >> ilog2(BITS_PER_LONG);
|
|
|
|
|
|
|
|
if (likely(their_counter > counter->receive.counter)) {
|
|
|
|
index_current = counter->receive.counter >> ilog2(BITS_PER_LONG);
|
|
|
|
top = min_t(unsigned long, index - index_current,
|
|
|
|
COUNTER_BITS_TOTAL / BITS_PER_LONG);
|
|
|
|
for (i = 1; i <= top; ++i)
|
|
|
|
counter->receive.backtrack[(i + index_current) &
|
|
|
|
((COUNTER_BITS_TOTAL / BITS_PER_LONG) - 1)] = 0;
|
|
|
|
counter->receive.counter = their_counter;
|
|
|
|
}
|
|
|
|
|
|
|
|
index &= (COUNTER_BITS_TOTAL / BITS_PER_LONG) - 1;
|
|
|
|
ret = !test_and_set_bit(their_counter & (BITS_PER_LONG - 1),
|
|
|
|
&counter->receive.backtrack[index]);
|
|
|
|
|
|
|
|
out:
|
|
|
|
spin_unlock_bh(&counter->receive.lock);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
#include "selftest/counter.c"
|
|
|
|
|
|
|
|
static void wg_packet_consume_data_done(struct wg_peer *peer,
|
|
|
|
struct sk_buff *skb,
|
|
|
|
struct endpoint *endpoint)
|
|
|
|
{
|
|
|
|
struct net_device *dev = peer->device->dev;
|
|
|
|
unsigned int len, len_before_trim;
|
|
|
|
struct wg_peer *routed_peer;
|
|
|
|
|
|
|
|
wg_socket_set_peer_endpoint(peer, endpoint);
|
|
|
|
|
|
|
|
if (unlikely(wg_noise_received_with_keypair(&peer->keypairs,
|
|
|
|
PACKET_CB(skb)->keypair))) {
|
|
|
|
wg_timers_handshake_complete(peer);
|
|
|
|
wg_packet_send_staged_packets(peer);
|
|
|
|
}
|
|
|
|
|
|
|
|
keep_key_fresh(peer);
|
|
|
|
|
|
|
|
wg_timers_any_authenticated_packet_received(peer);
|
|
|
|
wg_timers_any_authenticated_packet_traversal(peer);
|
|
|
|
|
|
|
|
/* A packet with length 0 is a keepalive packet */
|
|
|
|
if (unlikely(!skb->len)) {
|
|
|
|
update_rx_stats(peer, message_data_len(0));
|
|
|
|
net_dbg_ratelimited("%s: Receiving keepalive packet from peer %llu (%pISpfsc)\n",
|
|
|
|
dev->name, peer->internal_id,
|
|
|
|
&peer->endpoint.addr);
|
|
|
|
goto packet_processed;
|
|
|
|
}
|
|
|
|
|
|
|
|
wg_timers_data_received(peer);
|
|
|
|
|
|
|
|
if (unlikely(skb_network_header(skb) < skb->head))
|
|
|
|
goto dishonest_packet_size;
|
|
|
|
if (unlikely(!(pskb_network_may_pull(skb, sizeof(struct iphdr)) &&
|
|
|
|
(ip_hdr(skb)->version == 4 ||
|
|
|
|
(ip_hdr(skb)->version == 6 &&
|
|
|
|
pskb_network_may_pull(skb, sizeof(struct ipv6hdr)))))))
|
|
|
|
goto dishonest_packet_type;
|
|
|
|
|
|
|
|
skb->dev = dev;
|
|
|
|
/* We've already verified the Poly1305 auth tag, which means this packet
|
|
|
|
* was not modified in transit. We can therefore tell the networking
|
|
|
|
* stack that all checksums of every layer of encapsulation have already
|
2019-12-16 05:08:02 +08:00
|
|
|
* been checked "by the hardware" and therefore is unnecessary to check
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-09 07:27:34 +08:00
|
|
|
* again in software.
