OpenCloudOS-Kernel/drivers/scsi/hisi_sas/hisi_sas_v3_hw.c

3485 lines
102 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2017 Hisilicon Limited.
*/
#include "hisi_sas.h"
#define DRV_NAME "hisi_sas_v3_hw"
/* global registers need init */
#define DLVRY_QUEUE_ENABLE 0x0
#define IOST_BASE_ADDR_LO 0x8
#define IOST_BASE_ADDR_HI 0xc
#define ITCT_BASE_ADDR_LO 0x10
#define ITCT_BASE_ADDR_HI 0x14
#define IO_BROKEN_MSG_ADDR_LO 0x18
#define IO_BROKEN_MSG_ADDR_HI 0x1c
#define PHY_CONTEXT 0x20
#define PHY_STATE 0x24
#define PHY_PORT_NUM_MA 0x28
#define PHY_CONN_RATE 0x30
#define ITCT_CLR 0x44
#define ITCT_CLR_EN_OFF 16
#define ITCT_CLR_EN_MSK (0x1 << ITCT_CLR_EN_OFF)
#define ITCT_DEV_OFF 0
#define ITCT_DEV_MSK (0x7ff << ITCT_DEV_OFF)
#define SAS_AXI_USER3 0x50
#define IO_SATA_BROKEN_MSG_ADDR_LO 0x58
#define IO_SATA_BROKEN_MSG_ADDR_HI 0x5c
#define SATA_INITI_D2H_STORE_ADDR_LO 0x60
#define SATA_INITI_D2H_STORE_ADDR_HI 0x64
#define CFG_MAX_TAG 0x68
#define HGC_SAS_TX_OPEN_FAIL_RETRY_CTRL 0x84
#define HGC_SAS_TXFAIL_RETRY_CTRL 0x88
#define HGC_GET_ITV_TIME 0x90
#define DEVICE_MSG_WORK_MODE 0x94
#define OPENA_WT_CONTI_TIME 0x9c
#define I_T_NEXUS_LOSS_TIME 0xa0
#define MAX_CON_TIME_LIMIT_TIME 0xa4
#define BUS_INACTIVE_LIMIT_TIME 0xa8
#define REJECT_TO_OPEN_LIMIT_TIME 0xac
#define CQ_INT_CONVERGE_EN 0xb0
#define CFG_AGING_TIME 0xbc
#define HGC_DFX_CFG2 0xc0
#define CFG_ABT_SET_QUERY_IPTT 0xd4
#define CFG_SET_ABORTED_IPTT_OFF 0
#define CFG_SET_ABORTED_IPTT_MSK (0xfff << CFG_SET_ABORTED_IPTT_OFF)
#define CFG_SET_ABORTED_EN_OFF 12
#define CFG_ABT_SET_IPTT_DONE 0xd8
#define CFG_ABT_SET_IPTT_DONE_OFF 0
#define HGC_IOMB_PROC1_STATUS 0x104
#define HGC_LM_DFX_STATUS2 0x128
#define HGC_LM_DFX_STATUS2_IOSTLIST_OFF 0
#define HGC_LM_DFX_STATUS2_IOSTLIST_MSK (0xfff << \
HGC_LM_DFX_STATUS2_IOSTLIST_OFF)
#define HGC_LM_DFX_STATUS2_ITCTLIST_OFF 12
#define HGC_LM_DFX_STATUS2_ITCTLIST_MSK (0x7ff << \
HGC_LM_DFX_STATUS2_ITCTLIST_OFF)
#define HGC_CQE_ECC_ADDR 0x13c
#define HGC_CQE_ECC_1B_ADDR_OFF 0
#define HGC_CQE_ECC_1B_ADDR_MSK (0x3f << HGC_CQE_ECC_1B_ADDR_OFF)
#define HGC_CQE_ECC_MB_ADDR_OFF 8
#define HGC_CQE_ECC_MB_ADDR_MSK (0x3f << HGC_CQE_ECC_MB_ADDR_OFF)
#define HGC_IOST_ECC_ADDR 0x140
#define HGC_IOST_ECC_1B_ADDR_OFF 0
#define HGC_IOST_ECC_1B_ADDR_MSK (0x3ff << HGC_IOST_ECC_1B_ADDR_OFF)
#define HGC_IOST_ECC_MB_ADDR_OFF 16
#define HGC_IOST_ECC_MB_ADDR_MSK (0x3ff << HGC_IOST_ECC_MB_ADDR_OFF)
#define HGC_DQE_ECC_ADDR 0x144
#define HGC_DQE_ECC_1B_ADDR_OFF 0
#define HGC_DQE_ECC_1B_ADDR_MSK (0xfff << HGC_DQE_ECC_1B_ADDR_OFF)
#define HGC_DQE_ECC_MB_ADDR_OFF 16
#define HGC_DQE_ECC_MB_ADDR_MSK (0xfff << HGC_DQE_ECC_MB_ADDR_OFF)
#define CHNL_INT_STATUS 0x148
#define TAB_DFX 0x14c
#define HGC_ITCT_ECC_ADDR 0x150
#define HGC_ITCT_ECC_1B_ADDR_OFF 0
#define HGC_ITCT_ECC_1B_ADDR_MSK (0x3ff << \
HGC_ITCT_ECC_1B_ADDR_OFF)
#define HGC_ITCT_ECC_MB_ADDR_OFF 16
#define HGC_ITCT_ECC_MB_ADDR_MSK (0x3ff << \
HGC_ITCT_ECC_MB_ADDR_OFF)
#define HGC_AXI_FIFO_ERR_INFO 0x154
#define AXI_ERR_INFO_OFF 0
#define AXI_ERR_INFO_MSK (0xff << AXI_ERR_INFO_OFF)
#define FIFO_ERR_INFO_OFF 8
#define FIFO_ERR_INFO_MSK (0xff << FIFO_ERR_INFO_OFF)
#define TAB_RD_TYPE 0x15c
#define INT_COAL_EN 0x19c
#define OQ_INT_COAL_TIME 0x1a0
#define OQ_INT_COAL_CNT 0x1a4
#define ENT_INT_COAL_TIME 0x1a8
#define ENT_INT_COAL_CNT 0x1ac
#define OQ_INT_SRC 0x1b0
#define OQ_INT_SRC_MSK 0x1b4
#define ENT_INT_SRC1 0x1b8
#define ENT_INT_SRC1_D2H_FIS_CH0_OFF 0
#define ENT_INT_SRC1_D2H_FIS_CH0_MSK (0x1 << ENT_INT_SRC1_D2H_FIS_CH0_OFF)
#define ENT_INT_SRC1_D2H_FIS_CH1_OFF 8
#define ENT_INT_SRC1_D2H_FIS_CH1_MSK (0x1 << ENT_INT_SRC1_D2H_FIS_CH1_OFF)
#define ENT_INT_SRC2 0x1bc
#define ENT_INT_SRC3 0x1c0
#define ENT_INT_SRC3_WP_DEPTH_OFF 8
#define ENT_INT_SRC3_IPTT_SLOT_NOMATCH_OFF 9
#define ENT_INT_SRC3_RP_DEPTH_OFF 10
#define ENT_INT_SRC3_AXI_OFF 11
#define ENT_INT_SRC3_FIFO_OFF 12
#define ENT_INT_SRC3_LM_OFF 14
#define ENT_INT_SRC3_ITC_INT_OFF 15
#define ENT_INT_SRC3_ITC_INT_MSK (0x1 << ENT_INT_SRC3_ITC_INT_OFF)
#define ENT_INT_SRC3_ABT_OFF 16
#define ENT_INT_SRC3_DQE_POISON_OFF 18
#define ENT_INT_SRC3_IOST_POISON_OFF 19
#define ENT_INT_SRC3_ITCT_POISON_OFF 20
#define ENT_INT_SRC3_ITCT_NCQ_POISON_OFF 21
#define ENT_INT_SRC_MSK1 0x1c4
#define ENT_INT_SRC_MSK2 0x1c8
#define ENT_INT_SRC_MSK3 0x1cc
#define ENT_INT_SRC_MSK3_ENT95_MSK_OFF 31
#define CHNL_PHYUPDOWN_INT_MSK 0x1d0
#define CHNL_ENT_INT_MSK 0x1d4
#define HGC_COM_INT_MSK 0x1d8
#define ENT_INT_SRC_MSK3_ENT95_MSK_MSK (0x1 << ENT_INT_SRC_MSK3_ENT95_MSK_OFF)
#define SAS_ECC_INTR 0x1e8
#define SAS_ECC_INTR_DQE_ECC_1B_OFF 0
#define SAS_ECC_INTR_DQE_ECC_MB_OFF 1
#define SAS_ECC_INTR_IOST_ECC_1B_OFF 2
#define SAS_ECC_INTR_IOST_ECC_MB_OFF 3
#define SAS_ECC_INTR_ITCT_ECC_1B_OFF 4
#define SAS_ECC_INTR_ITCT_ECC_MB_OFF 5
#define SAS_ECC_INTR_ITCTLIST_ECC_1B_OFF 6
#define SAS_ECC_INTR_ITCTLIST_ECC_MB_OFF 7
#define SAS_ECC_INTR_IOSTLIST_ECC_1B_OFF 8
#define SAS_ECC_INTR_IOSTLIST_ECC_MB_OFF 9
#define SAS_ECC_INTR_CQE_ECC_1B_OFF 10
#define SAS_ECC_INTR_CQE_ECC_MB_OFF 11
#define SAS_ECC_INTR_NCQ_MEM0_ECC_1B_OFF 12
#define SAS_ECC_INTR_NCQ_MEM0_ECC_MB_OFF 13
#define SAS_ECC_INTR_NCQ_MEM1_ECC_1B_OFF 14
#define SAS_ECC_INTR_NCQ_MEM1_ECC_MB_OFF 15
#define SAS_ECC_INTR_NCQ_MEM2_ECC_1B_OFF 16
#define SAS_ECC_INTR_NCQ_MEM2_ECC_MB_OFF 17
#define SAS_ECC_INTR_NCQ_MEM3_ECC_1B_OFF 18
#define SAS_ECC_INTR_NCQ_MEM3_ECC_MB_OFF 19
#define SAS_ECC_INTR_OOO_RAM_ECC_1B_OFF 20
#define SAS_ECC_INTR_OOO_RAM_ECC_MB_OFF 21
#define SAS_ECC_INTR_MSK 0x1ec
#define HGC_ERR_STAT_EN 0x238
#define CQE_SEND_CNT 0x248
#define DLVRY_Q_0_BASE_ADDR_LO 0x260
#define DLVRY_Q_0_BASE_ADDR_HI 0x264
#define DLVRY_Q_0_DEPTH 0x268
#define DLVRY_Q_0_WR_PTR 0x26c
#define DLVRY_Q_0_RD_PTR 0x270
#define HYPER_STREAM_ID_EN_CFG 0xc80
#define OQ0_INT_SRC_MSK 0xc90
#define COMPL_Q_0_BASE_ADDR_LO 0x4e0
#define COMPL_Q_0_BASE_ADDR_HI 0x4e4
#define COMPL_Q_0_DEPTH 0x4e8
#define COMPL_Q_0_WR_PTR 0x4ec
#define COMPL_Q_0_RD_PTR 0x4f0
#define HGC_RXM_DFX_STATUS14 0xae8
#define HGC_RXM_DFX_STATUS14_MEM0_OFF 0
#define HGC_RXM_DFX_STATUS14_MEM0_MSK (0x1ff << \
HGC_RXM_DFX_STATUS14_MEM0_OFF)
#define HGC_RXM_DFX_STATUS14_MEM1_OFF 9
#define HGC_RXM_DFX_STATUS14_MEM1_MSK (0x1ff << \
HGC_RXM_DFX_STATUS14_MEM1_OFF)
#define HGC_RXM_DFX_STATUS14_MEM2_OFF 18
#define HGC_RXM_DFX_STATUS14_MEM2_MSK (0x1ff << \
HGC_RXM_DFX_STATUS14_MEM2_OFF)
#define HGC_RXM_DFX_STATUS15 0xaec
#define HGC_RXM_DFX_STATUS15_MEM3_OFF 0
#define HGC_RXM_DFX_STATUS15_MEM3_MSK (0x1ff << \
HGC_RXM_DFX_STATUS15_MEM3_OFF)
#define AWQOS_AWCACHE_CFG 0xc84
#define ARQOS_ARCACHE_CFG 0xc88
#define HILINK_ERR_DFX 0xe04
#define SAS_GPIO_CFG_0 0x1000
#define SAS_GPIO_CFG_1 0x1004
#define SAS_GPIO_TX_0_1 0x1040
#define SAS_CFG_DRIVE_VLD 0x1070
/* phy registers requiring init */
#define PORT_BASE (0x2000)
#define PHY_CFG (PORT_BASE + 0x0)
#define HARD_PHY_LINKRATE (PORT_BASE + 0x4)
#define PHY_CFG_ENA_OFF 0
#define PHY_CFG_ENA_MSK (0x1 << PHY_CFG_ENA_OFF)
#define PHY_CFG_DC_OPT_OFF 2
