net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-09 07:27:34 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
|
|
* Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "noise.h"
|
|
|
|
#include "device.h"
|
|
|
|
#include "peer.h"
|
|
|
|
#include "messages.h"
|
|
|
|
#include "queueing.h"
|
|
|
|
#include "peerlookup.h"
|
|
|
|
|
|
|
|
#include <linux/rcupdate.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/bitmap.h>
|
|
|
|
#include <linux/scatterlist.h>
|
|
|
|
#include <linux/highmem.h>
|
|
|
|
#include <crypto/algapi.h>
|
|
|
|
|
|
|
|
/* This implements Noise_IKpsk2:
|
|
|
|
*
|
|
|
|
* <- s
|
|
|
|
* ******
|
|
|
|
* -> e, es, s, ss, {t}
|
|
|
|
* <- e, ee, se, psk, {}
|
|
|
|
*/
|
|
|
|
|
|
|
|
static const u8 handshake_name[37] = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
|
|
|
|
static const u8 identifier_name[34] = "WireGuard v1 zx2c4 Jason@zx2c4.com";
|
|
|
|
static u8 handshake_init_hash[NOISE_HASH_LEN] __ro_after_init;
|
|
|
|
static u8 handshake_init_chaining_key[NOISE_HASH_LEN] __ro_after_init;
|
|
|
|
static atomic64_t keypair_counter = ATOMIC64_INIT(0);
|
|
|
|
|
|
|
|
void __init wg_noise_init(void)
|
|
|
|
{
|
|
|
|
struct blake2s_state blake;
|
|
|
|
|
|
|
|
blake2s(handshake_init_chaining_key, handshake_name, NULL,
|
|
|
|
NOISE_HASH_LEN, sizeof(handshake_name), 0);
|
|
|
|
blake2s_init(&blake, NOISE_HASH_LEN);
|
|
|
|
blake2s_update(&blake, handshake_init_chaining_key, NOISE_HASH_LEN);
|
|
|
|
blake2s_update(&blake, identifier_name, sizeof(identifier_name));
|
|
|
|
blake2s_final(&blake, handshake_init_hash);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Must hold peer->handshake.static_identity->lock */
|
|
|
|
bool wg_noise_precompute_static_static(struct wg_peer *peer)
|
|
|
|
{
|
wireguard: noise: reject peers with low order public keys
Our static-static calculation returns a failure if the public key is of
low order. We check for this when peers are added, and don't allow them
to be added if they're low order, except in the case where we haven't
yet been given a private key. In that case, we would defer the removal
of the peer until we're given a private key, since at that point we're
doing new static-static calculations which incur failures we can act on.
This meant, however, that we wound up removing peers rather late in the
configuration flow.
Syzkaller points out that peer_remove calls flush_workqueue, which in
turn might then wait for sending a handshake initiation to complete.
Since handshake initiation needs the static identity lock, holding the
static identity lock while calling peer_remove can result in a rare
deadlock. We have precisely this case in this situation of late-stage
peer removal based on an invalid public key. We can't drop the lock when
removing, because then incoming handshakes might interact with a bogus
static-static calculation.
While the band-aid patch for this would involve breaking up the peer
removal into two steps like wg_peer_remove_all does, in order to solve
the locking issue, there's actually a much more elegant way of fixing
this:
If the static-static calculation succeeds with one private key, it
*must* succeed with all others, because all 32-byte strings map to valid
private keys, thanks to clamping. That means we can get rid of this
silly dance and locking headaches of removing peers late in the
configuration flow, and instead just reject them early on, regardless of
whether the device has yet been assigned a private key. For the case
where the device doesn't yet have a private key, we safely use zeros
just for the purposes of checking for low order points by way of
checking the output of the calculation.
The following PoC will trigger the deadlock:
ip link add wg0 type wireguard
ip addr add 10.0.0.1/24 dev wg0
ip link set wg0 up
ping -f 10.0.0.2 &
while true; do
wg set wg0 private-key /dev/null peer AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= allowed-ips 10.0.0.0/24 endpoint 10.0.0.3:1234
wg set wg0 private-key <(echo AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=)
done
[ 0.949105] ======================================================
[ 0.949550] WARNING: possible circular locking dependency detected
[ 0.950143] 5.5.0-debug+ #18 Not tainted
[ 0.950431] ------------------------------------------------------
[ 0.950959] wg/89 is trying to acquire lock:
[ 0.951252] ffff8880333e2128 ((wq_completion)wg-kex-wg0){+.+.}, at: flush_workqueue+0xe3/0x12f0
[ 0.951865]
[ 0.951865] but task is already holding lock:
[ 0.952280] ffff888032819bc0 (&wg->static_identity.lock){++++}, at: wg_set_device+0x95d/0xcc0
[ 0.953011]
[ 0.953011] which lock already depends on the new lock.
[ 0.953011]
[ 0.953651]
[ 0.953651] the existing dependency chain (in reverse order) is:
[ 0.954292]
[ 0.954292] -> #2 (&wg->static_identity.lock){++++}:
[ 0.954804] lock_acquire+0x127/0x350
[ 0.955133] down_read+0x83/0x410
[ 0.955428] wg_noise_handshake_create_initiation+0x97/0x700
[ 0.955885] wg_packet_send_handshake_initiation+0x13a/0x280
[ 0.956401] wg_packet_handshake_send_worker+0x10/0x20
[ 0.956841] process_one_work+0x806/0x1500
[ 0.957167] worker_thread+0x8c/0xcb0
[ 0.957549] kthread+0x2ee/0x3b0
[ 0.957792] ret_from_fork+0x24/0x30
[ 0.958234]
[ 0.958234] -> #1 ((work_completion)(&peer->transmit_handshake_work)){+.+.}:
[ 0.958808] lock_acquire+0x127/0x350
[ 0.959075] process_one_work+0x7ab/0x1500
[ 0.959369] worker_thread+0x8c/0xcb0
[ 0.959639] kthread+0x2ee/0x3b0
[ 0.959896] ret_from_fork+0x24/0x30
[ 0.960346]
[ 0.960346] -> #0 ((wq_completion)wg-kex-wg0){+.+.}:
[ 0.960945] check_prev_add+0x167/0x1e20
[ 0.961351] __lock_acquire+0x2012/0x3170
[ 0.961725] lock_acquire+0x127/0x350
[ 0.961990] flush_workqueue+0x106/0x12f0
[ 0.962280] peer_remove_after_dead+0x160/0x220
[ 0.962600] wg_set_device+0xa24/0xcc0
[ 0.962994] genl_rcv_msg+0x52f/0xe90
[ 0.963298] netlink_rcv_skb+0x111/0x320
[ 0.963618] genl_rcv+0x1f/0x30
[ 0.963853] netlink_unicast+0x3f6/0x610
[ 0.964245] netlink_sendmsg+0x700/0xb80
[ 0.964586] __sys_sendto+0x1dd/0x2c0
[ 0.964854] __x64_sys_sendto+0xd8/0x1b0
[ 0.965141] do_syscall_64+0x90/0xd9a
[ 0.965408] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 0.965769]
[ 0.965769] other info that might help us debug this:
[ 0.965769]
[ 0.966337] Chain exists of:
[ 0.966337] (wq_completion)wg-kex-wg0 --> (work_completion)(&peer->transmit_handshake_work) --> &wg->static_identity.lock
[ 0.966337]
[ 0.967417] Possible unsafe locking scenario:
[ 0.967417]
[ 0.967836] CPU0 CPU1
[ 0.968155] ---- ----
[ 0.968497] lock(&wg->static_identity.lock);
[ 0.968779] lock((work_completion)(&peer->transmit_handshake_work));
[ 0.969345] lock(&wg->static_identity.lock);
[ 0.969809] lock((wq_completion)wg-kex-wg0);
[ 0.970146]
[ 0.970146] *** DEADLOCK ***
[ 0.970146]
[ 0.970531] 5 locks held by wg/89:
[ 0.970908] #0: ffffffff827433c8 (cb_lock){++++}, at: genl_rcv+0x10/0x30
[ 0.971400] #1: ffffffff82743480 (genl_mutex){+.+.}, at: genl_rcv_msg+0x642/0xe90
[ 0.971924] #2: ffffffff827160c0 (rtnl_mutex){+.+.}, at: wg_set_device+0x9f/0xcc0
[ 0.972488] #3: ffff888032819de0 (&wg->device_update_lock){+.+.}, at: wg_set_device+0xb0/0xcc0
[ 0.973095] #4: ffff888032819bc0 (&wg->static_identity.lock){++++}, at: wg_set_device+0x95d/0xcc0
[ 0.973653]
[ 0.973653] stack backtrace:
[ 0.973932] CPU: 1 PID: 89 Comm: wg Not tainted 5.5.0-debug+ #18
[ 0.974476] Call Trace:
[ 0.974638] dump_stack+0x97/0xe0
[ 0.974869] check_noncircular+0x312/0x3e0
[ 0.975132] ? print_circular_bug+0x1f0/0x1f0
[ 0.975410] ? __kernel_text_address+0x9/0x30
[ 0.975727] ? unwind_get_return_address+0x51/0x90
[ 0.976024] check_prev_add+0x167/0x1e20
[ 0.976367] ? graph_lock+0x70/0x160
[ 0.976682] __lock_acquire+0x2012/0x3170
[ 0.976998] ? register_lock_class+0x1140/0x1140
[ 0.977323] lock_acquire+0x127/0x350
[ 0.977627] ? flush_workqueue+0xe3/0x12f0
[ 0.977890] flush_workqueue+0x106/0x12f0
[ 0.978147] ? flush_workqueue+0xe3/0x12f0
[ 0.978410] ? find_held_lock+0x2c/0x110
[ 0.978662] ? lock_downgrade+0x6e0/0x6e0
[ 0.978919] ? queue_rcu_work+0x60/0x60
[ 0.979166] ? netif_napi_del+0x151/0x3b0
[ 0.979501] ? peer_remove_after_dead+0x160/0x220
[ 0.979871] peer_remove_after_dead+0x160/0x220
[ 0.980232] wg_set_device+0xa24/0xcc0
[ 0.980516] ? deref_stack_reg+0x8e/0xc0
[ 0.980801] ? set_peer+0xe10/0xe10
[ 0.981040] ? __ww_mutex_check_waiters+0x150/0x150
[ 0.981430] ? __nla_validate_parse+0x163/0x270
[ 0.981719] ? genl_family_rcv_msg_attrs_parse+0x13f/0x310
[ 0.982078] genl_rcv_msg+0x52f/0xe90
[ 0.982348] ? genl_family_rcv_msg_attrs_parse+0x310/0x310
[ 0.982690] ? register_lock_class+0x1140/0x1140
[ 0.983049] netlink_rcv_skb+0x111/0x320
[ 0.983298] ? genl_family_rcv_msg_attrs_parse+0x310/0x310
[ 0.983645] ? netlink_ack+0x880/0x880
[ 0.983888] genl_rcv+0x1f/0x30
[ 0.984168] netlink_unicast+0x3f6/0x610
[ 0.984443] ? netlink_detachskb+0x60/0x60
[ 0.984729] ? find_held_lock+0x2c/0x110
[ 0.984976] netlink_sendmsg+0x700/0xb80
[ 0.985220] ? netlink_broadcast_filtered+0xa60/0xa60
[ 0.985533] __sys_sendto+0x1dd/0x2c0
[ 0.985763] ? __x64_sys_getpeername+0xb0/0xb0
[ 0.986039] ? sockfd_lookup_light+0x17/0x160
[ 0.986397] ? __sys_recvmsg+0x8c/0xf0
[ 0.986711] ? __sys_recvmsg_sock+0xd0/0xd0
[ 0.987018] __x64_sys_sendto+0xd8/0x1b0
[ 0.987283] ? lockdep_hardirqs_on+0x39b/0x5a0
[ 0.987666] do_syscall_64+0x90/0xd9a
[ 0.987903] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 0.988223] RIP: 0033:0x7fe77c12003e
[ 0.988508] Code: c3 8b 07 85 c0 75 24 49 89 fb 48 89 f0 48 89 d7 48 89 ce 4c 89 c2 4d 89 ca 4c 8b 44 24 08 4c 8b 4c 24 10 4c 4
[ 0.989666] RSP: 002b:00007fffada2ed58 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
[ 0.990137] RAX: ffffffffffffffda RBX: 00007fe77c159d48 RCX: 00007fe77c12003e
[ 0.990583] RDX: 0000000000000040 RSI: 000055fd1d38e020 RDI: 0000000000000004
[ 0.991091] RBP: 000055fd1d38e020 R08: 000055fd1cb63358 R09: 000000000000000c
[ 0.991568] R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000002c
[ 0.992014] R13: 0000000000000004 R14: 000055fd1d38e020 R15: 0000000000000001
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-05 05:17:26 +08:00
|
|
|
bool ret;
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-09 07:27:34 +08:00
|
|
|
|
|
|
|
down_write(&peer->handshake.lock);
|
wireguard: noise: reject peers with low order public keys
Our static-static calculation returns a failure if the public key is of
low order. We check for this when peers are added, and don't allow them
to be added if they're low order, except in the case where we haven't
yet been given a private key. In that case, we would defer the removal
of the peer until we're given a private key, since at that point we're
doing new static-static calculations which incur failures we can act on.