|
|
|
|
*/
|
|
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
skb->csum_level = ~0; /* All levels */
|
|
|
|
skb->protocol = wg_skb_examine_untrusted_ip_hdr(skb);
|
|
|
|
if (skb->protocol == htons(ETH_P_IP)) {
|
|
|
|
len = ntohs(ip_hdr(skb)->tot_len);
|
|
|
|
if (unlikely(len < sizeof(struct iphdr)))
|
|
|
|
goto dishonest_packet_size;
|
|
|
|
if (INET_ECN_is_ce(PACKET_CB(skb)->ds))
|
|
|
|
IP_ECN_set_ce(ip_hdr(skb));
|
|
|
|
} else if (skb->protocol == htons(ETH_P_IPV6)) {
|
|
|
|
len = ntohs(ipv6_hdr(skb)->payload_len) +
|
|
|
|
sizeof(struct ipv6hdr);
|
|
|
|
if (INET_ECN_is_ce(PACKET_CB(skb)->ds))
|
|
|
|
IP6_ECN_set_ce(skb, ipv6_hdr(skb));
|
|
|
|
} else {
|
|
|
|
goto dishonest_packet_type;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unlikely(len > skb->len))
|
|
|
|
goto dishonest_packet_size;
|
|
|
|
len_before_trim = skb->len;
|
|
|
|
if (unlikely(pskb_trim(skb, len)))
|
|
|
|
goto packet_processed;
|
|
|
|
|
|
|
|
routed_peer = wg_allowedips_lookup_src(&peer->device->peer_allowedips,
|
|
|
|
skb);
|
|
|
|
wg_peer_put(routed_peer); /* We don't need the extra reference. */
|
|
|
|
|
|
|
|
if (unlikely(routed_peer != peer))
|
|
|
|
goto dishonest_packet_peer;
|
|
|
|
|
|
|
|
if (unlikely(napi_gro_receive(&peer->napi, skb) == GRO_DROP)) {
|
|
|
|
++dev->stats.rx_dropped;
|
|
|
|
net_dbg_ratelimited("%s: Failed to give packet to userspace from peer %llu (%pISpfsc)\n",
|
|
|
|
dev->name, peer->internal_id,
|
|
|
|
&peer->endpoint.addr);
|
|
|
|
} else {
|
|
|
|
update_rx_stats(peer, message_data_len(len_before_trim));
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
|
|
|
|
dishonest_packet_peer:
|
|
|
|
net_dbg_skb_ratelimited("%s: Packet has unallowed src IP (%pISc) from peer %llu (%pISpfsc)\n",
|
|
|
|
dev->name, skb, peer->internal_id,
|
|
|
|
&peer->endpoint.addr);
|
|
|
|
++dev->stats.rx_errors;
|
|
|
|
++dev->stats.rx_frame_errors;
|
|
|
|
goto packet_processed;
|
|
|
|
dishonest_packet_type:
|
|
|
|
net_dbg_ratelimited("%s: Packet is neither ipv4 nor ipv6 from peer %llu (%pISpfsc)\n",
|
|
|
|
dev->name, peer->internal_id, &peer->endpoint.addr);
|
|
|
|
++dev->stats.rx_errors;
|
|
|
|
++dev->stats.rx_frame_errors;
|
|
|
|
goto packet_processed;
|
|
|
|
dishonest_packet_size:
|
|
|
|
net_dbg_ratelimited("%s: Packet has incorrect size from peer %llu (%pISpfsc)\n",
|
|
|
|
dev->name, peer->internal_id, &peer->endpoint.addr);
|
|
|
|
++dev->stats.rx_errors;
|
|
|
|
++dev->stats.rx_length_errors;
|
|
|
|
goto packet_processed;
|
|
|
|
packet_processed:
|
|
|
|
dev_kfree_skb(skb);
|
|
|
|
}
|
|
|
|
|
|
|
|
int wg_packet_rx_poll(struct napi_struct *napi, int budget)
|
|
|
|
{
|
|
|
|
struct wg_peer *peer = container_of(napi, struct wg_peer, napi);
|
|
|
|
struct crypt_queue *queue = &peer->rx_queue;
|
|
|
|
struct noise_keypair *keypair;
|
|
|
|
struct endpoint endpoint;
|
|
|
|
enum packet_state state;
|
|
|
|
struct sk_buff *skb;
|
|
|
|
int work_done = 0;
|
|
|
|
bool free;
|
|
|
|
|
|
|
|
if (unlikely(budget <= 0))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
while ((skb = __ptr_ring_peek(&queue->ring)) != NULL &&
|
|
|
|
(state = atomic_read_acquire(&PACKET_CB(skb)->state)) !=
|
|
|
|
PACKET_STATE_UNCRYPTED) {
|
|
|
|
__ptr_ring_discard_one(&queue->ring);
|
|
|
|
peer = PACKET_PEER(skb);
|
|
|
|
keypair = PACKET_CB(skb)->keypair;
|
|
|
|
free = true;
|
|
|
|
|
|
|
|
if (unlikely(state != PACKET_STATE_CRYPTED))
|
|
|
|
goto next;
|
|
|
|
|
|
|
|
if (unlikely(!counter_validate(&keypair->receiving.counter,
|
|
|
|
PACKET_CB(skb)->nonce))) {
|
|
|
|
net_dbg_ratelimited("%s: Packet has invalid nonce %llu (max %llu)\n",
|
|
|
|
peer->device->dev->name,
|
|
|
|
PACKET_CB(skb)->nonce,
|
|
|
|
keypair->receiving.counter.receive.counter);
|
|
|
|
goto next;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unlikely(wg_socket_endpoint_from_skb(&endpoint, skb)))
|
|
|
|
goto next;
|
|
|
|
|
|
|
|
wg_reset_packet(skb);
|
|
|
|
wg_packet_consume_data_done(peer, skb, &endpoint);
|
|
|
|
free = false;
|
|
|
|
|
|
|
|
next:
|
|
|
|
wg_noise_keypair_put(keypair, false);
|
|
|
|
wg_peer_put(peer);
|
|
|
|
if (unlikely(free))
|
|
|
|
dev_kfree_skb(skb);
|
|
|
|
|
|
|
|
if (++work_done >= budget)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (work_done < budget)
|
|
|
|
napi_complete_done(napi, work_done);
|
|
|
|
|
|
|
|
return work_done;
|
|
|
|
}
|
|
|
|
|
|
|
|
void wg_packet_decrypt_worker(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct crypt_queue *queue = container_of(work, struct multicore_worker,
|
|
|
|
work)->ptr;
|
|
|
|
struct sk_buff *skb;
|
|
|
|
|
|
|
|
while ((skb = ptr_ring_consume_bh(&queue->ring)) != NULL) {
|
|
|
|
enum packet_state state = likely(decrypt_packet(skb,
|
|
|
|
&PACKET_CB(skb)->keypair->receiving)) ?