#define PHY_CFG_DC_OPT_MSK (0x1 << PHY_CFG_DC_OPT_OFF)
#define PHY_CFG_PHY_RST_OFF 3
#define PHY_CFG_PHY_RST_MSK (0x1 << PHY_CFG_PHY_RST_OFF)
#define PROG_PHY_LINK_RATE (PORT_BASE + 0x8)
#define CFG_PROG_PHY_LINK_RATE_OFF 8
#define CFG_PROG_PHY_LINK_RATE_MSK (0xf << CFG_PROG_PHY_LINK_RATE_OFF)
#define PHY_CTRL (PORT_BASE + 0x14)
#define PHY_CTRL_RESET_OFF 0
#define PHY_CTRL_RESET_MSK (0x1 << PHY_CTRL_RESET_OFF)
#define CMD_HDR_PIR_OFF 8
#define CMD_HDR_PIR_MSK (0x1 << CMD_HDR_PIR_OFF)
#define SERDES_CFG (PORT_BASE + 0x1c)
#define CFG_ALOS_CHK_DISABLE_OFF 9
#define CFG_ALOS_CHK_DISABLE_MSK (0x1 << CFG_ALOS_CHK_DISABLE_OFF)
#define SAS_PHY_BIST_CTRL (PORT_BASE + 0x2c)
#define CFG_BIST_MODE_SEL_OFF 0
#define CFG_BIST_MODE_SEL_MSK (0xf << CFG_BIST_MODE_SEL_OFF)
#define CFG_LOOP_TEST_MODE_OFF 14
#define CFG_LOOP_TEST_MODE_MSK (0x3 << CFG_LOOP_TEST_MODE_OFF)
#define CFG_RX_BIST_EN_OFF 16
#define CFG_RX_BIST_EN_MSK (0x1 << CFG_RX_BIST_EN_OFF)
#define CFG_TX_BIST_EN_OFF 17
#define CFG_TX_BIST_EN_MSK (0x1 << CFG_TX_BIST_EN_OFF)
#define CFG_BIST_TEST_OFF 18
#define CFG_BIST_TEST_MSK (0x1 << CFG_BIST_TEST_OFF)
#define SAS_PHY_BIST_CODE (PORT_BASE + 0x30)
#define SAS_PHY_BIST_CODE1 (PORT_BASE + 0x34)
#define SAS_BIST_ERR_CNT (PORT_BASE + 0x38)
#define SL_CFG (PORT_BASE + 0x84)
#define AIP_LIMIT (PORT_BASE + 0x90)
#define SL_CONTROL (PORT_BASE + 0x94)
#define SL_CONTROL_NOTIFY_EN_OFF 0
#define SL_CONTROL_NOTIFY_EN_MSK (0x1 << SL_CONTROL_NOTIFY_EN_OFF)
#define SL_CTA_OFF 17
#define SL_CTA_MSK (0x1 << SL_CTA_OFF)
#define RX_PRIMS_STATUS (PORT_BASE + 0x98)
#define RX_BCAST_CHG_OFF 1
#define RX_BCAST_CHG_MSK (0x1 << RX_BCAST_CHG_OFF)
#define TX_ID_DWORD0 (PORT_BASE + 0x9c)
#define TX_ID_DWORD1 (PORT_BASE + 0xa0)
#define TX_ID_DWORD2 (PORT_BASE + 0xa4)
#define TX_ID_DWORD3 (PORT_BASE + 0xa8)
#define TX_ID_DWORD4 (PORT_BASE + 0xaC)
#define TX_ID_DWORD5 (PORT_BASE + 0xb0)
#define TX_ID_DWORD6 (PORT_BASE + 0xb4)
#define TXID_AUTO (PORT_BASE + 0xb8)
#define CT3_OFF 1
#define CT3_MSK (0x1 << CT3_OFF)
#define TX_HARDRST_OFF 2
#define TX_HARDRST_MSK (0x1 << TX_HARDRST_OFF)
#define RX_IDAF_DWORD0 (PORT_BASE + 0xc4)
#define RXOP_CHECK_CFG_H (PORT_BASE + 0xfc)
#define STP_LINK_TIMER (PORT_BASE + 0x120)
#define STP_LINK_TIMEOUT_STATE (PORT_BASE + 0x124)
#define CON_CFG_DRIVER (PORT_BASE + 0x130)
#define SAS_SSP_CON_TIMER_CFG (PORT_BASE + 0x134)
#define SAS_SMP_CON_TIMER_CFG (PORT_BASE + 0x138)
#define SAS_STP_CON_TIMER_CFG (PORT_BASE + 0x13c)
#define CHL_INT0 (PORT_BASE + 0x1b4)
#define CHL_INT0_HOTPLUG_TOUT_OFF 0
#define CHL_INT0_HOTPLUG_TOUT_MSK (0x1 << CHL_INT0_HOTPLUG_TOUT_OFF)
#define CHL_INT0_SL_RX_BCST_ACK_OFF 1
#define CHL_INT0_SL_RX_BCST_ACK_MSK (0x1 << CHL_INT0_SL_RX_BCST_ACK_OFF)
#define CHL_INT0_SL_PHY_ENABLE_OFF 2
#define CHL_INT0_SL_PHY_ENABLE_MSK (0x1 << CHL_INT0_SL_PHY_ENABLE_OFF)
#define CHL_INT0_NOT_RDY_OFF 4
#define CHL_INT0_NOT_RDY_MSK (0x1 << CHL_INT0_NOT_RDY_OFF)
#define CHL_INT0_PHY_RDY_OFF 5
#define CHL_INT0_PHY_RDY_MSK (0x1 << CHL_INT0_PHY_RDY_OFF)
#define CHL_INT1 (PORT_BASE + 0x1b8)
#define CHL_INT1_DMAC_TX_ECC_MB_ERR_OFF 15
#define CHL_INT1_DMAC_TX_ECC_1B_ERR_OFF 16
#define CHL_INT1_DMAC_RX_ECC_MB_ERR_OFF 17
#define CHL_INT1_DMAC_RX_ECC_1B_ERR_OFF 18
#define CHL_INT1_DMAC_TX_AXI_WR_ERR_OFF 19
#define CHL_INT1_DMAC_TX_AXI_RD_ERR_OFF 20
#define CHL_INT1_DMAC_RX_AXI_WR_ERR_OFF 21
#define CHL_INT1_DMAC_RX_AXI_RD_ERR_OFF 22
#define CHL_INT1_DMAC_TX_FIFO_ERR_OFF 23
#define CHL_INT1_DMAC_RX_FIFO_ERR_OFF 24
#define CHL_INT1_DMAC_TX_AXI_RUSER_ERR_OFF 26
#define CHL_INT1_DMAC_RX_AXI_RUSER_ERR_OFF 27
#define CHL_INT2 (PORT_BASE + 0x1bc)
#define CHL_INT2_SL_IDAF_TOUT_CONF_OFF 0
#define CHL_INT2_RX_DISP_ERR_OFF 28
#define CHL_INT2_RX_CODE_ERR_OFF 29
#define CHL_INT2_RX_INVLD_DW_OFF 30
#define CHL_INT2_STP_LINK_TIMEOUT_OFF 31
#define CHL_INT0_MSK (PORT_BASE + 0x1c0)
#define CHL_INT1_MSK (PORT_BASE + 0x1c4)
#define CHL_INT2_MSK (PORT_BASE + 0x1c8)
#define SAS_EC_INT_COAL_TIME (PORT_BASE + 0x1cc)
#define CHL_INT_COAL_EN (PORT_BASE + 0x1d0)
#define SAS_RX_TRAIN_TIMER (PORT_BASE + 0x2a4)
#define PHY_CTRL_RDY_MSK (PORT_BASE + 0x2b0)
#define PHYCTRL_NOT_RDY_MSK (PORT_BASE + 0x2b4)
#define PHYCTRL_DWS_RESET_MSK (PORT_BASE + 0x2b8)
#define PHYCTRL_PHY_ENA_MSK (PORT_BASE + 0x2bc)
#define SL_RX_BCAST_CHK_MSK (PORT_BASE + 0x2c0)
#define PHYCTRL_OOB_RESTART_MSK (PORT_BASE + 0x2c4)
#define DMA_TX_STATUS (PORT_BASE + 0x2d0)
#define DMA_TX_STATUS_BUSY_OFF 0
#define DMA_TX_STATUS_BUSY_MSK (0x1 << DMA_TX_STATUS_BUSY_OFF)
#define DMA_RX_STATUS (PORT_BASE + 0x2e8)
#define DMA_RX_STATUS_BUSY_OFF 0
#define DMA_RX_STATUS_BUSY_MSK (0x1 << DMA_RX_STATUS_BUSY_OFF)
#define COARSETUNE_TIME (PORT_BASE + 0x304)
#define ERR_CNT_DWS_LOST (PORT_BASE + 0x380)
#define ERR_CNT_RESET_PROB (PORT_BASE + 0x384)
#define ERR_CNT_INVLD_DW (PORT_BASE + 0x390)
#define ERR_CNT_CODE_ERR (PORT_BASE + 0x394)
#define ERR_CNT_DISP_ERR (PORT_BASE + 0x398)
#define DEFAULT_ITCT_HW 2048 /* reset value, not reprogrammed */
#if (HISI_SAS_MAX_DEVICES > DEFAULT_ITCT_HW)
#error Max ITCT exceeded
#endif
#define AXI_MASTER_CFG_BASE (0x5000)
#define AM_CTRL_GLOBAL (0x0)
#define AM_CTRL_SHUTDOWN_REQ_OFF 0
#define AM_CTRL_SHUTDOWN_REQ_MSK (0x1 << AM_CTRL_SHUTDOWN_REQ_OFF)
#define AM_CURR_TRANS_RETURN (0x150)
#define AM_CFG_MAX_TRANS (0x5010)
#define AM_CFG_SINGLE_PORT_MAX_TRANS (0x5014)
#define AXI_CFG (0x5100)
#define AM_ROB_ECC_ERR_ADDR (0x510c)
#define AM_ROB_ECC_ERR_ADDR_OFF 0
#define AM_ROB_ECC_ERR_ADDR_MSK 0xffffffff
/* RAS registers need init */
#define RAS_BASE (0x6000)
#define SAS_RAS_INTR0 (RAS_BASE)
#define SAS_RAS_INTR1 (RAS_BASE + 0x04)
#define SAS_RAS_INTR0_MASK (RAS_BASE + 0x08)
#define SAS_RAS_INTR1_MASK (RAS_BASE + 0x0c)
#define CFG_SAS_RAS_INTR_MASK (RAS_BASE + 0x1c)
#define SAS_RAS_INTR2 (RAS_BASE + 0x20)
#define SAS_RAS_INTR2_MASK (RAS_BASE + 0x24)
/* HW dma structures */
/* Delivery queue header */
/* dw0 */
#define CMD_HDR_ABORT_FLAG_OFF 0
#define CMD_HDR_ABORT_FLAG_MSK (0x3 << CMD_HDR_ABORT_FLAG_OFF)
#define CMD_HDR_ABORT_DEVICE_TYPE_OFF 2
#define CMD_HDR_ABORT_DEVICE_TYPE_MSK (0x1 << CMD_HDR_ABORT_DEVICE_TYPE_OFF)
#define CMD_HDR_RESP_REPORT_OFF 5
#define CMD_HDR_RESP_REPORT_MSK (0x1 << CMD_HDR_RESP_REPORT_OFF)
#define CMD_HDR_TLR_CTRL_OFF 6
#define CMD_HDR_TLR_CTRL_MSK (0x3 << CMD_HDR_TLR_CTRL_OFF)
#define CMD_HDR_PORT_OFF 18
#define CMD_HDR_PORT_MSK (0xf << CMD_HDR_PORT_OFF)
#define CMD_HDR_PRIORITY_OFF 27
#define CMD_HDR_PRIORITY_MSK (0x1 << CMD_HDR_PRIORITY_OFF)
#define CMD_HDR_CMD_OFF 29
#define CMD_HDR_CMD_MSK (0x7 << CMD_HDR_CMD_OFF)
/* dw1 */
#define CMD_HDR_UNCON_CMD_OFF 3
#define CMD_HDR_DIR_OFF 5
#define CMD_HDR_DIR_MSK (0x3 << CMD_HDR_DIR_OFF)
#define CMD_HDR_RESET_OFF 7
#define CMD_HDR_RESET_MSK (0x1 << CMD_HDR_RESET_OFF)
#define CMD_HDR_VDTL_OFF 10
#define CMD_HDR_VDTL_MSK (0x1 << CMD_HDR_VDTL_OFF)
#define CMD_HDR_FRAME_TYPE_OFF 11
#define CMD_HDR_FRAME_TYPE_MSK (0x1f << CMD_HDR_FRAME_TYPE_OFF)
#define CMD_HDR_DEV_ID_OFF 16