This meant, however, that we wound up removing peers rather late in the
configuration flow.
Syzkaller points out that peer_remove calls flush_workqueue, which in
turn might then wait for sending a handshake initiation to complete.
Since handshake initiation needs the static identity lock, holding the
static identity lock while calling peer_remove can result in a rare
deadlock. We have precisely this case in this situation of late-stage
peer removal based on an invalid public key. We can't drop the lock when
removing, because then incoming handshakes might interact with a bogus
static-static calculation.
While the band-aid patch for this would involve breaking up the peer
removal into two steps like wg_peer_remove_all does, in order to solve
the locking issue, there's actually a much more elegant way of fixing
this:
If the static-static calculation succeeds with one private key, it
*must* succeed with all others, because all 32-byte strings map to valid
private keys, thanks to clamping. That means we can get rid of this
silly dance and locking headaches of removing peers late in the
configuration flow, and instead just reject them early on, regardless of
whether the device has yet been assigned a private key. For the case
where the device doesn't yet have a private key, we safely use zeros
just for the purposes of checking for low order points by way of
checking the output of the calculation.
The following PoC will trigger the deadlock:
ip link add wg0 type wireguard
ip addr add 10.0.0.1/24 dev wg0
ip link set wg0 up
ping -f 10.0.0.2 &
while true; do
wg set wg0 private-key /dev/null peer AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= allowed-ips 10.0.0.0/24 endpoint 10.0.0.3:1234
wg set wg0 private-key <(echo AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=)
done
[ 0.949105] ======================================================
[ 0.949550] WARNING: possible circular locking dependency detected
[ 0.950143] 5.5.0-debug+ #18 Not tainted
[ 0.950431] ------------------------------------------------------
[ 0.950959] wg/89 is trying to acquire lock:
[ 0.951252] ffff8880333e2128 ((wq_completion)wg-kex-wg0){+.+.}, at: flush_workqueue+0xe3/0x12f0
[ 0.951865]
[ 0.951865] but task is already holding lock:
[ 0.952280] ffff888032819bc0 (&wg->static_identity.lock){++++}, at: wg_set_device+0x95d/0xcc0
[ 0.953011]
[ 0.953011] which lock already depends on the new lock.
[ 0.953011]
[ 0.953651]
[ 0.953651] the existing dependency chain (in reverse order) is:
[ 0.954292]
[ 0.954292] -> #2 (&wg->static_identity.lock){++++}:
[ 0.954804] lock_acquire+0x127/0x350
[ 0.955133] down_read+0x83/0x410
[ 0.955428] wg_noise_handshake_create_initiation+0x97/0x700
[ 0.955885] wg_packet_send_handshake_initiation+0x13a/0x280
[ 0.956401] wg_packet_handshake_send_worker+0x10/0x20
[ 0.956841] process_one_work+0x806/0x1500
[ 0.957167] worker_thread+0x8c/0xcb0
[ 0.957549] kthread+0x2ee/0x3b0
[ 0.957792] ret_from_fork+0x24/0x30
[ 0.958234]
[ 0.958234] -> #1 ((work_completion)(&peer->transmit_handshake_work)){+.+.}:
[ 0.958808] lock_acquire+0x127/0x350
[ 0.959075] process_one_work+0x7ab/0x1500
[ 0.959369] worker_thread+0x8c/0xcb0
[ 0.959639] kthread+0x2ee/0x3b0
[ 0.959896] ret_from_fork+0x24/0x30
[ 0.960346]
[ 0.960346] -> #0 ((wq_completion)wg-kex-wg0){+.+.}:
[ 0.960945] check_prev_add+0x167/0x1e20
[ 0.961351] __lock_acquire+0x2012/0x3170
[ 0.961725] lock_acquire+0x127/0x350
[ 0.961990] flush_workqueue+0x106/0x12f0
[ 0.962280] peer_remove_after_dead+0x160/0x220
[ 0.962600] wg_set_device+0xa24/0xcc0
[ 0.962994] genl_rcv_msg+0x52f/0xe90
[ 0.963298] netlink_rcv_skb+0x111/0x320
[ 0.963618] genl_rcv+0x1f/0x30
[ 0.963853] netlink_unicast+0x3f6/0x610
[ 0.964245] netlink_sendmsg+0x700/0xb80
[ 0.964586] __sys_sendto+0x1dd/0x2c0
[ 0.964854] __x64_sys_sendto+0xd8/0x1b0
[ 0.965141] do_syscall_64+0x90/0xd9a
[ 0.965408] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 0.965769]
[ 0.965769] other info that might help us debug this:
[ 0.965769]
[ 0.966337] Chain exists of:
[ 0.966337] (wq_completion)wg-kex-wg0 --> (work_completion)(&peer->transmit_handshake_work) --> &wg->static_identity.lock
[ 0.966337]
[ 0.967417] Possible unsafe locking scenario:
[ 0.967417]
[ 0.967836] CPU0 CPU1
[ 0.968155] ---- ----
[ 0.968497] lock(&wg->static_identity.lock);
[ 0.968779] lock((work_completion)(&peer->transmit_handshake_work));
[ 0.969345] lock(&wg->static_identity.lock);
[ 0.969809] lock((wq_completion)wg-kex-wg0);
[ 0.970146]
[ 0.970146] *** DEADLOCK ***
[ 0.970146]
[ 0.970531] 5 locks held by wg/89:
[ 0.970908] #0: ffffffff827433c8 (cb_lock){++++}, at: genl_rcv+0x10/0x30
[ 0.971400] #1: ffffffff82743480 (genl_mutex){+.+.}, at: genl_rcv_msg+0x642/0xe90
[ 0.971924] #2: ffffffff827160c0 (rtnl_mutex){+.+.}, at: wg_set_device+0x9f/0xcc0
[ 0.972488] #3: ffff888032819de0 (&wg->device_update_lock){+.+.}, at: wg_set_device+0xb0/0xcc0
[ 0.973095] #4: ffff888032819bc0 (&wg->static_identity.lock){++++}, at: wg_set_device+0x95d/0xcc0
[ 0.973653]
[ 0.973653] stack backtrace:
[ 0.973932] CPU: 1 PID: 89 Comm: wg Not tainted 5.5.0-debug+ #18
[ 0.974476] Call Trace:
[ 0.974638] dump_stack+0x97/0xe0
[ 0.974869] check_noncircular+0x312/0x3e0
[ 0.975132] ? print_circular_bug+0x1f0/0x1f0
[ 0.975410] ? __kernel_text_address+0x9/0x30
[ 0.975727] ? unwind_get_return_address+0x51/0x90
[ 0.976024] check_prev_add+0x167/0x1e20
[ 0.976367] ? graph_lock+0x70/0x160
[ 0.976682] __lock_acquire+0x2012/0x3170
[ 0.976998] ? register_lock_class+0x1140/0x1140
[ 0.977323] lock_acquire+0x127/0x350
[ 0.977627] ? flush_workqueue+0xe3/0x12f0
[ 0.977890] flush_workqueue+0x106/0x12f0
[ 0.978147] ? flush_workqueue+0xe3/0x12f0
[ 0.978410] ? find_held_lock+0x2c/0x110
[ 0.978662] ? lock_downgrade+0x6e0/0x6e0
[ 0.978919] ? queue_rcu_work+0x60/0x60
[ 0.979166] ? netif_napi_del+0x151/0x3b0
[ 0.979501] ? peer_remove_after_dead+0x160/0x220
[ 0.979871] peer_remove_after_dead+0x160/0x220
[ 0.980232] wg_set_device+0xa24/0xcc0
[ 0.980516] ? deref_stack_reg+0x8e/0xc0
[ 0.980801] ? set_peer+0xe10/0xe10
[ 0.981040] ? __ww_mutex_check_waiters+0x150/0x150
[ 0.981430] ? __nla_validate_parse+0x163/0x270
[ 0.981719] ? genl_family_rcv_msg_attrs_parse+0x13f/0x310
[ 0.982078] genl_rcv_msg+0x52f/0xe90
[ 0.982348] ? genl_family_rcv_msg_attrs_parse+0x310/0x310
[ 0.982690] ? register_lock_class+0x1140/0x1140
[ 0.983049] netlink_rcv_skb+0x111/0x320
[ 0.983298] ? genl_family_rcv_msg_attrs_parse+0x310/0x310
[ 0.983645] ? netlink_ack+0x880/0x880
[ 0.983888] genl_rcv+0x1f/0x30
[ 0.984168] netlink_unicast+0x3f6/0x610
[ 0.984443] ? netlink_detachskb+0x60/0x60
[ 0.984729] ? find_held_lock+0x2c/0x110
[ 0.984976] netlink_sendmsg+0x700/0xb80
[ 0.985220] ? netlink_broadcast_filtered+0xa60/0xa60
[ 0.985533] __sys_sendto+0x1dd/0x2c0
[ 0.985763] ? __x64_sys_getpeername+0xb0/0xb0
[ 0.986039] ? sockfd_lookup_light+0x17/0x160
[ 0.986397] ? __sys_recvmsg+0x8c/0xf0
[ 0.986711] ? __sys_recvmsg_sock+0xd0/0xd0
[ 0.987018] __x64_sys_sendto+0xd8/0x1b0
[ 0.987283] ? lockdep_hardirqs_on+0x39b/0x5a0
[ 0.987666] do_syscall_64+0x90/0xd9a
[ 0.987903] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 0.988223] RIP: 0033:0x7fe77c12003e
[ 0.988508] Code: c3 8b 07 85 c0 75 24 49 89 fb 48 89 f0 48 89 d7 48 89 ce 4c 89 c2 4d 89 ca 4c 8b 44 24 08 4c 8b 4c 24 10 4c 4
[ 0.989666] RSP: 002b:00007fffada2ed58 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
[ 0.990137] RAX: ffffffffffffffda RBX: 00007fe77c159d48 RCX: 00007fe77c12003e
[ 0.990583] RDX: 0000000000000040 RSI: 000055fd1d38e020 RDI: 0000000000000004
[ 0.991091] RBP: 000055fd1d38e020 R08: 000055fd1cb63358 R09: 000000000000000c
[ 0.991568] R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000002c
[ 0.992014] R13: 0000000000000004 R14: 000055fd1d38e020 R15: 0000000000000001
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-05 05:17:26 +08:00
|
|
|
if (peer->handshake.static_identity->has_identity) {
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-09 07:27:34 +08:00
|
|
|
ret = curve25519(
|
|
|
|
peer->handshake.precomputed_static_static,
|
|
|
|
peer->handshake.static_identity->static_private,
|
|
|
|
peer->handshake.remote_static);
|
wireguard: noise: reject peers with low order public keys
Our static-static calculation returns a failure if the public key is of
low order. We check for this when peers are added, and don't allow them
to be added if they're low order, except in the case where we haven't
yet been given a private key. In that case, we would defer the removal
of the peer until we're given a private key, since at that point we're
doing new static-static calculations which incur failures we can act on.