|
|
|
|
PACKET_STATE_CRYPTED : PACKET_STATE_DEAD;
|
|
|
|
wg_queue_enqueue_per_peer_napi(skb, state);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void wg_packet_consume_data(struct wg_device *wg, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
__le32 idx = ((struct message_data *)skb->data)->key_idx;
|
|
|
|
struct wg_peer *peer = NULL;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
rcu_read_lock_bh();
|
|
|
|
PACKET_CB(skb)->keypair =
|
|
|
|
(struct noise_keypair *)wg_index_hashtable_lookup(
|
|
|
|
wg->index_hashtable, INDEX_HASHTABLE_KEYPAIR, idx,
|
|
|
|
&peer);
|
|
|
|
if (unlikely(!wg_noise_keypair_get(PACKET_CB(skb)->keypair)))
|
|
|
|
goto err_keypair;
|
|
|
|
|
|
|
|
if (unlikely(READ_ONCE(peer->is_dead)))
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
ret = wg_queue_enqueue_per_device_and_peer(&wg->decrypt_queue,
|
|
|
|
&peer->rx_queue, skb,
|
|
|
|
wg->packet_crypt_wq,
|
|
|
|
&wg->decrypt_queue.last_cpu);
|
|
|
|
if (unlikely(ret == -EPIPE))
|
|
|
|
wg_queue_enqueue_per_peer_napi(skb, PACKET_STATE_DEAD);
|
|
|
|
if (likely(!ret || ret == -EPIPE)) {
|
|
|
|
rcu_read_unlock_bh();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
err:
|
|
|
|
wg_noise_keypair_put(PACKET_CB(skb)->keypair, false);
|
|
|
|
err_keypair:
|
|
|
|
rcu_read_unlock_bh();
|
|
|
|
wg_peer_put(peer);
|
|
|
|
dev_kfree_skb(skb);
|
|
|
|
}
|
|
|
|
|
|
|
|
void wg_packet_receive(struct wg_device *wg, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
if (unlikely(prepare_skb_header(skb, wg) < 0))
|
|
|
|
goto err;
|
|
|
|
switch (SKB_TYPE_LE32(skb)) {
|
|
|
|
case cpu_to_le32(MESSAGE_HANDSHAKE_INITIATION):
|
|
|
|
case cpu_to_le32(MESSAGE_HANDSHAKE_RESPONSE):
|
|
|
|
case cpu_to_le32(MESSAGE_HANDSHAKE_COOKIE): {
|
|
|
|
int cpu;
|
|
|
|
|
|
|
|
if (skb_queue_len(&wg->incoming_handshakes) >
|
|
|
|
MAX_QUEUED_INCOMING_HANDSHAKES ||
|
|
|
|
unlikely(!rng_is_initialized())) {
|
|
|
|
net_dbg_skb_ratelimited("%s: Dropping handshake packet from %pISpfsc\n",
|
|
|
|
wg->dev->name, skb);
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
skb_queue_tail(&wg->incoming_handshakes, skb);
|
|
|
|
/* Queues up a call to packet_process_queued_handshake_
|
|
|
|
* packets(skb):
|
|
|
|
*/
|
|
|
|
cpu = wg_cpumask_next_online(&wg->incoming_handshake_cpu);
|
|
|
|
queue_work_on(cpu, wg->handshake_receive_wq,
|
|
|
|
&per_cpu_ptr(wg->incoming_handshakes_worker, cpu)->work);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case cpu_to_le32(MESSAGE_DATA):
|
|
|
|
PACKET_CB(skb)->ds = ip_tunnel_get_dsfield(ip_hdr(skb), skb);
|
|
|
|
wg_packet_consume_data(wg, skb);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
net_dbg_skb_ratelimited("%s: Invalid packet from %pISpfsc\n",
|
|
|
|
wg->dev->name, skb);
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
|
|
|
|
err:
|
|
|
|
dev_kfree_skb(skb);
|
|
|
|
}
|