#define CMD_HDR_DEV_ID_MSK (0xffff << CMD_HDR_DEV_ID_OFF)
/* dw2 */
#define CMD_HDR_CFL_OFF 0
#define CMD_HDR_CFL_MSK (0x1ff << CMD_HDR_CFL_OFF)
#define CMD_HDR_NCQ_TAG_OFF 10
#define CMD_HDR_NCQ_TAG_MSK (0x1f << CMD_HDR_NCQ_TAG_OFF)
#define CMD_HDR_MRFL_OFF 15
#define CMD_HDR_MRFL_MSK (0x1ff << CMD_HDR_MRFL_OFF)
#define CMD_HDR_SG_MOD_OFF 24
#define CMD_HDR_SG_MOD_MSK (0x3 << CMD_HDR_SG_MOD_OFF)
/* dw3 */
#define CMD_HDR_IPTT_OFF 0
#define CMD_HDR_IPTT_MSK (0xffff << CMD_HDR_IPTT_OFF)
/* dw6 */
#define CMD_HDR_DIF_SGL_LEN_OFF 0
#define CMD_HDR_DIF_SGL_LEN_MSK (0xffff << CMD_HDR_DIF_SGL_LEN_OFF)
#define CMD_HDR_DATA_SGL_LEN_OFF 16
#define CMD_HDR_DATA_SGL_LEN_MSK (0xffff << CMD_HDR_DATA_SGL_LEN_OFF)
/* dw7 */
#define CMD_HDR_ADDR_MODE_SEL_OFF 15
#define CMD_HDR_ADDR_MODE_SEL_MSK (1 << CMD_HDR_ADDR_MODE_SEL_OFF)
#define CMD_HDR_ABORT_IPTT_OFF 16
#define CMD_HDR_ABORT_IPTT_MSK (0xffff << CMD_HDR_ABORT_IPTT_OFF)
/* Completion header */
/* dw0 */
#define CMPLT_HDR_CMPLT_OFF 0
#define CMPLT_HDR_CMPLT_MSK (0x3 << CMPLT_HDR_CMPLT_OFF)
#define CMPLT_HDR_ERROR_PHASE_OFF 2
#define CMPLT_HDR_ERROR_PHASE_MSK (0xff << CMPLT_HDR_ERROR_PHASE_OFF)
#define CMPLT_HDR_RSPNS_XFRD_OFF 10
#define CMPLT_HDR_RSPNS_XFRD_MSK (0x1 << CMPLT_HDR_RSPNS_XFRD_OFF)
#define CMPLT_HDR_ERX_OFF 12
#define CMPLT_HDR_ERX_MSK (0x1 << CMPLT_HDR_ERX_OFF)
#define CMPLT_HDR_ABORT_STAT_OFF 13
#define CMPLT_HDR_ABORT_STAT_MSK (0x7 << CMPLT_HDR_ABORT_STAT_OFF)
/* abort_stat */
#define STAT_IO_NOT_VALID 0x1
#define STAT_IO_NO_DEVICE 0x2
#define STAT_IO_COMPLETE 0x3
#define STAT_IO_ABORTED 0x4
/* dw1 */
#define CMPLT_HDR_IPTT_OFF 0
#define CMPLT_HDR_IPTT_MSK (0xffff << CMPLT_HDR_IPTT_OFF)
#define CMPLT_HDR_DEV_ID_OFF 16
#define CMPLT_HDR_DEV_ID_MSK (0xffff << CMPLT_HDR_DEV_ID_OFF)
/* dw3 */
#define CMPLT_HDR_IO_IN_TARGET_OFF 17
#define CMPLT_HDR_IO_IN_TARGET_MSK (0x1 << CMPLT_HDR_IO_IN_TARGET_OFF)
/* ITCT header */
/* qw0 */
#define ITCT_HDR_DEV_TYPE_OFF 0
#define ITCT_HDR_DEV_TYPE_MSK (0x3 << ITCT_HDR_DEV_TYPE_OFF)
#define ITCT_HDR_VALID_OFF 2
#define ITCT_HDR_VALID_MSK (0x1 << ITCT_HDR_VALID_OFF)
#define ITCT_HDR_MCR_OFF 5
#define ITCT_HDR_MCR_MSK (0xf << ITCT_HDR_MCR_OFF)
#define ITCT_HDR_VLN_OFF 9
#define ITCT_HDR_VLN_MSK (0xf << ITCT_HDR_VLN_OFF)
#define ITCT_HDR_SMP_TIMEOUT_OFF 16
#define ITCT_HDR_AWT_CONTINUE_OFF 25
#define ITCT_HDR_PORT_ID_OFF 28
#define ITCT_HDR_PORT_ID_MSK (0xf << ITCT_HDR_PORT_ID_OFF)
/* qw2 */
#define ITCT_HDR_INLT_OFF 0
#define ITCT_HDR_INLT_MSK (0xffffULL << ITCT_HDR_INLT_OFF)
#define ITCT_HDR_RTOLT_OFF 48
#define ITCT_HDR_RTOLT_MSK (0xffffULL << ITCT_HDR_RTOLT_OFF)
struct hisi_sas_protect_iu_v3_hw {
u32 dw0;
u32 lbrtcv;
u32 lbrtgv;
u32 dw3;
u32 dw4;
u32 dw5;
u32 rsv;
};
struct hisi_sas_complete_v3_hdr {
__le32 dw0;
__le32 dw1;
__le32 act;
__le32 dw3;
};
struct hisi_sas_err_record_v3 {
/* dw0 */
__le32 trans_tx_fail_type;
/* dw1 */
__le32 trans_rx_fail_type;
/* dw2 */
__le16 dma_tx_err_type;
__le16 sipc_rx_err_type;
/* dw3 */
__le32 dma_rx_err_type;
};
#define RX_DATA_LEN_UNDERFLOW_OFF 6
#define RX_DATA_LEN_UNDERFLOW_MSK (1 << RX_DATA_LEN_UNDERFLOW_OFF)
#define HISI_SAS_COMMAND_ENTRIES_V3_HW 4096
#define HISI_SAS_MSI_COUNT_V3_HW 32
#define DIR_NO_DATA 0
#define DIR_TO_INI 1
#define DIR_TO_DEVICE 2
#define DIR_RESERVED 3
#define FIS_CMD_IS_UNCONSTRAINED(fis) \
((fis.command == ATA_CMD_READ_LOG_EXT) || \
(fis.command == ATA_CMD_READ_LOG_DMA_EXT) || \
((fis.command == ATA_CMD_DEV_RESET) && \
((fis.control & ATA_SRST) != 0)))
#define T10_INSRT_EN_OFF 0
#define T10_INSRT_EN_MSK (1 << T10_INSRT_EN_OFF)
#define T10_RMV_EN_OFF 1
#define T10_RMV_EN_MSK (1 << T10_RMV_EN_OFF)
#define T10_RPLC_EN_OFF 2
#define T10_RPLC_EN_MSK (1 << T10_RPLC_EN_OFF)
#define T10_CHK_EN_OFF 3
#define T10_CHK_EN_MSK (1 << T10_CHK_EN_OFF)
#define INCR_LBRT_OFF 5
#define INCR_LBRT_MSK (1 << INCR_LBRT_OFF)
#define USR_DATA_BLOCK_SZ_OFF 20
#define USR_DATA_BLOCK_SZ_MSK (0x3 << USR_DATA_BLOCK_SZ_OFF)
#define T10_CHK_MSK_OFF 16
#define T10_CHK_REF_TAG_MSK (0xf0 << T10_CHK_MSK_OFF)
#define T10_CHK_APP_TAG_MSK (0xc << T10_CHK_MSK_OFF)
scsi: hisi_sas: Issue internal abort on all relevant queues To support queue mapped to a CPU, it needs to be ensured that issuing an internal abort is safe, in that it is guaranteed that an internal abort is processed for a single IO or a device after all the relevant command(s) which it is attempting to abort have been processed by the controller. Currently we only deliver commands for any device on a single queue to solve this problem, as we know that commands issued on the same queue will be processed in order, and we will not have a scenario where the internal abort is racing against a command(s) which it is trying to abort. To enqueue commands on queue mapped to a CPU, choosing a queue for an command is based on the associated queue for the current CPU, so this is not safe for internal abort since it would definitely not be guaranteed that commands for the command devices are issued on the same queue. To solve this issue, we take a bludgeoning approach, and issue a separate internal abort on any queue(s) relevant to the command or device, in that we will be guaranteed that at least one of these internal aborts will be received last in the controller. So, for aborting a single command, we can just force the internal abort to be issued on the same queue as the command which we are trying to abort. For aborting all commands associated with a device, we issue a separate internal abort on all relevant queues. Issuing multiple internal aborts in this fashion would have not side affect. Signed-off-by: John Garry <john.garry@huawei.com> Signed-off-by: Xiang Chen <chenxiang66@hisilicon.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2019-02-06 18:52:54 +08:00
#define BASE_VECTORS_V3_HW 16
#define MIN_AFFINE_VECTORS_V3_HW (BASE_VECTORS_V3_HW + 1)
#define CHNL_INT_STS_MSK 0xeeeeeeee
#define CHNL_INT_STS_PHY_MSK 0xe
#define CHNL_INT_STS_INT0_MSK BIT(1)
#define CHNL_INT_STS_INT1_MSK BIT(2)
#define CHNL_INT_STS_INT2_MSK BIT(3)
#define CHNL_WIDTH 4
enum {
DSM_FUNC_ERR_HANDLE_MSI = 0,
};
static bool hisi_sas_intr_conv;
MODULE_PARM_DESC(intr_conv, "interrupt converge enable (0-1)");
/* permit overriding the host protection capabilities mask (EEDP/T10 PI) */
static int prot_mask;
module_param(prot_mask, int, 0);
MODULE_PARM_DESC(prot_mask, " host protection capabilities mask, def=0x0 ");
static bool auto_affine_msi_experimental;
module_param(auto_affine_msi_experimental, bool, 0444);
MODULE_PARM_DESC(auto_affine_msi_experimental, "Enable auto-affinity of MSI IRQs as experimental:\n"
"default is off");
static u32 hisi_sas_read32(struct hisi_hba *hisi_hba, u32 off)
{
void __iomem *regs = hisi_hba->regs + off;
return readl(regs);
}
static void hisi_sas_write32(struct hisi_hba *hisi_hba, u32 off, u32 val)
{
void __iomem *regs = hisi_hba->regs + off;
writel(val, regs);
}
static void hisi_sas_phy_write32(struct hisi_hba *hisi_hba, int phy_no,