This meant, however, that we wound up removing peers rather late in the
configuration flow.
Syzkaller points out that peer_remove calls flush_workqueue, which in
turn might then wait for sending a handshake initiation to complete.
Since handshake initiation needs the static identity lock, holding the
static identity lock while calling peer_remove can result in a rare
deadlock. We have precisely this case in this situation of late-stage
peer removal based on an invalid public key. We can't drop the lock when
removing, because then incoming handshakes might interact with a bogus
static-static calculation.
While the band-aid patch for this would involve breaking up the peer
removal into two steps like wg_peer_remove_all does, in order to solve
the locking issue, there's actually a much more elegant way of fixing
this:
If the static-static calculation succeeds with one private key, it
*must* succeed with all others, because all 32-byte strings map to valid
private keys, thanks to clamping. That means we can get rid of this
silly dance and locking headaches of removing peers late in the
configuration flow, and instead just reject them early on, regardless of
whether the device has yet been assigned a private key. For the case
where the device doesn't yet have a private key, we safely use zeros
just for the purposes of checking for low order points by way of
checking the output of the calculation.
The following PoC will trigger the deadlock:
ip link add wg0 type wireguard
ip addr add 10.0.0.1/24 dev wg0
ip link set wg0 up
ping -f 10.0.0.2 &
while true; do
wg set wg0 private-key /dev/null peer AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= allowed-ips 10.0.0.0/24 endpoint 10.0.0.3:1234
wg set wg0 private-key <(echo AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=)
done
[ 0.949105] ======================================================
[ 0.949550] WARNING: possible circular locking dependency detected
[ 0.950143] 5.5.0-debug+ #18 Not tainted
[ 0.950431] ------------------------------------------------------
[ 0.950959] wg/89 is trying to acquire lock:
[ 0.951252] ffff8880333e2128 ((wq_completion)wg-kex-wg0){+.+.}, at: flush_workqueue+0xe3/0x12f0
[ 0.951865]
[ 0.951865] but task is already holding lock:
[ 0.952280] ffff888032819bc0 (&wg->static_identity.lock){++++}, at: wg_set_device+0x95d/0xcc0
[ 0.953011]
[ 0.953011] which lock already depends on the new lock.
[ 0.953011]
[ 0.953651]
[ 0.953651] the existing dependency chain (in reverse order) is:
[ 0.954292]
[ 0.954292] -> #2 (&wg->static_identity.lock){++++}:
[ 0.954804] lock_acquire+0x127/0x350
[ 0.955133] down_read+0x83/0x410
[ 0.955428] wg_noise_handshake_create_initiation+0x97/0x700
[ 0.955885] wg_packet_send_handshake_initiation+0x13a/0x280
[ 0.956401] wg_packet_handshake_send_worker+0x10/0x20
[ 0.956841] process_one_work+0x806/0x1500
[ 0.957167] worker_thread+0x8c/0xcb0
[ 0.957549] kthread+0x2ee/0x3b0
[ 0.957792] ret_from_fork+0x24/0x30
[ 0.958234]
[ 0.958234] -> #1 ((work_completion)(&peer->transmit_handshake_work)){+.+.}:
[ 0.958808] lock_acquire+0x127/0x350
[ 0.959075] process_one_work+0x7ab/0x1500
[ 0.959369] worker_thread+0x8c/0xcb0
[ 0.959639] kthread+0x2ee/0x3b0
[ 0.959896] ret_from_fork+0x24/0x30
[ 0.960346]
[ 0.960346] -> #0 ((wq_completion)wg-kex-wg0){+.+.}:
[ 0.960945] check_prev_add+0x167/0x1e20
[ 0.961351] __lock_acquire+0x2012/0x3170
[ 0.961725] lock_acquire+0x127/0x350
[ 0.961990] flush_workqueue+0x106/0x12f0
[ 0.962280] peer_remove_after_dead+0x160/0x220
[ 0.962600] wg_set_device+0xa24/0xcc0
[ 0.962994] genl_rcv_msg+0x52f/0xe90
[ 0.963298] netlink_rcv_skb+0x111/0x320
[ 0.963618] genl_rcv+0x1f/0x30
[ 0.963853] netlink_unicast+0x3f6/0x610
[ 0.964245] netlink_sendmsg+0x700/0xb80
[ 0.964586] __sys_sendto+0x1dd/0x2c0
[ 0.964854] __x64_sys_sendto+0xd8/0x1b0
[ 0.965141] do_syscall_64+0x90/0xd9a
[ 0.965408] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 0.965769]
[ 0.965769] other info that might help us debug this:
[ 0.965769]
[ 0.966337] Chain exists of:
[ 0.966337] (wq_completion)wg-kex-wg0 --> (work_completion)(&peer->transmit_handshake_work) --> &wg->static_identity.lock
[ 0.966337]
[ 0.967417] Possible unsafe locking scenario:
[ 0.967417]
[ 0.967836] CPU0 CPU1
[ 0.968155] ---- ----
[ 0.968497] lock(&wg->static_identity.lock);
[ 0.968779] lock((work_completion)(&peer->transmit_handshake_work));
[ 0.969345] lock(&wg->static_identity.lock);
[ 0.969809] lock((wq_completion)wg-kex-wg0);
[ 0.970146]
[ 0.970146] *** DEADLOCK ***
[ 0.970146]
[ 0.970531] 5 locks held by wg/89:
[ 0.970908] #0: ffffffff827433c8 (cb_lock){++++}, at: genl_rcv+0x10/0x30
[ 0.971400] #1: ffffffff82743480 (genl_mutex){+.+.}, at: genl_rcv_msg+0x642/0xe90
[ 0.971924] #2: ffffffff827160c0 (rtnl_mutex){+.+.}, at: wg_set_device+0x9f/0xcc0
[ 0.972488] #3: ffff888032819de0 (&wg->device_update_lock){+.+.}, at: wg_set_device+0xb0/0xcc0
[ 0.973095] #4: ffff888032819bc0 (&wg->static_identity.lock){++++}, at: wg_set_device+0x95d/0xcc0
[ 0.973653]
[ 0.973653] stack backtrace:
[ 0.973932] CPU: 1 PID: 89 Comm: wg Not tainted 5.5.0-debug+ #18
[ 0.974476] Call Trace:
[ 0.974638] dump_stack+0x97/0xe0
[ 0.974869] check_noncircular+0x312/0x3e0
[ 0.975132] ? print_circular_bug+0x1f0/0x1f0
[ 0.975410] ? __kernel_text_address+0x9/0x30
[ 0.975727] ? unwind_get_return_address+0x51/0x90
[ 0.976024] check_prev_add+0x167/0x1e20
[ 0.976367] ? graph_lock+0x70/0x160
[ 0.976682] __lock_acquire+0x2012/0x3170
[ 0.976998] ? register_lock_class+0x1140/0x1140
[ 0.977323] lock_acquire+0x127/0x350
[ 0.977627] ? flush_workqueue+0xe3/0x12f0
[ 0.977890] flush_workqueue+0x106/0x12f0
[ 0.978147] ? flush_workqueue+0xe3/0x12f0
[ 0.978410] ? find_held_lock+0x2c/0x110
[ 0.978662] ? lock_downgrade+0x6e0/0x6e0
[ 0.978919] ? queue_rcu_work+0x60/0x60
[ 0.979166] ? netif_napi_del+0x151/0x3b0
[ 0.979501] ? peer_remove_after_dead+0x160/0x220
[ 0.979871] peer_remove_after_dead+0x160/0x220
[ 0.980232] wg_set_device+0xa24/0xcc0
[ 0.980516] ? deref_stack_reg+0x8e/0xc0
[ 0.980801] ? set_peer+0xe10/0xe10
[ 0.981040] ? __ww_mutex_check_waiters+0x150/0x150
[ 0.981430] ? __nla_validate_parse+0x163/0x270
[ 0.981719] ? genl_family_rcv_msg_attrs_parse+0x13f/0x310
[ 0.982078] genl_rcv_msg+0x52f/0xe90
[ 0.982348] ? genl_family_rcv_msg_attrs_parse+0x310/0x310
[ 0.982690] ? register_lock_class+0x1140/0x1140
[ 0.983049] netlink_rcv_skb+0x111/0x320
[ 0.983298] ? genl_family_rcv_msg_attrs_parse+0x310/0x310
[ 0.983645] ? netlink_ack+0x880/0x880
[ 0.983888] genl_rcv+0x1f/0x30
[ 0.984168] netlink_unicast+0x3f6/0x610
[ 0.984443] ? netlink_detachskb+0x60/0x60
[ 0.984729] ? find_held_lock+0x2c/0x110
[ 0.984976] netlink_sendmsg+0x700/0xb80
[ 0.985220] ? netlink_broadcast_filtered+0xa60/0xa60
[ 0.985533] __sys_sendto+0x1dd/0x2c0
[ 0.985763] ? __x64_sys_getpeername+0xb0/0xb0
[ 0.986039] ? sockfd_lookup_light+0x17/0x160
[ 0.986397] ? __sys_recvmsg+0x8c/0xf0
[ 0.986711] ? __sys_recvmsg_sock+0xd0/0xd0
[ 0.987018] __x64_sys_sendto+0xd8/0x1b0
[ 0.987283] ? lockdep_hardirqs_on+0x39b/0x5a0
[ 0.987666] do_syscall_64+0x90/0xd9a
[ 0.987903] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 0.988223] RIP: 0033:0x7fe77c12003e
[ 0.988508] Code: c3 8b 07 85 c0 75 24 49 89 fb 48 89 f0 48 89 d7 48 89 ce 4c 89 c2 4d 89 ca 4c 8b 44 24 08 4c 8b 4c 24 10 4c 4
[ 0.989666] RSP: 002b:00007fffada2ed58 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
[ 0.990137] RAX: ffffffffffffffda RBX: 00007fe77c159d48 RCX: 00007fe77c12003e
[ 0.990583] RDX: 0000000000000040 RSI: 000055fd1d38e020 RDI: 0000000000000004
[ 0.991091] RBP: 000055fd1d38e020 R08: 000055fd1cb63358 R09: 000000000000000c
[ 0.991568] R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000002c
[ 0.992014] R13: 0000000000000004 R14: 000055fd1d38e020 R15: 0000000000000001
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-05 05:17:26 +08:00
|
|
|
} else {
|
|
|
|
u8 empty[NOISE_PUBLIC_KEY_LEN] = { 0 };
|
|
|
|
|
|
|
|
ret = curve25519(empty, empty, peer->handshake.remote_static);
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-09 07:27:34 +08:00
|
|
|
memset(peer->handshake.precomputed_static_static, 0,
|
|
|
|
NOISE_PUBLIC_KEY_LEN);
|
wireguard: noise: reject peers with low order public keys
Our static-static calculation returns a failure if the public key is of
low order. We check for this when peers are added, and don't allow them
to be added if they're low order, except in the case where we haven't
yet been given a private key. In that case, we would defer the removal
of the peer until we're given a private key, since at that point we're
doing new static-static calculations which incur failures we can act on.
This meant, however, that we wound up removing peers rather late in the
configuration flow.
Syzkaller points out that peer_remove calls flush_workqueue, which in
turn might then wait for sending a handshake initiation to complete.
Since handshake initiation needs the static identity lock, holding the
static identity lock while calling peer_remove can result in a rare
deadlock. We have precisely this case in this situation of late-stage
peer removal based on an invalid public key. We can't drop the lock when
removing, because then incoming handshakes might interact with a bogus
static-static calculation.
While the band-aid patch for this would involve breaking up the peer
removal into two steps like wg_peer_remove_all does, in order to solve
the locking issue, there's actually a much more elegant way of fixing
this:
If the static-static calculation succeeds with one private key, it
*must* succeed with all others, because all 32-byte strings map to valid
private keys, thanks to clamping. That means we can get rid of this
silly dance and locking headaches of removing peers late in the
configuration flow, and instead just reject them early on, regardless of
whether the device has yet been assigned a private key. For the case
where the device doesn't yet have a private key, we safely use zeros
just for the purposes of checking for low order points by way of
checking the output of the calculation.
The following PoC will trigger the deadlock:
ip link add wg0 type wireguard
ip addr add 10.0.0.1/24 dev wg0
ip link set wg0 up
ping -f 10.0.0.2 &
while true; do
wg set wg0 private-key /dev/null peer AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= allowed-ips 10.0.0.0/24 endpoint 10.0.0.3:1234
wg set wg0 private-key <(echo AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=)
done
[ 0.949105] ======================================================
[ 0.949550] WARNING: possible circular locking dependency detected
[ 0.950143] 5.5.0-debug+ #18 Not tainted
[ 0.950431] ------------------------------------------------------
[ 0.950959] wg/89 is trying to acquire lock:
[ 0.951252] ffff8880333e2128 ((wq_completion)wg-kex-wg0){+.+.}, at: flush_workqueue+0xe3/0x12f0
[ 0.951865]
[ 0.951865] but task is already holding lock:
[ 0.952280] ffff888032819bc0 (&wg->static_identity.lock){++++}, at: wg_set_device+0x95d/0xcc0
[ 0.953011]
[ 0.953011] which lock already depends on the new lock.
[ 0.953011]
[ 0.953651]
[ 0.953651] the existing dependency chain (in reverse order) is:
[ 0.954292]
[ 0.954292] -> #2 (&wg->static_identity.lock){++++}:
[ 0.954804] lock_acquire+0x127/0x350
[ 0.955133] down_read+0x83/0x410
[ 0.955428] wg_noise_handshake_create_initiation+0x97/0x700
[ 0.955885] wg_packet_send_handshake_initiation+0x13a/0x280
[ 0.956401] wg_packet_handshake_send_worker+0x10/0x20
[ 0.956841] process_one_work+0x806/0x1500
[ 0.957167] worker_thread+0x8c/0xcb0
[ 0.957549] kthread+0x2ee/0x3b0
[ 0.957792] ret_from_fork+0x24/0x30
[ 0.958234]
[ 0.958234] -> #1 ((work_completion)(&peer->transmit_handshake_work)){+.+.}:
[ 0.958808] lock_acquire+0x127/0x350
[ 0.959075] process_one_work+0x7ab/0x1500
[ 0.959369] worker_thread+0x8c/0xcb0
[ 0.959639] kthread+0x2ee/0x3b0
[ 0.959896] ret_from_fork+0x24/0x30
[ 0.960346]
[ 0.960346] -> #0 ((wq_completion)wg-kex-wg0){+.+.}:
[ 0.960945] check_prev_add+0x167/0x1e20
[ 0.961351] __lock_acquire+0x2012/0x3170
[ 0.961725] lock_acquire+0x127/0x350
[ 0.961990] flush_workqueue+0x106/0x12f0
[ 0.962280] peer_remove_after_dead+0x160/0x220
[ 0.962600] wg_set_device+0xa24/0xcc0
[ 0.962994] genl_rcv_msg+0x52f/0xe90
[ 0.963298] netlink_rcv_skb+0x111/0x320
[ 0.963618] genl_rcv+0x1f/0x30
[ 0.963853] netlink_unicast+0x3f6/0x610
[ 0.964245] netlink_sendmsg+0x700/0xb80
[ 0.964586] __sys_sendto+0x1dd/0x2c0
[ 0.964854] __x64_sys_sendto+0xd8/0x1b0
[ 0.965141] do_syscall_64+0x90/0xd9a
[ 0.965408] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 0.965769]
[ 0.965769] other info that might help us debug this:
[ 0.965769]
[ 0.966337] Chain exists of:
[ 0.966337] (wq_completion)wg-kex-wg0 --> (work_completion)(&peer->transmit_handshake_work) --> &wg->static_identity.lock
[ 0.966337]
[ 0.967417] Possible unsafe locking scenario:
[ 0.967417]
[ 0.967836] CPU0 CPU1
[ 0.968155] ---- ----
[ 0.968497] lock(&wg->static_identity.lock);
[ 0.968779] lock((work_completion)(&peer->transmit_handshake_work));
[ 0.969345] lock(&wg->static_identity.lock);
[ 0.969809] lock((wq_completion)wg-kex-wg0);
[ 0.970146]
[ 0.970146] *** DEADLOCK ***
[ 0.970146]
[ 0.970531] 5 locks held by wg/89:
[ 0.970908] #0: ffffffff827433c8 (cb_lock){++++}, at: genl_rcv+0x10/0x30
[ 0.971400] #1: ffffffff82743480 (genl_mutex){+.+.}, at: genl_rcv_msg+0x642/0xe90
[ 0.971924] #2: ffffffff827160c0 (rtnl_mutex){+.+.}, at: wg_set_device+0x9f/0xcc0
[ 0.972488] #3: ffff888032819de0 (&wg->device_update_lock){+.+.}, at: wg_set_device+0xb0/0xcc0
[ 0.973095] #4: ffff888032819bc0 (&wg->static_identity.lock){++++}, at: wg_set_device+0x95d/0xcc0
[ 0.973653]
[ 0.973653] stack backtrace:
[ 0.973932] CPU: 1 PID: 89 Comm: wg Not tainted 5.5.0-debug+ #18
[ 0.974476] Call Trace:
[ 0.974638] dump_stack+0x97/0xe0
[ 0.974869] check_noncircular+0x312/0x3e0
[ 0.975132] ? print_circular_bug+0x1f0/0x1f0
[ 0.975410] ? __kernel_text_address+0x9/0x30
[ 0.975727] ? unwind_get_return_address+0x51/0x90
[ 0.976024] check_prev_add+0x167/0x1e20
[ 0.976367] ? graph_lock+0x70/0x160
[ 0.976682] __lock_acquire+0x2012/0x3170
[ 0.976998] ? register_lock_class+0x1140/0x1140
[ 0.977323] lock_acquire+0x127/0x350
[ 0.977627] ? flush_workqueue+0xe3/0x12f0
[ 0.977890] flush_workqueue+0x106/0x12f0
[ 0.978147] ? flush_workqueue+0xe3/0x12f0
[ 0.978410] ? find_held_lock+0x2c/0x110
[ 0.978662] ? lock_downgrade+0x6e0/0x6e0
[ 0.978919] ? queue_rcu_work+0x60/0x60
[ 0.979166] ? netif_napi_del+0x151/0x3b0
[ 0.979501] ? peer_remove_after_dead+0x160/0x220
[ 0.979871] peer_remove_after_dead+0x160/0x220
[ 0.980232] wg_set_device+0xa24/0xcc0
[ 0.980516] ? deref_stack_reg+0x8e/0xc0
[ 0.980801] ? set_peer+0xe10/0xe10
[ 0.981040] ? __ww_mutex_check_waiters+0x150/0x150
[ 0.981430] ? __nla_validate_parse+0x163/0x270
[ 0.981719] ? genl_family_rcv_msg_attrs_parse+0x13f/0x310
[ 0.982078] genl_rcv_msg+0x52f/0xe90
[ 0.982348] ? genl_family_rcv_msg_attrs_parse+0x310/0x310
[ 0.982690] ? register_lock_class+0x1140/0x1140
[ 0.983049] netlink_rcv_skb+0x111/0x320
[ 0.983298] ? genl_family_rcv_msg_attrs_parse+0x310/0x310
[ 0.983645] ? netlink_ack+0x880/0x880
[ 0.983888] genl_rcv+0x1f/0x30
[ 0.984168] netlink_unicast+0x3f6/0x610
[ 0.984443] ? netlink_detachskb+0x60/0x60
[ 0.984729] ? find_held_lock+0x2c/0x110
[ 0.984976] netlink_sendmsg+0x700/0xb80
[ 0.985220] ? netlink_broadcast_filtered+0xa60/0xa60
[ 0.985533] __sys_sendto+0x1dd/0x2c0
[ 0.985763] ? __x64_sys_getpeername+0xb0/0xb0
[ 0.986039] ? sockfd_lookup_light+0x17/0x160
[ 0.986397] ? __sys_recvmsg+0x8c/0xf0
[ 0.986711] ? __sys_recvmsg_sock+0xd0/0xd0
[ 0.987018] __x64_sys_sendto+0xd8/0x1b0
[ 0.987283] ? lockdep_hardirqs_on+0x39b/0x5a0
[ 0.987666] do_syscall_64+0x90/0xd9a
[ 0.987903] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 0.988223] RIP: 0033:0x7fe77c12003e
[ 0.988508] Code: c3 8b 07 85 c0 75 24 49 89 fb 48 89 f0 48 89 d7 48 89 ce 4c 89 c2 4d 89 ca 4c 8b 44 24 08 4c 8b 4c 24 10 4c 4