u32 off, u32 val)
{
void __iomem *regs = hisi_hba->regs + (0x400 * phy_no) + off;
writel(val, regs);
}
static u32 hisi_sas_phy_read32(struct hisi_hba *hisi_hba,
int phy_no, u32 off)
{
void __iomem *regs = hisi_hba->regs + (0x400 * phy_no) + off;
return readl(regs);
}
#define hisi_sas_read32_poll_timeout(off, val, cond, delay_us, \
timeout_us) \
({ \
void __iomem *regs = hisi_hba->regs + off; \
readl_poll_timeout(regs, val, cond, delay_us, timeout_us); \
})
#define hisi_sas_read32_poll_timeout_atomic(off, val, cond, delay_us, \
timeout_us) \
({ \
void __iomem *regs = hisi_hba->regs + off; \
readl_poll_timeout_atomic(regs, val, cond, delay_us, timeout_us);\
})
static void init_reg_v3_hw(struct hisi_hba *hisi_hba)
{
int i;
/* Global registers init */
hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE,
(u32)((1ULL << hisi_hba->queue_count) - 1));
hisi_sas_write32(hisi_hba, SAS_AXI_USER3, 0);
hisi_sas_write32(hisi_hba, CFG_MAX_TAG, 0xfff0400);
hisi_sas_write32(hisi_hba, HGC_SAS_TXFAIL_RETRY_CTRL, 0x108);
hisi_sas_write32(hisi_hba, CFG_AGING_TIME, 0x1);
hisi_sas_write32(hisi_hba, INT_COAL_EN, 0x1);
hisi_sas_write32(hisi_hba, OQ_INT_COAL_TIME, 0x1);
hisi_sas_write32(hisi_hba, OQ_INT_COAL_CNT, 0x1);
hisi_sas_write32(hisi_hba, CQ_INT_CONVERGE_EN,
hisi_sas_intr_conv);
hisi_sas_write32(hisi_hba, OQ_INT_SRC, 0xffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC1, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC2, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC3, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1, 0xfefefefe);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK2, 0xfefefefe);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, 0xffc220ff);
hisi_sas_write32(hisi_hba, CHNL_PHYUPDOWN_INT_MSK, 0x0);
hisi_sas_write32(hisi_hba, CHNL_ENT_INT_MSK, 0x0);
hisi_sas_write32(hisi_hba, HGC_COM_INT_MSK, 0x0);
hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0x155555);
hisi_sas_write32(hisi_hba, AWQOS_AWCACHE_CFG, 0xf0f0);
hisi_sas_write32(hisi_hba, ARQOS_ARCACHE_CFG, 0xf0f0);
for (i = 0; i < hisi_hba->queue_count; i++)
hisi_sas_write32(hisi_hba, OQ0_INT_SRC_MSK+0x4*i, 0);
hisi_sas_write32(hisi_hba, HYPER_STREAM_ID_EN_CFG, 1);
for (i = 0; i < hisi_hba->n_phy; i++) {
struct hisi_sas_phy *phy = &hisi_hba->phy[i];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
u32 prog_phy_link_rate = 0x800;
if (!sas_phy->phy || (sas_phy->phy->maximum_linkrate <
SAS_LINK_RATE_1_5_GBPS)) {
prog_phy_link_rate = 0x855;
} else {
enum sas_linkrate max = sas_phy->phy->maximum_linkrate;
prog_phy_link_rate =
hisi_sas_get_prog_phy_linkrate_mask(max) |
0x800;
}
hisi_sas_phy_write32(hisi_hba, i, PROG_PHY_LINK_RATE,
prog_phy_link_rate);
hisi_sas_phy_write32(hisi_hba, i, SERDES_CFG, 0xffc00);
hisi_sas_phy_write32(hisi_hba, i, SAS_RX_TRAIN_TIMER, 0x13e80);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT0, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT1, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT2, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, RXOP_CHECK_CFG_H, 0x1000);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT1_MSK, 0xf2057fff);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0xffffbfe);
hisi_sas_phy_write32(hisi_hba, i, PHY_CTRL_RDY_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_NOT_RDY_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_DWS_RESET_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_PHY_ENA_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, SL_RX_BCAST_CHK_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_OOB_RESTART_MSK, 0x1);
hisi_sas_phy_write32(hisi_hba, i, STP_LINK_TIMER, 0x7f7a120);
hisi_sas_phy_write32(hisi_hba, i, CON_CFG_DRIVER, 0x2a0a01);
hisi_sas_phy_write32(hisi_hba, i, SAS_SSP_CON_TIMER_CFG, 0x32);
hisi_sas_phy_write32(hisi_hba, i, SAS_EC_INT_COAL_TIME,
0x30f4240);
/* used for 12G negotiate */
hisi_sas_phy_write32(hisi_hba, i, COARSETUNE_TIME, 0x1e);
hisi_sas_phy_write32(hisi_hba, i, AIP_LIMIT, 0x2ffff);
}
for (i = 0; i < hisi_hba->queue_count; i++) {
/* Delivery queue */
hisi_sas_write32(hisi_hba,
DLVRY_Q_0_BASE_ADDR_HI + (i * 0x14),
upper_32_bits(hisi_hba->cmd_hdr_dma[i]));
hisi_sas_write32(hisi_hba, DLVRY_Q_0_BASE_ADDR_LO + (i * 0x14),
lower_32_bits(hisi_hba->cmd_hdr_dma[i]));
hisi_sas_write32(hisi_hba, DLVRY_Q_0_DEPTH + (i * 0x14),
HISI_SAS_QUEUE_SLOTS);
/* Completion queue */
hisi_sas_write32(hisi_hba, COMPL_Q_0_BASE_ADDR_HI + (i * 0x14),
upper_32_bits(hisi_hba->complete_hdr_dma[i]));
hisi_sas_write32(hisi_hba, COMPL_Q_0_BASE_ADDR_LO + (i * 0x14),
lower_32_bits(hisi_hba->complete_hdr_dma[i]));
hisi_sas_write32(hisi_hba, COMPL_Q_0_DEPTH + (i * 0x14),
HISI_SAS_QUEUE_SLOTS);
}
/* itct */
hisi_sas_write32(hisi_hba, ITCT_BASE_ADDR_LO,
lower_32_bits(hisi_hba->itct_dma));
hisi_sas_write32(hisi_hba, ITCT_BASE_ADDR_HI,
upper_32_bits(hisi_hba->itct_dma));
/* iost */
hisi_sas_write32(hisi_hba, IOST_BASE_ADDR_LO,
lower_32_bits(hisi_hba->iost_dma));
hisi_sas_write32(hisi_hba, IOST_BASE_ADDR_HI,
upper_32_bits(hisi_hba->iost_dma));
/* breakpoint */
hisi_sas_write32(hisi_hba, IO_BROKEN_MSG_ADDR_LO,
lower_32_bits(hisi_hba->breakpoint_dma));
hisi_sas_write32(hisi_hba, IO_BROKEN_MSG_ADDR_HI,
upper_32_bits(hisi_hba->breakpoint_dma));
/* SATA broken msg */
hisi_sas_write32(hisi_hba, IO_SATA_BROKEN_MSG_ADDR_LO,
lower_32_bits(hisi_hba->sata_breakpoint_dma));
hisi_sas_write32(hisi_hba, IO_SATA_BROKEN_MSG_ADDR_HI,
upper_32_bits(hisi_hba->sata_breakpoint_dma));
/* SATA initial fis */
hisi_sas_write32(hisi_hba, SATA_INITI_D2H_STORE_ADDR_LO,
lower_32_bits(hisi_hba->initial_fis_dma));
hisi_sas_write32(hisi_hba, SATA_INITI_D2H_STORE_ADDR_HI,
upper_32_bits(hisi_hba->initial_fis_dma));
/* RAS registers init */
hisi_sas_write32(hisi_hba, SAS_RAS_INTR0_MASK, 0x0);
hisi_sas_write32(hisi_hba, SAS_RAS_INTR1_MASK, 0x0);
hisi_sas_write32(hisi_hba, SAS_RAS_INTR2_MASK, 0x0);
hisi_sas_write32(hisi_hba, CFG_SAS_RAS_INTR_MASK, 0x0);
/* LED registers init */
hisi_sas_write32(hisi_hba, SAS_CFG_DRIVE_VLD, 0x80000ff);
hisi_sas_write32(hisi_hba, SAS_GPIO_TX_0_1, 0x80808080);
hisi_sas_write32(hisi_hba, SAS_GPIO_TX_0_1 + 0x4, 0x80808080);
/* Configure blink generator rate A to 1Hz and B to 4Hz */
hisi_sas_write32(hisi_hba, SAS_GPIO_CFG_1, 0x121700);
hisi_sas_write32(hisi_hba, SAS_GPIO_CFG_0, 0x800000);
}
static void config_phy_opt_mode_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG);
cfg &= ~PHY_CFG_DC_OPT_MSK;
cfg |= 1 << PHY_CFG_DC_OPT_OFF;
hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg);
}
static void config_id_frame_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
struct sas_identify_frame identify_frame;
u32 *identify_buffer;
memset(&identify_frame, 0, sizeof(identify_frame));
identify_frame.dev_type = SAS_END_DEVICE;
identify_frame.frame_type = 0;
identify_frame._un1 = 1;
identify_frame.initiator_bits = SAS_PROTOCOL_ALL;
identify_frame.target_bits = SAS_PROTOCOL_NONE;
memcpy(&identify_frame._un4_11[0], hisi_hba->sas_addr, SAS_ADDR_SIZE);
memcpy(&identify_frame.sas_addr[0], hisi_hba->sas_addr, SAS_ADDR_SIZE);
identify_frame.phy_id = phy_no;
identify_buffer = (u32 *)(&identify_frame);
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD0,
__swab32(identify_buffer[0]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD1,
__swab32(identify_buffer[1]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD2,
__swab32(identify_buffer[2]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD3,
__swab32(identify_buffer[3]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD4,
__swab32(identify_buffer[4]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD5,
__swab32(identify_buffer[5]));
}
static void setup_itct_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_device *sas_dev)
{
struct domain_device *device = sas_dev->sas_device;
struct device *dev = hisi_hba->dev;
u64 qw0, device_id = sas_dev->device_id;
struct hisi_sas_itct *itct = &hisi_hba->itct[device_id];
struct domain_device *parent_dev = device->parent;
struct asd_sas_port *sas_port = device->port;
struct hisi_sas_port *port = to_hisi_sas_port(sas_port);
u64 sas_addr;
memset(itct, 0, sizeof(*itct));
/* qw0 */
qw0 = 0;
switch (sas_dev->dev_type) {
case SAS_END_DEVICE:
case SAS_EDGE_EXPANDER_DEVICE:
case SAS_FANOUT_EXPANDER_DEVICE:
qw0 = HISI_SAS_DEV_TYPE_SSP << ITCT_HDR_DEV_TYPE_OFF;
break;
case SAS_SATA_DEV:
case SAS_SATA_PENDING:
if (parent_dev && dev_is_expander(parent_dev->dev_type))
qw0 = HISI_SAS_DEV_TYPE_STP << ITCT_HDR_DEV_TYPE_OFF;
else
qw0 = HISI_SAS_DEV_TYPE_SATA << ITCT_HDR_DEV_TYPE_OFF;
break;
default:
dev_warn(dev, "setup itct: unsupported dev type (%d)\n",
sas_dev->dev_type);
}
qw0 |= ((1 << ITCT_HDR_VALID_OFF) |
(device->linkrate << ITCT_HDR_MCR_OFF) |
(1 << ITCT_HDR_VLN_OFF) |
(0xfa << ITCT_HDR_SMP_TIMEOUT_OFF) |
(1 << ITCT_HDR_AWT_CONTINUE_OFF) |
(port->id << ITCT_HDR_PORT_ID_OFF));
itct->qw0 = cpu_to_le64(qw0);
/* qw1 */
memcpy(&sas_addr, device->sas_addr, SAS_ADDR_SIZE);
itct->sas_addr = cpu_to_le64(__swab64(sas_addr));
/* qw2 */
if (!dev_is_sata(device))
itct->qw2 = cpu_to_le64((5000ULL << ITCT_HDR_INLT_OFF) |
(0x1ULL << ITCT_HDR_RTOLT_OFF));
}
static int clear_itct_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_device *sas_dev)
{
DECLARE_COMPLETION_ONSTACK(completion);
u64 dev_id = sas_dev->device_id;
struct hisi_sas_itct *itct = &hisi_hba->itct[dev_id];
u32 reg_val = hisi_sas_read32(hisi_hba, ENT_INT_SRC3);
struct device *dev = hisi_hba->dev;
sas_dev->completion = &completion;
/* clear the itct interrupt state */
if (ENT_INT_SRC3_ITC_INT_MSK & reg_val)
hisi_sas_write32(hisi_hba, ENT_INT_SRC3,
ENT_INT_SRC3_ITC_INT_MSK);
/* clear the itct table */
reg_val = ITCT_CLR_EN_MSK | (dev_id & ITCT_DEV_MSK);
hisi_sas_write32(hisi_hba, ITCT_CLR, reg_val);
if (!wait_for_completion_timeout(sas_dev->completion,
CLEAR_ITCT_TIMEOUT * HZ)) {
dev_warn(dev, "failed to clear ITCT\n");
return -ETIMEDOUT;
}
memset(itct, 0, sizeof(struct hisi_sas_itct));
return 0;
}
static void dereg_device_v3_hw(struct hisi_hba *hisi_hba,
struct domain_device *device)
{
struct hisi_sas_slot *slot, *slot2;
struct hisi_sas_device *sas_dev = device->lldd_dev;
u32 cfg_abt_set_query_iptt;
cfg_abt_set_query_iptt = hisi_sas_read32(hisi_hba,
CFG_ABT_SET_QUERY_IPTT);
list_for_each_entry_safe(slot, slot2, &sas_dev->list, entry) {
cfg_abt_set_query_iptt &= ~CFG_SET_ABORTED_IPTT_MSK;
cfg_abt_set_query_iptt |= (1 << CFG_SET_ABORTED_EN_OFF) |
(slot->idx << CFG_SET_ABORTED_IPTT_OFF);
hisi_sas_write32(hisi_hba, CFG_ABT_SET_QUERY_IPTT,
cfg_abt_set_query_iptt);
}
cfg_abt_set_query_iptt &= ~(1 << CFG_SET_ABORTED_EN_OFF);
hisi_sas_write32(hisi_hba, CFG_ABT_SET_QUERY_IPTT,
cfg_abt_set_query_iptt);
hisi_sas_write32(hisi_hba, CFG_ABT_SET_IPTT_DONE,
1 << CFG_ABT_SET_IPTT_DONE_OFF);
}
static int reset_hw_v3_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
int ret;
u32 val;
hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0);
/* Disable all of the PHYs */
hisi_sas_stop_phys(hisi_hba);
udelay(50);
/* Ensure axi bus idle */
ret = hisi_sas_read32_poll_timeout(AXI_CFG, val, !val,
20000, 1000000);
if (ret) {
dev_err(dev, "axi bus is not idle, ret = %d!\n", ret);
return -EIO;
}
if (ACPI_HANDLE(dev)) {
acpi_status s;
s = acpi_evaluate_object(ACPI_HANDLE(dev), "_RST", NULL, NULL);
if (ACPI_FAILURE(s)) {
dev_err(dev, "Reset failed\n");
return -EIO;
}
} else {
dev_err(dev, "no reset method!\n");
return -EINVAL;
}
return 0;
}
static int hw_init_v3_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
union acpi_object *obj;
guid_t guid;
int rc;
rc = reset_hw_v3_hw(hisi_hba);
if (rc) {
dev_err(dev, "hisi_sas_reset_hw failed, rc=%d", rc);
return rc;
}
msleep(100);
init_reg_v3_hw(hisi_hba);
if (guid_parse("D5918B4B-37AE-4E10-A99F-E5E8A6EF4C1F", &guid)) {
dev_err(dev, "Parse GUID failed\n");
return -EINVAL;
}
/* Switch over to MSI handling , from PCI AER default */
obj = acpi_evaluate_dsm(ACPI_HANDLE(dev), &guid, 0,
DSM_FUNC_ERR_HANDLE_MSI, NULL);
if (!obj)
dev_warn(dev, "Switch over to MSI handling failed\n");
else
ACPI_FREE(obj);
return 0;
}
static void enable_phy_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG);
cfg |= PHY_CFG_ENA_MSK;
cfg &= ~PHY_CFG_PHY_RST_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg);
}
static void disable_phy_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG);
u32 irq_msk = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT2_MSK);
static const u32 msk = BIT(CHL_INT2_RX_DISP_ERR_OFF) |
BIT(CHL_INT2_RX_CODE_ERR_OFF) |
BIT(CHL_INT2_RX_INVLD_DW_OFF);
u32 state;
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT2_MSK, msk | irq_msk);
cfg &= ~PHY_CFG_ENA_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg);
mdelay(50);
state = hisi_sas_read32(hisi_hba, PHY_STATE);
if (state & BIT(phy_no)) {
cfg |= PHY_CFG_PHY_RST_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg);
}
udelay(1);
hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_INVLD_DW);
hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_DISP_ERR);
hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_CODE_ERR);
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT2, msk);
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT2_MSK, irq_msk);
}
static void start_phy_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
config_id_frame_v3_hw(hisi_hba, phy_no);
config_phy_opt_mode_v3_hw(hisi_hba, phy_no);
enable_phy_v3_hw(hisi_hba, phy_no);
}
static void phy_hard_reset_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
u32 txid_auto;
hisi_sas_phy_enable(hisi_hba, phy_no, 0);
if (phy->identify.device_type == SAS_END_DEVICE) {
txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, TXID_AUTO);
hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO,
txid_auto | TX_HARDRST_MSK);
}
msleep(100);
hisi_sas_phy_enable(hisi_hba, phy_no, 1);
}
static enum sas_linkrate phy_get_max_linkrate_v3_hw(void)
{
return SAS_LINK_RATE_12_0_GBPS;
}
static void phys_init_v3_hw(struct hisi_hba *hisi_hba)
{
int i;