[ 0.989666] RSP: 002b:00007fffada2ed58 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
[ 0.990137] RAX: ffffffffffffffda RBX: 00007fe77c159d48 RCX: 00007fe77c12003e
[ 0.990583] RDX: 0000000000000040 RSI: 000055fd1d38e020 RDI: 0000000000000004
[ 0.991091] RBP: 000055fd1d38e020 R08: 000055fd1cb63358 R09: 000000000000000c
[ 0.991568] R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000002c
[ 0.992014] R13: 0000000000000004 R14: 000055fd1d38e020 R15: 0000000000000001
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-05 05:17:26 +08:00
|
|
|
}
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-09 07:27:34 +08:00
|
|
|
up_write(&peer->handshake.lock);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool wg_noise_handshake_init(struct noise_handshake *handshake,
|
|
|
|
struct noise_static_identity *static_identity,
|
|
|
|
const u8 peer_public_key[NOISE_PUBLIC_KEY_LEN],
|
|
|
|
const u8 peer_preshared_key[NOISE_SYMMETRIC_KEY_LEN],
|
|
|
|
struct wg_peer *peer)
|
|
|
|
{
|
|
|
|
memset(handshake, 0, sizeof(*handshake));
|
|
|
|
init_rwsem(&handshake->lock);
|
|
|
|
handshake->entry.type = INDEX_HASHTABLE_HANDSHAKE;
|
|
|
|
handshake->entry.peer = peer;
|
|
|
|
memcpy(handshake->remote_static, peer_public_key, NOISE_PUBLIC_KEY_LEN);
|
|
|
|
if (peer_preshared_key)
|
|
|
|
memcpy(handshake->preshared_key, peer_preshared_key,
|
|
|
|
NOISE_SYMMETRIC_KEY_LEN);
|
|
|
|
handshake->static_identity = static_identity;
|
|
|
|
handshake->state = HANDSHAKE_ZEROED;
|
|
|
|
return wg_noise_precompute_static_static(peer);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void handshake_zero(struct noise_handshake *handshake)
|
|
|
|
{
|
|
|
|
memset(&handshake->ephemeral_private, 0, NOISE_PUBLIC_KEY_LEN);
|
|
|
|
memset(&handshake->remote_ephemeral, 0, NOISE_PUBLIC_KEY_LEN);
|
|
|
|
memset(&handshake->hash, 0, NOISE_HASH_LEN);
|
|
|
|
memset(&handshake->chaining_key, 0, NOISE_HASH_LEN);
|
|
|
|
handshake->remote_index = 0;
|
|
|
|
handshake->state = HANDSHAKE_ZEROED;
|
|
|
|
}
|
|
|
|
|
|
|
|
void wg_noise_handshake_clear(struct noise_handshake *handshake)
|
|
|
|
{
|
|
|
|
wg_index_hashtable_remove(
|
|
|
|
handshake->entry.peer->device->index_hashtable,
|
|
|
|
&handshake->entry);
|
|
|
|
down_write(&handshake->lock);
|
|
|
|
handshake_zero(handshake);
|
|
|
|
up_write(&handshake->lock);
|
|
|
|
wg_index_hashtable_remove(
|
|
|
|
handshake->entry.peer->device->index_hashtable,
|
|
|
|
&handshake->entry);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct noise_keypair *keypair_create(struct wg_peer *peer)
|
|
|
|
{
|
|
|
|
struct noise_keypair *keypair = kzalloc(sizeof(*keypair), GFP_KERNEL);
|
|
|
|
|
|
|
|
if (unlikely(!keypair))
|
|
|
|
return NULL;
|
|
|
|
keypair->internal_id = atomic64_inc_return(&keypair_counter);
|
|
|
|
keypair->entry.type = INDEX_HASHTABLE_KEYPAIR;
|
|
|
|
keypair->entry.peer = peer;
|
|
|
|
kref_init(&keypair->refcount);
|
|
|
|
return keypair;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void keypair_free_rcu(struct rcu_head *rcu)
|
|
|
|
{
|
|
|
|
kzfree(container_of(rcu, struct noise_keypair, rcu));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void keypair_free_kref(struct kref *kref)
|
|
|
|
{
|
|
|
|
struct noise_keypair *keypair =
|
|
|
|
container_of(kref, struct noise_keypair, refcount);
|
|
|
|
|
|
|
|
net_dbg_ratelimited("%s: Keypair %llu destroyed for peer %llu\n",
|
|
|
|
keypair->entry.peer->device->dev->name,
|
|
|
|
keypair->internal_id,
|
|
|
|
keypair->entry.peer->internal_id);
|
|
|
|
wg_index_hashtable_remove(keypair->entry.peer->device->index_hashtable,
|
|
|
|
&keypair->entry);
|
|
|
|
call_rcu(&keypair->rcu, keypair_free_rcu);
|
|
|
|
}
|
|
|
|
|
|
|
|
void wg_noise_keypair_put(struct noise_keypair *keypair, bool unreference_now)
|
|
|
|
{
|
|
|
|
if (unlikely(!keypair))
|
|
|
|
return;
|
|
|
|
if (unlikely(unreference_now))
|
|
|
|
wg_index_hashtable_remove(
|
|
|
|
keypair->entry.peer->device->index_hashtable,
|
|
|
|
&keypair->entry);
|
|
|
|
kref_put(&keypair->refcount, keypair_free_kref);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct noise_keypair *wg_noise_keypair_get(struct noise_keypair *keypair)
|
|
|
|
{
|
|
|
|
RCU_LOCKDEP_WARN(!rcu_read_lock_bh_held(),
|
|
|
|
"Taking noise keypair reference without holding the RCU BH read lock");
|
|
|
|
if (unlikely(!keypair || !kref_get_unless_zero(&keypair->refcount)))
|
|
|
|
return NULL;
|
|
|
|
return keypair;
|
|
|
|
}
|
|
|
|
|
|
|
|
void wg_noise_keypairs_clear(struct noise_keypairs *keypairs)
|
|
|
|
{
|
|
|
|
struct noise_keypair *old;
|
|
|
|
|
|
|
|
spin_lock_bh(&keypairs->keypair_update_lock);
|
|
|
|
|
|
|
|
/* We zero the next_keypair before zeroing the others, so that
|
|
|
|
* wg_noise_received_with_keypair returns early before subsequent ones
|
|
|
|
* are zeroed.
|
|
|
|
*/
|
|
|
|
old = rcu_dereference_protected(keypairs->next_keypair,
|
|
|
|
lockdep_is_held(&keypairs->keypair_update_lock));
|
|
|
|
RCU_INIT_POINTER(keypairs->next_keypair, NULL);
|
|
|
|
wg_noise_keypair_put(old, true);
|
|
|
|
|
|
|
|
old = rcu_dereference_protected(keypairs->previous_keypair,
|
|
|
|
lockdep_is_held(&keypairs->keypair_update_lock));
|
|
|
|
RCU_INIT_POINTER(keypairs->previous_keypair, NULL);
|
|
|
|
wg_noise_keypair_put(old, true);
|
|
|
|
|
|
|
|
old = rcu_dereference_protected(keypairs->current_keypair,
|
|
|
|
lockdep_is_held(&keypairs->keypair_update_lock));
|
|
|
|
RCU_INIT_POINTER(keypairs->current_keypair, NULL);
|
|
|
|
wg_noise_keypair_put(old, true);
|
|
|
|
|
|
|
|
spin_unlock_bh(&keypairs->keypair_update_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
void wg_noise_expire_current_peer_keypairs(struct wg_peer *peer)
|
|
|
|
{
|
|
|
|
struct noise_keypair *keypair;
|
|
|
|
|
|
|
|
wg_noise_handshake_clear(&peer->handshake);
|
|
|
|
wg_noise_reset_last_sent_handshake(&peer->last_sent_handshake);
|
|
|
|
|
|
|
|
spin_lock_bh(&peer->keypairs.keypair_update_lock);
|
|
|
|
keypair = rcu_dereference_protected(peer->keypairs.next_keypair,
|
|
|
|
lockdep_is_held(&peer->keypairs.keypair_update_lock));
|
|
|
|
if (keypair)
|
|
|
|
keypair->sending.is_valid = false;
|
|
|
|
keypair = rcu_dereference_protected(peer->keypairs.current_keypair,
|
|
|
|
lockdep_is_held(&peer->keypairs.keypair_update_lock));
|
|
|
|
if (keypair)
|
|
|
|
keypair->sending.is_valid = false;
|
|
|
|
spin_unlock_bh(&peer->keypairs.keypair_update_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void add_new_keypair(struct noise_keypairs *keypairs,
|
|
|
|
struct noise_keypair *new_keypair)
|
|
|
|
{
|
|
|
|
struct noise_keypair *previous_keypair, *next_keypair, *current_keypair;
|
|
|
|
|
|
|
|
spin_lock_bh(&keypairs->keypair_update_lock);
|
|
|
|
previous_keypair = rcu_dereference_protected(keypairs->previous_keypair,
|
|
|
|
lockdep_is_held(&keypairs->keypair_update_lock));
|
|
|
|
next_keypair = rcu_dereference_protected(keypairs->next_keypair,
|
|
|
|
lockdep_is_held(&keypairs->keypair_update_lock));
|
|
|
|
current_keypair = rcu_dereference_protected(keypairs->current_keypair,
|
|
|
|
lockdep_is_held(&keypairs->keypair_update_lock));
|
|
|
|
if (new_keypair->i_am_the_initiator) {
|
|
|
|
/* If we're the initiator, it means we've sent a handshake, and
|
|
|
|
* received a confirmation response, which means this new
|
|
|
|
* keypair can now be used.