for (i = 0; i < hisi_hba->n_phy; i++) {
struct hisi_sas_phy *phy = &hisi_hba->phy[i];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
if (!sas_phy->phy->enabled)
continue;
hisi_sas_phy_enable(hisi_hba, i, 1);
}
}
static void sl_notify_ssp_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 sl_control;
sl_control = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL);
sl_control |= SL_CONTROL_NOTIFY_EN_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_control);
msleep(1);
sl_control = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL);
sl_control &= ~SL_CONTROL_NOTIFY_EN_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_control);
}
static int get_wideport_bitmap_v3_hw(struct hisi_hba *hisi_hba, int port_id)
{
int i, bitmap = 0;
u32 phy_port_num_ma = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA);
u32 phy_state = hisi_sas_read32(hisi_hba, PHY_STATE);
for (i = 0; i < hisi_hba->n_phy; i++)
if (phy_state & BIT(i))
if (((phy_port_num_ma >> (i * 4)) & 0xf) == port_id)
bitmap |= BIT(i);
return bitmap;
}
static void start_delivery_v3_hw(struct hisi_sas_dq *dq)
{
struct hisi_hba *hisi_hba = dq->hisi_hba;
struct hisi_sas_slot *s, *s1, *s2 = NULL;
int dlvry_queue = dq->id;
int wp;
list_for_each_entry_safe(s, s1, &dq->list, delivery) {
if (!s->ready)
break;
s2 = s;
list_del(&s->delivery);
}
if (!s2)
return;
/*
* Ensure that memories for slots built on other CPUs is observed.
*/
smp_rmb();
wp = (s2->dlvry_queue_slot + 1) % HISI_SAS_QUEUE_SLOTS;
hisi_sas_write32(hisi_hba, DLVRY_Q_0_WR_PTR + (dlvry_queue * 0x14), wp);
}
static void prep_prd_sge_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot,
struct hisi_sas_cmd_hdr *hdr,
struct scatterlist *scatter,
int n_elem)
{
struct hisi_sas_sge_page *sge_page = hisi_sas_sge_addr_mem(slot);
struct scatterlist *sg;
int i;
for_each_sg(scatter, sg, n_elem, i) {
struct hisi_sas_sge *entry = &sge_page->sge[i];
entry->addr = cpu_to_le64(sg_dma_address(sg));
entry->page_ctrl_0 = entry->page_ctrl_1 = 0;
entry->data_len = cpu_to_le32(sg_dma_len(sg));
entry->data_off = 0;
}
hdr->prd_table_addr = cpu_to_le64(hisi_sas_sge_addr_dma(slot));
hdr->sg_len |= cpu_to_le32(n_elem << CMD_HDR_DATA_SGL_LEN_OFF);
}
static void prep_prd_sge_dif_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot,
struct hisi_sas_cmd_hdr *hdr,
struct scatterlist *scatter,
int n_elem)
{
struct hisi_sas_sge_dif_page *sge_dif_page;
struct scatterlist *sg;
int i;
sge_dif_page = hisi_sas_sge_dif_addr_mem(slot);
for_each_sg(scatter, sg, n_elem, i) {
struct hisi_sas_sge *entry = &sge_dif_page->sge[i];
entry->addr = cpu_to_le64(sg_dma_address(sg));
entry->page_ctrl_0 = 0;
entry->page_ctrl_1 = 0;
entry->data_len = cpu_to_le32(sg_dma_len(sg));
entry->data_off = 0;
}
hdr->dif_prd_table_addr =
cpu_to_le64(hisi_sas_sge_dif_addr_dma(slot));
hdr->sg_len |= cpu_to_le32(n_elem << CMD_HDR_DIF_SGL_LEN_OFF);
}
static u32 get_prot_chk_msk_v3_hw(struct scsi_cmnd *scsi_cmnd)
{
unsigned char prot_flags = scsi_cmnd->prot_flags;
if (prot_flags & SCSI_PROT_REF_CHECK)
return T10_CHK_APP_TAG_MSK;
return T10_CHK_REF_TAG_MSK | T10_CHK_APP_TAG_MSK;
}
static void fill_prot_v3_hw(struct scsi_cmnd *scsi_cmnd,
struct hisi_sas_protect_iu_v3_hw *prot)
{
unsigned char prot_op = scsi_get_prot_op(scsi_cmnd);
unsigned int interval = scsi_prot_interval(scsi_cmnd);
u32 lbrt_chk_val = t10_pi_ref_tag(scsi_cmnd->request);
switch (prot_op) {
case SCSI_PROT_READ_INSERT:
prot->dw0 |= T10_INSRT_EN_MSK;
prot->lbrtgv = lbrt_chk_val;
break;
case SCSI_PROT_READ_STRIP:
prot->dw0 |= (T10_RMV_EN_MSK | T10_CHK_EN_MSK);
prot->lbrtcv = lbrt_chk_val;
prot->dw4 |= get_prot_chk_msk_v3_hw(scsi_cmnd);
break;
case SCSI_PROT_READ_PASS:
prot->dw0 |= T10_CHK_EN_MSK;
prot->lbrtcv = lbrt_chk_val;
prot->dw4 |= get_prot_chk_msk_v3_hw(scsi_cmnd);
break;
case SCSI_PROT_WRITE_INSERT:
prot->dw0 |= T10_INSRT_EN_MSK;
prot->lbrtgv = lbrt_chk_val;
break;
case SCSI_PROT_WRITE_STRIP:
prot->dw0 |= (T10_RMV_EN_MSK | T10_CHK_EN_MSK);
prot->lbrtcv = lbrt_chk_val;
break;
case SCSI_PROT_WRITE_PASS:
prot->dw0 |= T10_CHK_EN_MSK;
prot->lbrtcv = lbrt_chk_val;
prot->dw4 |= get_prot_chk_msk_v3_hw(scsi_cmnd);
break;
default:
WARN(1, "prot_op(0x%x) is not valid\n", prot_op);
break;
}
switch (interval) {
case 512:
break;
case 4096:
prot->dw0 |= (0x1 << USR_DATA_BLOCK_SZ_OFF);
break;
case 520:
prot->dw0 |= (0x2 << USR_DATA_BLOCK_SZ_OFF);
break;
default:
WARN(1, "protection interval (0x%x) invalid\n",
interval);
break;
}
prot->dw0 |= INCR_LBRT_MSK;
}
static void prep_ssp_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot)
{
struct sas_task *task = slot->task;
struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr;
struct domain_device *device = task->dev;
struct hisi_sas_device *sas_dev = device->lldd_dev;
struct hisi_sas_port *port = slot->port;
struct sas_ssp_task *ssp_task = &task->ssp_task;
struct scsi_cmnd *scsi_cmnd = ssp_task->cmd;
struct hisi_sas_tmf_task *tmf = slot->tmf;
int has_data = 0, priority = !!tmf;
unsigned char prot_op;
u8 *buf_cmd;
u32 dw1 = 0, dw2 = 0, len = 0;
hdr->dw0 = cpu_to_le32((1 << CMD_HDR_RESP_REPORT_OFF) |
(2 << CMD_HDR_TLR_CTRL_OFF) |
(port->id << CMD_HDR_PORT_OFF) |
(priority << CMD_HDR_PRIORITY_OFF) |
(1 << CMD_HDR_CMD_OFF)); /* ssp */
dw1 = 1 << CMD_HDR_VDTL_OFF;
if (tmf) {
dw1 |= 2 << CMD_HDR_FRAME_TYPE_OFF;
dw1 |= DIR_NO_DATA << CMD_HDR_DIR_OFF;
} else {
prot_op = scsi_get_prot_op(scsi_cmnd);
dw1 |= 1 << CMD_HDR_FRAME_TYPE_OFF;
switch (scsi_cmnd->sc_data_direction) {
case DMA_TO_DEVICE:
has_data = 1;
dw1 |= DIR_TO_DEVICE << CMD_HDR_DIR_OFF;
break;
case DMA_FROM_DEVICE:
has_data = 1;
dw1 |= DIR_TO_INI << CMD_HDR_DIR_OFF;
break;
default:
dw1 &= ~CMD_HDR_DIR_MSK;
}
}
/* map itct entry */
dw1 |= sas_dev->device_id << CMD_HDR_DEV_ID_OFF;
dw2 = (((sizeof(struct ssp_command_iu) + sizeof(struct ssp_frame_hdr)
+ 3) / 4) << CMD_HDR_CFL_OFF) |
((HISI_SAS_MAX_SSP_RESP_SZ / 4) << CMD_HDR_MRFL_OFF) |
(2 << CMD_HDR_SG_MOD_OFF);
hdr->dw2 = cpu_to_le32(dw2);
hdr->transfer_tags = cpu_to_le32(slot->idx);
if (has_data) {
prep_prd_sge_v3_hw(hisi_hba, slot, hdr, task->scatter,
slot->n_elem);
if (scsi_prot_sg_count(scsi_cmnd))
prep_prd_sge_dif_v3_hw(hisi_hba, slot, hdr,
scsi_prot_sglist(scsi_cmnd),
slot->n_elem_dif);
}
hdr->cmd_table_addr = cpu_to_le64(hisi_sas_cmd_hdr_addr_dma(slot));
hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot));
buf_cmd = hisi_sas_cmd_hdr_addr_mem(slot) +
sizeof(struct ssp_frame_hdr);
memcpy(buf_cmd, &task->ssp_task.LUN, 8);
if (!tmf) {
buf_cmd[9] = ssp_task->task_attr | (ssp_task->task_prio << 3);
memcpy(buf_cmd + 12, scsi_cmnd->cmnd, scsi_cmnd->cmd_len);
} else {
buf_cmd[10] = tmf->tmf;
switch (tmf->tmf) {
case TMF_ABORT_TASK:
case TMF_QUERY_TASK:
buf_cmd[12] =
(tmf->tag_of_task_to_be_managed >> 8) & 0xff;
buf_cmd[13] =
tmf->tag_of_task_to_be_managed & 0xff;
break;
default:
break;
}
}
if (has_data && (prot_op != SCSI_PROT_NORMAL)) {
struct hisi_sas_protect_iu_v3_hw prot;
u8 *buf_cmd_prot;
hdr->dw7 |= cpu_to_le32(1 << CMD_HDR_ADDR_MODE_SEL_OFF);