|
|
|
|
*/
|
|
|
|
if (next_keypair) {
|
|
|
|
/* If there already was a next keypair pending, we
|
|
|
|
* demote it to be the previous keypair, and free the
|
|
|
|
* existing current. Note that this means KCI can result
|
|
|
|
* in this transition. It would perhaps be more sound to
|
|
|
|
* always just get rid of the unused next keypair
|
|
|
|
* instead of putting it in the previous slot, but this
|
|
|
|
* might be a bit less robust. Something to think about
|
|
|
|
* for the future.
|
|
|
|
*/
|
|
|
|
RCU_INIT_POINTER(keypairs->next_keypair, NULL);
|
|
|
|
rcu_assign_pointer(keypairs->previous_keypair,
|
|
|
|
next_keypair);
|
|
|
|
wg_noise_keypair_put(current_keypair, true);
|
|
|
|
} else /* If there wasn't an existing next keypair, we replace
|
|
|
|
* the previous with the current one.
|
|
|
|
*/
|
|
|
|
rcu_assign_pointer(keypairs->previous_keypair,
|
|
|
|
current_keypair);
|
|
|
|
/* At this point we can get rid of the old previous keypair, and
|
|
|
|
* set up the new keypair.
|
|
|
|
*/
|
|
|
|
wg_noise_keypair_put(previous_keypair, true);
|
|
|
|
rcu_assign_pointer(keypairs->current_keypair, new_keypair);
|
|
|
|
} else {
|
|
|
|
/* If we're the responder, it means we can't use the new keypair
|
|
|
|
* until we receive confirmation via the first data packet, so
|
|
|
|
* we get rid of the existing previous one, the possibly
|
|
|
|
* existing next one, and slide in the new next one.
|
|
|
|
*/
|
|
|
|
rcu_assign_pointer(keypairs->next_keypair, new_keypair);
|
|
|
|
wg_noise_keypair_put(next_keypair, true);
|
|
|
|
RCU_INIT_POINTER(keypairs->previous_keypair, NULL);
|
|
|
|
wg_noise_keypair_put(previous_keypair, true);
|
|
|
|
}
|
|
|
|
spin_unlock_bh(&keypairs->keypair_update_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool wg_noise_received_with_keypair(struct noise_keypairs *keypairs,
|
|
|
|
struct noise_keypair *received_keypair)
|
|
|
|
{
|
|
|
|
struct noise_keypair *old_keypair;
|
|
|
|
bool key_is_new;
|
|
|
|
|
|
|
|
/* We first check without taking the spinlock. */
|
|
|
|
key_is_new = received_keypair ==
|
|
|
|
rcu_access_pointer(keypairs->next_keypair);
|
|
|
|
if (likely(!key_is_new))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
spin_lock_bh(&keypairs->keypair_update_lock);
|
|
|
|
/* After locking, we double check that things didn't change from
|
|
|
|
* beneath us.
|
|
|
|
*/
|
|
|
|
if (unlikely(received_keypair !=
|
|
|
|
rcu_dereference_protected(keypairs->next_keypair,
|
|
|
|
lockdep_is_held(&keypairs->keypair_update_lock)))) {
|
|
|
|
spin_unlock_bh(&keypairs->keypair_update_lock);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* When we've finally received the confirmation, we slide the next
|
|
|
|
* into the current, the current into the previous, and get rid of
|
|
|
|
* the old previous.
|
|
|
|
*/
|
|
|
|
old_keypair = rcu_dereference_protected(keypairs->previous_keypair,
|
|
|
|
lockdep_is_held(&keypairs->keypair_update_lock));
|
|
|
|
rcu_assign_pointer(keypairs->previous_keypair,
|
|
|
|
rcu_dereference_protected(keypairs->current_keypair,
|
|
|
|
lockdep_is_held(&keypairs->keypair_update_lock)));
|
|
|
|
wg_noise_keypair_put(old_keypair, true);
|
|
|
|
rcu_assign_pointer(keypairs->current_keypair, received_keypair);
|
|
|
|
RCU_INIT_POINTER(keypairs->next_keypair, NULL);
|
|
|
|
|
|
|
|
spin_unlock_bh(&keypairs->keypair_update_lock);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Must hold static_identity->lock */
|
|
|
|
void wg_noise_set_static_identity_private_key(
|
|
|
|
struct noise_static_identity *static_identity,
|
|
|
|
const u8 private_key[NOISE_PUBLIC_KEY_LEN])
|
|
|
|
{
|
|
|
|
memcpy(static_identity->static_private, private_key,
|
|
|
|
NOISE_PUBLIC_KEY_LEN);
|
|
|
|
curve25519_clamp_secret(static_identity->static_private);
|
|
|
|
static_identity->has_identity = curve25519_generate_public(
|
|
|
|
static_identity->static_public, private_key);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This is Hugo Krawczyk's HKDF:
|
|
|
|
* - https://eprint.iacr.org/2010/264.pdf
|
|
|
|
* - https://tools.ietf.org/html/rfc5869
|
|
|
|
*/
|
|
|
|
static void kdf(u8 *first_dst, u8 *second_dst, u8 *third_dst, const u8 *data,
|
|
|
|
size_t first_len, size_t second_len, size_t third_len,
|
|
|
|
size_t data_len, const u8 chaining_key[NOISE_HASH_LEN])
|
|
|
|
{
|
|
|
|
u8 output[BLAKE2S_HASH_SIZE + 1];
|
|
|
|
u8 secret[BLAKE2S_HASH_SIZE];
|
|
|
|
|
|
|
|
WARN_ON(IS_ENABLED(DEBUG) &&
|
|
|
|
(first_len > BLAKE2S_HASH_SIZE ||
|
|
|
|
second_len > BLAKE2S_HASH_SIZE ||
|
|
|
|
third_len > BLAKE2S_HASH_SIZE ||
|
|
|
|
((second_len || second_dst || third_len || third_dst) &&
|
|
|
|
(!first_len || !first_dst)) ||
|
|
|
|
((third_len || third_dst) && (!second_len || !second_dst))));
|
|
|
|
|
|
|
|
/* Extract entropy from data into secret */
|
|
|
|
blake2s256_hmac(secret, data, chaining_key, data_len, NOISE_HASH_LEN);
|
|
|
|
|
|
|
|
if (!first_dst || !first_len)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* Expand first key: key = secret, data = 0x1 */
|
|
|
|
output[0] = 1;
|
|
|
|
blake2s256_hmac(output, output, secret, 1, BLAKE2S_HASH_SIZE);
|
|
|
|
memcpy(first_dst, output, first_len);
|
|
|
|
|
|
|
|
if (!second_dst || !second_len)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* Expand second key: key = secret, data = first-key || 0x2 */
|
|
|
|
output[BLAKE2S_HASH_SIZE] = 2;
|
|
|
|
blake2s256_hmac(output, output, secret, BLAKE2S_HASH_SIZE + 1,
|
|
|
|
BLAKE2S_HASH_SIZE);
|
|
|
|
memcpy(second_dst, output, second_len);
|
|
|
|
|
|
|
|
if (!third_dst || !third_len)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* Expand third key: key = secret, data = second-key || 0x3 */
|
|
|
|
output[BLAKE2S_HASH_SIZE] = 3;
|
|
|
|
blake2s256_hmac(output, output, secret, BLAKE2S_HASH_SIZE + 1,
|
|
|
|
BLAKE2S_HASH_SIZE);
|
|
|
|
memcpy(third_dst, output, third_len);
|
|
|
|
|
|
|
|
out:
|
|
|
|
/* Clear sensitive data from stack */
|
|
|
|
memzero_explicit(secret, BLAKE2S_HASH_SIZE);
|
|
|
|
memzero_explicit(output, BLAKE2S_HASH_SIZE + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void symmetric_key_init(struct noise_symmetric_key *key)
|
|
|
|
{
|
|
|
|
spin_lock_init(&key->counter.receive.lock);
|
|
|
|
atomic64_set(&key->counter.counter, 0);
|
|
|
|
memset(key->counter.receive.backtrack, 0,
|
|
|
|
sizeof(key->counter.receive.backtrack));
|
|
|
|
key->birthdate = ktime_get_coarse_boottime_ns();
|
|
|
|
key->is_valid = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void derive_keys(struct noise_symmetric_key *first_dst,
|
|
|
|
struct noise_symmetric_key *second_dst,
|
|
|
|
const u8 chaining_key[NOISE_HASH_LEN])
|
|
|
|
{
|
|
|
|
kdf(first_dst->key, second_dst->key, NULL, NULL,
|
|
|
|
NOISE_SYMMETRIC_KEY_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, 0,
|
|
|
|
chaining_key);
|
|
|
|
symmetric_key_init(first_dst);
|
|
|
|
symmetric_key_init(second_dst);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool __must_check mix_dh(u8 chaining_key[NOISE_HASH_LEN],
|
|
|
|
u8 key[NOISE_SYMMETRIC_KEY_LEN],
|
|
|
|
const u8 private[NOISE_PUBLIC_KEY_LEN],
|
|
|
|
const u8 public[NOISE_PUBLIC_KEY_LEN])
|
|
|
|
{
|
|
|
|
u8 dh_calculation[NOISE_PUBLIC_KEY_LEN];
|
|
|
|
|
|
|
|
if (unlikely(!curve25519(dh_calculation, private, public)))
|
|
|
|
return false;
|
|
|
|
kdf(chaining_key, key, NULL, dh_calculation, NOISE_HASH_LEN,
|
|
|
|
NOISE_SYMMETRIC_KEY_LEN, 0, NOISE_PUBLIC_KEY_LEN, chaining_key);
|
|
|
|
memzero_explicit(dh_calculation, NOISE_PUBLIC_KEY_LEN);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void mix_hash(u8 hash[NOISE_HASH_LEN], const u8 *src, size_t src_len)
|
|
|
|
{
|
|
|
|
struct blake2s_state blake;
|
|
|
|
|
|
|
|
blake2s_init(&blake, NOISE_HASH_LEN);
|
|
|
|
blake2s_update(&blake, hash, NOISE_HASH_LEN);
|
|
|
|
blake2s_update(&blake, src, src_len);
|
|
|
|
blake2s_final(&blake, hash);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void mix_psk(u8 chaining_key[NOISE_HASH_LEN], u8 hash[NOISE_HASH_LEN],
|
|
|
|
u8 key[NOISE_SYMMETRIC_KEY_LEN],
|
|
|
|
const u8 psk[NOISE_SYMMETRIC_KEY_LEN])
|
|
|
|
{
|
|
|
|
u8 temp_hash[NOISE_HASH_LEN];
|
|
|
|
|
|
|
|
kdf(chaining_key, temp_hash, key, psk, NOISE_HASH_LEN, NOISE_HASH_LEN,
|
|
|
|
NOISE_SYMMETRIC_KEY_LEN, NOISE_SYMMETRIC_KEY_LEN, chaining_key);
|
|
|
|
mix_hash(hash, temp_hash, NOISE_HASH_LEN);
|
|
|
|
memzero_explicit(temp_hash, NOISE_HASH_LEN);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void handshake_init(u8 chaining_key[NOISE_HASH_LEN],
|
|
|
|
u8 hash[NOISE_HASH_LEN],
|
|
|
|
const u8 remote_static[NOISE_PUBLIC_KEY_LEN])