dw1 |= CMD_HDR_PIR_MSK;
buf_cmd_prot = hisi_sas_cmd_hdr_addr_mem(slot) +
sizeof(struct ssp_frame_hdr) +
sizeof(struct ssp_command_iu);
memset(&prot, 0, sizeof(struct hisi_sas_protect_iu_v3_hw));
fill_prot_v3_hw(scsi_cmnd, &prot);
memcpy(buf_cmd_prot, &prot,
sizeof(struct hisi_sas_protect_iu_v3_hw));
/*
* For READ, we need length of info read to memory, while for
* WRITE we need length of data written to the disk.
*/
if (prot_op == SCSI_PROT_WRITE_INSERT ||
prot_op == SCSI_PROT_READ_INSERT ||
prot_op == SCSI_PROT_WRITE_PASS ||
prot_op == SCSI_PROT_READ_PASS) {
unsigned int interval = scsi_prot_interval(scsi_cmnd);
unsigned int ilog2_interval = ilog2(interval);
len = (task->total_xfer_len >> ilog2_interval) * 8;
}
}
hdr->dw1 = cpu_to_le32(dw1);
hdr->data_transfer_len = cpu_to_le32(task->total_xfer_len + len);
}
static void prep_smp_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot)
{
struct sas_task *task = slot->task;
struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr;
struct domain_device *device = task->dev;
struct hisi_sas_port *port = slot->port;
struct scatterlist *sg_req;
struct hisi_sas_device *sas_dev = device->lldd_dev;
dma_addr_t req_dma_addr;
unsigned int req_len;
/* req */
sg_req = &task->smp_task.smp_req;
req_len = sg_dma_len(sg_req);
req_dma_addr = sg_dma_address(sg_req);
/* create header */
/* dw0 */
hdr->dw0 = cpu_to_le32((port->id << CMD_HDR_PORT_OFF) |
(1 << CMD_HDR_PRIORITY_OFF) | /* high pri */
(2 << CMD_HDR_CMD_OFF)); /* smp */
/* map itct entry */
hdr->dw1 = cpu_to_le32((sas_dev->device_id << CMD_HDR_DEV_ID_OFF) |
(1 << CMD_HDR_FRAME_TYPE_OFF) |
(DIR_NO_DATA << CMD_HDR_DIR_OFF));
/* dw2 */
hdr->dw2 = cpu_to_le32((((req_len - 4) / 4) << CMD_HDR_CFL_OFF) |
(HISI_SAS_MAX_SMP_RESP_SZ / 4 <<
CMD_HDR_MRFL_OFF));
hdr->transfer_tags = cpu_to_le32(slot->idx << CMD_HDR_IPTT_OFF);
hdr->cmd_table_addr = cpu_to_le64(req_dma_addr);
hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot));
}
static void prep_ata_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot)
{
struct sas_task *task = slot->task;
struct domain_device *device = task->dev;
struct domain_device *parent_dev = device->parent;
struct hisi_sas_device *sas_dev = device->lldd_dev;
struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr;
struct asd_sas_port *sas_port = device->port;
struct hisi_sas_port *port = to_hisi_sas_port(sas_port);
u8 *buf_cmd;
int has_data = 0, hdr_tag = 0;
u32 dw1 = 0, dw2 = 0;
hdr->dw0 = cpu_to_le32(port->id << CMD_HDR_PORT_OFF);
if (parent_dev && dev_is_expander(parent_dev->dev_type))
hdr->dw0 |= cpu_to_le32(3 << CMD_HDR_CMD_OFF);
else
hdr->dw0 |= cpu_to_le32(4U << CMD_HDR_CMD_OFF);
switch (task->data_dir) {
case DMA_TO_DEVICE:
has_data = 1;
dw1 |= DIR_TO_DEVICE << CMD_HDR_DIR_OFF;
break;
case DMA_FROM_DEVICE:
has_data = 1;
dw1 |= DIR_TO_INI << CMD_HDR_DIR_OFF;
break;
default:
dw1 &= ~CMD_HDR_DIR_MSK;
}
if ((task->ata_task.fis.command == ATA_CMD_DEV_RESET) &&
(task->ata_task.fis.control & ATA_SRST))
dw1 |= 1 << CMD_HDR_RESET_OFF;
dw1 |= (hisi_sas_get_ata_protocol(
&task->ata_task.fis, task->data_dir))
<< CMD_HDR_FRAME_TYPE_OFF;
dw1 |= sas_dev->device_id << CMD_HDR_DEV_ID_OFF;
if (FIS_CMD_IS_UNCONSTRAINED(task->ata_task.fis))
dw1 |= 1 << CMD_HDR_UNCON_CMD_OFF;
hdr->dw1 = cpu_to_le32(dw1);
/* dw2 */
if (task->ata_task.use_ncq) {
struct ata_queued_cmd *qc = task->uldd_task;
hdr_tag = qc->tag;
task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3);
dw2 |= hdr_tag << CMD_HDR_NCQ_TAG_OFF;
}
dw2 |= (HISI_SAS_MAX_STP_RESP_SZ / 4) << CMD_HDR_CFL_OFF |
2 << CMD_HDR_SG_MOD_OFF;
hdr->dw2 = cpu_to_le32(dw2);
/* dw3 */
hdr->transfer_tags = cpu_to_le32(slot->idx);
if (has_data)
prep_prd_sge_v3_hw(hisi_hba, slot, hdr, task->scatter,
slot->n_elem);
hdr->data_transfer_len = cpu_to_le32(task->total_xfer_len);
hdr->cmd_table_addr = cpu_to_le64(hisi_sas_cmd_hdr_addr_dma(slot));
hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot));
buf_cmd = hisi_sas_cmd_hdr_addr_mem(slot);
if (likely(!task->ata_task.device_control_reg_update))
task->ata_task.fis.flags |= 0x80; /* C=1: update ATA cmd reg */
/* fill in command FIS */
memcpy(buf_cmd, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
}
static void prep_abort_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot,
int device_id, int abort_flag, int tag_to_abort)
{
struct sas_task *task = slot->task;
struct domain_device *dev = task->dev;
struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr;
struct hisi_sas_port *port = slot->port;
/* dw0 */
hdr->dw0 = cpu_to_le32((5U << CMD_HDR_CMD_OFF) | /*abort*/
(port->id << CMD_HDR_PORT_OFF) |
(dev_is_sata(dev)
<< CMD_HDR_ABORT_DEVICE_TYPE_OFF) |
(abort_flag
<< CMD_HDR_ABORT_FLAG_OFF));
/* dw1 */
hdr->dw1 = cpu_to_le32(device_id
<< CMD_HDR_DEV_ID_OFF);
/* dw7 */
hdr->dw7 = cpu_to_le32(tag_to_abort << CMD_HDR_ABORT_IPTT_OFF);
hdr->transfer_tags = cpu_to_le32(slot->idx);
}
static irqreturn_t phy_up_v3_hw(int phy_no, struct hisi_hba *hisi_hba)
{
int i;
irqreturn_t res;
u32 context, port_id, link_rate;
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct device *dev = hisi_hba->dev;
unsigned long flags;
del_timer(&phy->timer);
hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_PHY_ENA_MSK, 1);
port_id = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA);
port_id = (port_id >> (4 * phy_no)) & 0xf;
link_rate = hisi_sas_read32(hisi_hba, PHY_CONN_RATE);
link_rate = (link_rate >> (phy_no * 4)) & 0xf;
if (port_id == 0xf) {
dev_err(dev, "phyup: phy%d invalid portid\n", phy_no);
res = IRQ_NONE;
goto end;
}
sas_phy->linkrate = link_rate;
phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA);
/* Check for SATA dev */
context = hisi_sas_read32(hisi_hba, PHY_CONTEXT);
if (context & (1 << phy_no)) {
struct hisi_sas_initial_fis *initial_fis;
struct dev_to_host_fis *fis;
u8 attached_sas_addr[SAS_ADDR_SIZE] = {0};
struct Scsi_Host *shost = hisi_hba->shost;
dev_info(dev, "phyup: phy%d link_rate=%d(sata)\n", phy_no, link_rate);
initial_fis = &hisi_hba->initial_fis[phy_no];
fis = &initial_fis->fis;
/* check ERR bit of Status Register */
if (fis->status & ATA_ERR) {
dev_warn(dev, "sata int: phy%d FIS status: 0x%x\n",
phy_no, fis->status);
hisi_sas_notify_phy_event(phy, HISI_PHYE_LINK_RESET);
res = IRQ_NONE;
goto end;
}
sas_phy->oob_mode = SATA_OOB_MODE;
attached_sas_addr[0] = 0x50;
attached_sas_addr[6] = shost->host_no;
attached_sas_addr[7] = phy_no;
memcpy(sas_phy->attached_sas_addr,
attached_sas_addr,
SAS_ADDR_SIZE);
memcpy(sas_phy->frame_rcvd, fis,
sizeof(struct dev_to_host_fis));
phy->phy_type |= PORT_TYPE_SATA;
phy->identify.device_type = SAS_SATA_DEV;
phy->frame_rcvd_size = sizeof(struct dev_to_host_fis);
phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
} else {
u32 *frame_rcvd = (u32 *)sas_phy->frame_rcvd;
struct sas_identify_frame *id =
(struct sas_identify_frame *)frame_rcvd;
dev_info(dev, "phyup: phy%d link_rate=%d\n", phy_no, link_rate);
for (i = 0; i < 6; i++) {
u32 idaf = hisi_sas_phy_read32(hisi_hba, phy_no,