|
|
|
|
{
|
|
|
|
memcpy(hash, handshake_init_hash, NOISE_HASH_LEN);
|
|
|
|
memcpy(chaining_key, handshake_init_chaining_key, NOISE_HASH_LEN);
|
|
|
|
mix_hash(hash, remote_static, NOISE_PUBLIC_KEY_LEN);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void message_encrypt(u8 *dst_ciphertext, const u8 *src_plaintext,
|
|
|
|
size_t src_len, u8 key[NOISE_SYMMETRIC_KEY_LEN],
|
|
|
|
u8 hash[NOISE_HASH_LEN])
|
|
|
|
{
|
|
|
|
chacha20poly1305_encrypt(dst_ciphertext, src_plaintext, src_len, hash,
|
|
|
|
NOISE_HASH_LEN,
|
|
|
|
0 /* Always zero for Noise_IK */, key);
|
|
|
|
mix_hash(hash, dst_ciphertext, noise_encrypted_len(src_len));
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool message_decrypt(u8 *dst_plaintext, const u8 *src_ciphertext,
|
|
|
|
size_t src_len, u8 key[NOISE_SYMMETRIC_KEY_LEN],
|
|
|
|
u8 hash[NOISE_HASH_LEN])
|
|
|
|
{
|
|
|
|
if (!chacha20poly1305_decrypt(dst_plaintext, src_ciphertext, src_len,
|
|
|
|
hash, NOISE_HASH_LEN,
|
|
|
|
0 /* Always zero for Noise_IK */, key))
|
|
|
|
return false;
|
|
|
|
mix_hash(hash, src_ciphertext, src_len);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void message_ephemeral(u8 ephemeral_dst[NOISE_PUBLIC_KEY_LEN],
|
|
|
|
const u8 ephemeral_src[NOISE_PUBLIC_KEY_LEN],
|
|
|
|
u8 chaining_key[NOISE_HASH_LEN],
|
|
|
|
u8 hash[NOISE_HASH_LEN])
|
|
|
|
{
|
|
|
|
if (ephemeral_dst != ephemeral_src)
|
|
|
|
memcpy(ephemeral_dst, ephemeral_src, NOISE_PUBLIC_KEY_LEN);
|
|
|
|
mix_hash(hash, ephemeral_src, NOISE_PUBLIC_KEY_LEN);
|
|
|
|
kdf(chaining_key, NULL, NULL, ephemeral_src, NOISE_HASH_LEN, 0, 0,
|
|
|
|
NOISE_PUBLIC_KEY_LEN, chaining_key);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void tai64n_now(u8 output[NOISE_TIMESTAMP_LEN])
|
|
|
|
{
|
|
|
|
struct timespec64 now;
|
|
|
|
|
|
|
|
ktime_get_real_ts64(&now);
|
|
|
|
|
|
|
|
/* In order to prevent some sort of infoleak from precise timers, we
|
|
|
|
* round down the nanoseconds part to the closest rounded-down power of
|
|
|
|
* two to the maximum initiations per second allowed anyway by the
|
|
|
|
* implementation.
|
|
|
|
*/
|
|
|
|
now.tv_nsec = ALIGN_DOWN(now.tv_nsec,
|
|
|
|
rounddown_pow_of_two(NSEC_PER_SEC / INITIATIONS_PER_SECOND));
|
|
|
|
|
|
|
|
/* https://cr.yp.to/libtai/tai64.html */
|
|
|
|
*(__be64 *)output = cpu_to_be64(0x400000000000000aULL + now.tv_sec);
|
|
|
|
*(__be32 *)(output + sizeof(__be64)) = cpu_to_be32(now.tv_nsec);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool
|
|
|
|
wg_noise_handshake_create_initiation(struct message_handshake_initiation *dst,
|
|
|
|
struct noise_handshake *handshake)
|
|
|
|
{
|
|
|
|
u8 timestamp[NOISE_TIMESTAMP_LEN];
|
|
|
|
u8 key[NOISE_SYMMETRIC_KEY_LEN];
|
|
|
|
bool ret = false;
|
|
|
|
|
|
|
|
/* We need to wait for crng _before_ taking any locks, since
|
|
|
|
* curve25519_generate_secret uses get_random_bytes_wait.
|
|
|
|
*/
|
|
|
|
wait_for_random_bytes();
|
|
|
|
|
|
|
|
down_read(&handshake->static_identity->lock);
|
|
|
|
down_write(&handshake->lock);
|
|
|
|
|
|
|
|
if (unlikely(!handshake->static_identity->has_identity))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
dst->header.type = cpu_to_le32(MESSAGE_HANDSHAKE_INITIATION);
|
|
|
|
|
|
|
|
handshake_init(handshake->chaining_key, handshake->hash,
|
|
|
|
handshake->remote_static);
|
|
|
|
|
|
|
|
/* e */
|
|
|
|
curve25519_generate_secret(handshake->ephemeral_private);
|
|
|
|
if (!curve25519_generate_public(dst->unencrypted_ephemeral,
|
|
|
|
handshake->ephemeral_private))
|
|
|
|
goto out;
|
|
|
|
message_ephemeral(dst->unencrypted_ephemeral,
|
|
|
|
dst->unencrypted_ephemeral, handshake->chaining_key,
|
|
|
|
handshake->hash);
|
|
|
|
|
|
|
|
/* es */
|
|
|
|
if (!mix_dh(handshake->chaining_key, key, handshake->ephemeral_private,
|
|
|
|
handshake->remote_static))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* s */
|
|
|
|
message_encrypt(dst->encrypted_static,
|
|
|
|
handshake->static_identity->static_public,
|
|
|
|
NOISE_PUBLIC_KEY_LEN, key, handshake->hash);
|
|
|
|
|
|
|
|
/* ss */
|
|
|
|
kdf(handshake->chaining_key, key, NULL,
|
|
|
|
handshake->precomputed_static_static, NOISE_HASH_LEN,
|
|
|
|
NOISE_SYMMETRIC_KEY_LEN, 0, NOISE_PUBLIC_KEY_LEN,
|
|
|
|
handshake->chaining_key);
|
|
|
|
|
|
|
|
/* {t} */
|
|
|
|
tai64n_now(timestamp);
|
|
|
|
message_encrypt(dst->encrypted_timestamp, timestamp,
|
|
|
|
NOISE_TIMESTAMP_LEN, key, handshake->hash);
|
|
|
|
|
|
|
|
dst->sender_index = wg_index_hashtable_insert(
|
|
|
|
handshake->entry.peer->device->index_hashtable,
|
|
|
|
&handshake->entry);
|
|
|
|
|
|
|
|
handshake->state = HANDSHAKE_CREATED_INITIATION;
|
|
|
|
ret = true;
|
|
|
|
|
|
|
|
out:
|
|
|
|
up_write(&handshake->lock);
|
|
|
|
up_read(&handshake->static_identity->lock);
|
|
|
|
memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct wg_peer *
|
|
|
|
wg_noise_handshake_consume_initiation(struct message_handshake_initiation *src,
|
|
|
|
struct wg_device *wg)
|
|
|
|
{
|
|
|
|
struct wg_peer *peer = NULL, *ret_peer = NULL;
|
|
|
|
struct noise_handshake *handshake;
|
|
|
|
bool replay_attack, flood_attack;
|
|
|
|
u8 key[NOISE_SYMMETRIC_KEY_LEN];
|
|
|
|
u8 chaining_key[NOISE_HASH_LEN];
|
|
|
|
u8 hash[NOISE_HASH_LEN];
|
|
|
|
u8 s[NOISE_PUBLIC_KEY_LEN];
|
|
|
|
u8 e[NOISE_PUBLIC_KEY_LEN];
|
|
|
|
u8 t[NOISE_TIMESTAMP_LEN];
|
|
|
|
u64 initiation_consumption;
|
|
|
|
|
|
|
|
down_read(&wg->static_identity.lock);
|
|
|
|
if (unlikely(!wg->static_identity.has_identity))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
handshake_init(chaining_key, hash, wg->static_identity.static_public);
|
|
|
|
|
|
|
|
/* e */
|
|
|
|
message_ephemeral(e, src->unencrypted_ephemeral, chaining_key, hash);
|
|
|
|
|
|
|
|
/* es */
|
|
|
|
if (!mix_dh(chaining_key, key, wg->static_identity.static_private, e))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* s */
|
|
|
|
if (!message_decrypt(s, src->encrypted_static,
|
|
|
|
sizeof(src->encrypted_static), key, hash))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* Lookup which peer we're actually talking to */
|
|
|
|
peer = wg_pubkey_hashtable_lookup(wg->peer_hashtable, s);
|
|
|
|
if (!peer)
|
|
|
|
goto out;
|
|
|
|
handshake = &peer->handshake;
|
|
|
|
|
|
|
|
/* ss */
|
|
|
|
kdf(chaining_key, key, NULL, handshake->precomputed_static_static,
|
|
|
|
NOISE_HASH_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, NOISE_PUBLIC_KEY_LEN,
|
|
|
|
chaining_key);
|
|
|
|
|
|
|
|
/* {t} */
|
|
|
|
if (!message_decrypt(t, src->encrypted_timestamp,
|
|
|
|
sizeof(src->encrypted_timestamp), key, hash))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
down_read(&handshake->lock);
|
|
|
|
replay_attack = memcmp(t, handshake->latest_timestamp,
|
|
|
|
NOISE_TIMESTAMP_LEN) <= 0;
|
|
|
|
flood_attack = (s64)handshake->last_initiation_consumption +
|
|
|
|
NSEC_PER_SEC / INITIATIONS_PER_SECOND >
|
|
|
|
(s64)ktime_get_coarse_boottime_ns();
|
|
|
|
up_read(&handshake->lock);
|
|
|
|
if (replay_attack || flood_attack)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* Success! Copy everything to peer */
|
|
|
|
down_write(&handshake->lock);
|
|
|
|
memcpy(handshake->remote_ephemeral, e, NOISE_PUBLIC_KEY_LEN);
|
|
|
|
if (memcmp(t, handshake->latest_timestamp, NOISE_TIMESTAMP_LEN) > 0)
|
|
|
|
memcpy(handshake->latest_timestamp, t, NOISE_TIMESTAMP_LEN);
|
|
|
|
memcpy(handshake->hash, hash, NOISE_HASH_LEN);
|
|
|
|
memcpy(handshake->chaining_key, chaining_key, NOISE_HASH_LEN);
|
|
|
|
handshake->remote_index = src->sender_index;
|
|
|
|
if ((s64)(handshake->last_initiation_consumption -
|
|
|
|
(initiation_consumption = ktime_get_coarse_boottime_ns())) < 0)
|
|
|
|
handshake->last_initiation_consumption = initiation_consumption;
|
|
|
|
handshake->state = HANDSHAKE_CONSUMED_INITIATION;
|
|
|
|
up_write(&handshake->lock);
|
|
|
|
ret_peer = peer;
|
|
|
|
|
|
|
|
out:
|
|
|
|
memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN);
|
|
|
|
memzero_explicit(hash, NOISE_HASH_LEN);
|
|
|
|
memzero_explicit(chaining_key, NOISE_HASH_LEN);
|
|
|
|
up_read(&wg->static_identity.lock);
|
|
|
|
if (!ret_peer)
|
|
|
|
wg_peer_put(peer);
|
|
|
|
return ret_peer;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool wg_noise_handshake_create_response(struct message_handshake_response *dst,
|
|
|
|
struct noise_handshake *handshake)
|
|
|
|
{
|
|
|
|
u8 key[NOISE_SYMMETRIC_KEY_LEN];
|
|
|
|
bool ret = false;
|
|
|
|
|
|
|
|
/* We need to wait for crng _before_ taking any locks, since
|
|
|
|
* curve25519_generate_secret uses get_random_bytes_wait.
|
|
|
|
*/
|
|
|
|
wait_for_random_bytes();
|
|
|
|
|
|
|
|
down_read(&handshake->static_identity->lock);
|
|
|
|
down_write(&handshake->lock);
|
|
|
|
|
|
|
|
if (handshake->state != HANDSHAKE_CONSUMED_INITIATION)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
dst->header.type = cpu_to_le32(MESSAGE_HANDSHAKE_RESPONSE);
|
|
|
|
dst->receiver_index = handshake->remote_index;
|
|
|
|
|
|
|
|
/* e */
|
|
|
|
curve25519_generate_secret(handshake->ephemeral_private);
|
|
|
|
if (!curve25519_generate_public(dst->unencrypted_ephemeral,
|
|
|
|
handshake->ephemeral_private))
|
|
|
|
goto out;
|
|
|
|
message_ephemeral(dst->unencrypted_ephemeral,
|
|
|
|
dst->unencrypted_ephemeral, handshake->chaining_key,
|
|
|
|
handshake->hash);
|
|
|
|
|
|
|
|
/* ee */
|
|
|
|
if (!mix_dh(handshake->chaining_key, NULL, handshake->ephemeral_private,
|
|
|
|
handshake->remote_ephemeral))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* se */
|
|
|
|
if (!mix_dh(handshake->chaining_key, NULL, handshake->ephemeral_private,
|
|
|
|
handshake->remote_static))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* psk */
|
|
|
|
mix_psk(handshake->chaining_key, handshake->hash, key,
|
|
|
|
handshake->preshared_key);
|
|
|
|
|
|
|
|
/* {} */
|
|
|
|
message_encrypt(dst->encrypted_nothing, NULL, 0, key, handshake->hash);
|
|
|
|
|
|
|
|
dst->sender_index = wg_index_hashtable_insert(
|
|
|
|
handshake->entry.peer->device->index_hashtable,
|
|
|
|
&handshake->entry);
|
|
|
|
|
|
|
|
handshake->state = HANDSHAKE_CREATED_RESPONSE;
|
|
|
|
ret = true;
|
|
|
|
|
|
|
|
out:
|
|
|
|
up_write(&handshake->lock);
|
|
|
|
up_read(&handshake->static_identity->lock);
|
|
|
|
memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct wg_peer *
|
|
|
|
wg_noise_handshake_consume_response(struct message_handshake_response *src,
|
|
|
|
struct wg_device *wg)
|
|
|
|
{
|
|
|
|
enum noise_handshake_state state = HANDSHAKE_ZEROED;
|
|
|
|
struct wg_peer *peer = NULL, *ret_peer = NULL;
|
|
|
|
struct noise_handshake *handshake;
|
|
|
|
u8 key[NOISE_SYMMETRIC_KEY_LEN];
|
|
|
|
u8 hash[NOISE_HASH_LEN];
|
|
|
|
u8 chaining_key[NOISE_HASH_LEN];
|
|
|
|
u8 e[NOISE_PUBLIC_KEY_LEN];
|
|
|
|
u8 ephemeral_private[NOISE_PUBLIC_KEY_LEN];
|
|
|
|
u8 static_private[NOISE_PUBLIC_KEY_LEN];
|
|
|
|
|
|
|
|
down_read(&wg->static_identity.lock);
|
|
|
|
|
|
|
|
if (unlikely(!wg->static_identity.has_identity))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
handshake = (struct noise_handshake *)wg_index_hashtable_lookup(
|
|
|
|
wg->index_hashtable, INDEX_HASHTABLE_HANDSHAKE,
|
|
|
|
src->receiver_index, &peer);
|
|
|
|
if (unlikely(!handshake))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
down_read(&handshake->lock);
|
|
|
|
state = handshake->state;
|
|
|
|
memcpy(hash, handshake->hash, NOISE_HASH_LEN);
|
|
|
|
memcpy(chaining_key, handshake->chaining_key, NOISE_HASH_LEN);
|
|
|
|
memcpy(ephemeral_private, handshake->ephemeral_private,
|
|
|
|
NOISE_PUBLIC_KEY_LEN);
|
|
|
|
up_read(&handshake->lock);
|
|
|
|
|
|
|
|
if (state != HANDSHAKE_CREATED_INITIATION)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
/* e */
|
|
|
|
message_ephemeral(e, src->unencrypted_ephemeral, chaining_key, hash);
|
|
|
|
|
|
|
|
/* ee */
|
|
|
|
if (!mix_dh(chaining_key, NULL, ephemeral_private, e))
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
/* se */
|
|
|
|
if (!mix_dh(chaining_key, NULL, wg->static_identity.static_private, e))
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
/* psk */
|
|
|
|
mix_psk(chaining_key, hash, key, handshake->preshared_key);
|
|
|
|
|
|
|
|
/* {} */
|
|
|
|
if (!message_decrypt(NULL, src->encrypted_nothing,
|
|
|
|
sizeof(src->encrypted_nothing), key, hash))
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
/* Success! Copy everything to peer */
|
|
|
|
down_write(&handshake->lock);
|
|
|
|
/* It's important to check that the state is still the same, while we
|
|
|
|
* have an exclusive lock.
|
|
|
|
*/
|
|
|
|
if (handshake->state != state) {
|
|
|
|
up_write(&handshake->lock);
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
memcpy(handshake->remote_ephemeral, e, NOISE_PUBLIC_KEY_LEN);
|
|
|
|
memcpy(handshake->hash, hash, NOISE_HASH_LEN);
|
|
|
|
memcpy(handshake->chaining_key, chaining_key, NOISE_HASH_LEN);
|
|
|
|
handshake->remote_index = src->sender_index;
|
|
|
|
handshake->state = HANDSHAKE_CONSUMED_RESPONSE;
|
|
|
|
up_write(&handshake->lock);
|
|
|
|
ret_peer = peer;
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
fail:
|
|
|
|
wg_peer_put(peer);
|
|
|
|
out:
|
|
|
|
memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN);
|
|
|
|
memzero_explicit(hash, NOISE_HASH_LEN);
|
|
|
|
memzero_explicit(chaining_key, NOISE_HASH_LEN);
|
|
|
|
memzero_explicit(ephemeral_private, NOISE_PUBLIC_KEY_LEN);
|
|
|
|
memzero_explicit(static_private, NOISE_PUBLIC_KEY_LEN);
|
|
|
|
up_read(&wg->static_identity.lock);
|
|
|
|
return ret_peer;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool wg_noise_handshake_begin_session(struct noise_handshake *handshake,
|
|
|
|
struct noise_keypairs *keypairs)
|
|
|
|
{
|
|
|
|
struct noise_keypair *new_keypair;
|
|
|
|
bool ret = false;
|
|
|
|
|
|
|
|
down_write(&handshake->lock);
|
|
|
|
if (handshake->state != HANDSHAKE_CREATED_RESPONSE &&
|
|
|
|
handshake->state != HANDSHAKE_CONSUMED_RESPONSE)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
new_keypair = keypair_create(handshake->entry.peer);
|
|
|
|
if (!new_keypair)
|
|
|
|
goto out;
|
|
|
|
new_keypair->i_am_the_initiator = handshake->state ==
|
|
|
|
HANDSHAKE_CONSUMED_RESPONSE;
|
|
|
|
new_keypair->remote_index = handshake->remote_index;
|
|
|
|
|
|
|
|
if (new_keypair->i_am_the_initiator)
|
|
|
|
derive_keys(&new_keypair->sending, &new_keypair->receiving,
|
|
|
|
handshake->chaining_key);
|
|
|
|
else
|
|
|
|
derive_keys(&new_keypair->receiving, &new_keypair->sending,
|
|
|
|
handshake->chaining_key);
|
|
|
|
|
|
|
|
handshake_zero(handshake);
|
|
|
|
rcu_read_lock_bh();
|
|
|
|
if (likely(!READ_ONCE(container_of(handshake, struct wg_peer,
|
|
|
|
handshake)->is_dead))) {
|
|
|
|
add_new_keypair(keypairs, new_keypair);
|
|
|
|
net_dbg_ratelimited("%s: Keypair %llu created for peer %llu\n",
|
|
|
|
handshake->entry.peer->device->dev->name,
|
|
|
|
new_keypair->internal_id,
|
|
|
|
handshake->entry.peer->internal_id);
|
|
|
|
ret = wg_index_hashtable_replace(
|
|
|
|
handshake->entry.peer->device->index_hashtable,
|
|
|
|
&handshake->entry, &new_keypair->entry);
|
|
|
|
} else {
|
|
|
|
kzfree(new_keypair);
|
|
|
|
}
|
|
|
|
rcu_read_unlock_bh();
|
|
|
|
|
|
|
|
out:
|
|
|
|
up_write(&handshake->lock);
|
|
|
|
return ret;
|
|
|
|
}
|