RX_IDAF_DWORD0 + (i * 4));
frame_rcvd[i] = __swab32(idaf);
}
sas_phy->oob_mode = SAS_OOB_MODE;
memcpy(sas_phy->attached_sas_addr,
&id->sas_addr,
SAS_ADDR_SIZE);
phy->phy_type |= PORT_TYPE_SAS;
phy->identify.device_type = id->dev_type;
phy->frame_rcvd_size = sizeof(struct sas_identify_frame);
if (phy->identify.device_type == SAS_END_DEVICE)
phy->identify.target_port_protocols =
SAS_PROTOCOL_SSP;
else if (phy->identify.device_type != SAS_PHY_UNUSED)
phy->identify.target_port_protocols =
SAS_PROTOCOL_SMP;
}
phy->port_id = port_id;
phy->phy_attached = 1;
hisi_sas_notify_phy_event(phy, HISI_PHYE_PHY_UP);
res = IRQ_HANDLED;
spin_lock_irqsave(&phy->lock, flags);
if (phy->reset_completion) {
phy->in_reset = 0;
complete(phy->reset_completion);
}
spin_unlock_irqrestore(&phy->lock, flags);
end:
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0,
CHL_INT0_SL_PHY_ENABLE_MSK);
hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_PHY_ENA_MSK, 0);
return res;
}
static irqreturn_t phy_down_v3_hw(int phy_no, struct hisi_hba *hisi_hba)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
u32 phy_state, sl_ctrl, txid_auto;
struct device *dev = hisi_hba->dev;
atomic_inc(&phy->down_cnt);
del_timer(&phy->timer);
hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_NOT_RDY_MSK, 1);
phy_state = hisi_sas_read32(hisi_hba, PHY_STATE);
dev_info(dev, "phydown: phy%d phy_state=0x%x\n", phy_no, phy_state);
hisi_sas_phy_down(hisi_hba, phy_no, (phy_state & 1 << phy_no) ? 1 : 0);
sl_ctrl = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL);
hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL,
sl_ctrl&(~SL_CTA_MSK));
txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, TXID_AUTO);
hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO,
txid_auto | CT3_MSK);
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, CHL_INT0_NOT_RDY_MSK);
hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_NOT_RDY_MSK, 0);
return IRQ_HANDLED;
}
static irqreturn_t phy_bcast_v3_hw(int phy_no, struct hisi_hba *hisi_hba)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct sas_ha_struct *sas_ha = &hisi_hba->sha;
u32 bcast_status;
hisi_sas_phy_write32(hisi_hba, phy_no, SL_RX_BCAST_CHK_MSK, 1);
bcast_status = hisi_sas_phy_read32(hisi_hba, phy_no, RX_PRIMS_STATUS);
if ((bcast_status & RX_BCAST_CHG_MSK) &&
!test_bit(HISI_SAS_RESET_BIT, &hisi_hba->flags))
sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD);
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0,
CHL_INT0_SL_RX_BCST_ACK_MSK);
hisi_sas_phy_write32(hisi_hba, phy_no, SL_RX_BCAST_CHK_MSK, 0);
return IRQ_HANDLED;
}
static irqreturn_t int_phy_up_down_bcast_v3_hw(int irq_no, void *p)
{
struct hisi_hba *hisi_hba = p;
u32 irq_msk;
int phy_no = 0;
irqreturn_t res = IRQ_NONE;
irq_msk = hisi_sas_read32(hisi_hba, CHNL_INT_STATUS)
& 0x11111111;
while (irq_msk) {
if (irq_msk & 1) {
u32 irq_value = hisi_sas_phy_read32(hisi_hba, phy_no,
CHL_INT0);
u32 phy_state = hisi_sas_read32(hisi_hba, PHY_STATE);
int rdy = phy_state & (1 << phy_no);
if (rdy) {
if (irq_value & CHL_INT0_SL_PHY_ENABLE_MSK)
/* phy up */
if (phy_up_v3_hw(phy_no, hisi_hba)
== IRQ_HANDLED)
res = IRQ_HANDLED;
if (irq_value & CHL_INT0_SL_RX_BCST_ACK_MSK)
/* phy bcast */
if (phy_bcast_v3_hw(phy_no, hisi_hba)
== IRQ_HANDLED)
res = IRQ_HANDLED;
} else {
if (irq_value & CHL_INT0_NOT_RDY_MSK)
/* phy down */
if (phy_down_v3_hw(phy_no, hisi_hba)
== IRQ_HANDLED)
res = IRQ_HANDLED;
}
}
irq_msk >>= 4;
phy_no++;
}
return res;
}
static const struct hisi_sas_hw_error port_axi_error[] = {
{
.irq_msk = BIT(CHL_INT1_DMAC_TX_ECC_MB_ERR_OFF),
.msg = "dmac_tx_ecc_bad_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_RX_ECC_MB_ERR_OFF),
.msg = "dmac_rx_ecc_bad_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_TX_AXI_WR_ERR_OFF),
.msg = "dma_tx_axi_wr_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_TX_AXI_RD_ERR_OFF),
.msg = "dma_tx_axi_rd_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_RX_AXI_WR_ERR_OFF),
.msg = "dma_rx_axi_wr_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_RX_AXI_RD_ERR_OFF),
.msg = "dma_rx_axi_rd_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_TX_FIFO_ERR_OFF),
.msg = "dma_tx_fifo_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_RX_FIFO_ERR_OFF),
.msg = "dma_rx_fifo_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_TX_AXI_RUSER_ERR_OFF),
.msg = "dma_tx_axi_ruser_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_RX_AXI_RUSER_ERR_OFF),
.msg = "dma_rx_axi_ruser_err",
},
};
static void handle_chl_int1_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 irq_value = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT1);
u32 irq_msk = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT1_MSK);
struct device *dev = hisi_hba->dev;
int i;
irq_value &= ~irq_msk;
if (!irq_value)
return;
for (i = 0; i < ARRAY_SIZE(port_axi_error); i++) {
const struct hisi_sas_hw_error *error = &port_axi_error[i];
if (!(irq_value & error->irq_msk))
continue;
dev_err(dev, "%s error (phy%d 0x%x) found!\n",
error->msg, phy_no, irq_value);
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
}
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT1, irq_value);
}
static void phy_get_events_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct sas_phy *sphy = sas_phy->phy;
unsigned long flags;
u32 reg_value;
spin_lock_irqsave(&phy->lock, flags);
/* loss dword sync */
reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_DWS_LOST);
sphy->loss_of_dword_sync_count += reg_value;
/* phy reset problem */
reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_RESET_PROB);
sphy->phy_reset_problem_count += reg_value;
/* invalid dword */
reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_INVLD_DW);
sphy->invalid_dword_count += reg_value;
/* disparity err */
reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_DISP_ERR);
sphy->running_disparity_error_count += reg_value;
/* code violation error */
reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_CODE_ERR);
phy->code_violation_err_count += reg_value;
spin_unlock_irqrestore(&phy->lock, flags);
}
static void handle_chl_int2_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 irq_msk = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT2_MSK);
u32 irq_value = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT2);
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct pci_dev *pci_dev = hisi_hba->pci_dev;
struct device *dev = hisi_hba->dev;
static const u32 msk = BIT(CHL_INT2_RX_DISP_ERR_OFF) |
BIT(CHL_INT2_RX_CODE_ERR_OFF) |
BIT(CHL_INT2_RX_INVLD_DW_OFF);
irq_value &= ~irq_msk;
if (!irq_value)
return;
if (irq_value & BIT(CHL_INT2_SL_IDAF_TOUT_CONF_OFF)) {
dev_warn(dev, "phy%d identify timeout\n", phy_no);
hisi_sas_notify_phy_event(phy, HISI_PHYE_LINK_RESET);
}
if (irq_value & BIT(CHL_INT2_STP_LINK_TIMEOUT_OFF)) {
u32 reg_value = hisi_sas_phy_read32(hisi_hba, phy_no,
STP_LINK_TIMEOUT_STATE);
dev_warn(dev, "phy%d stp link timeout (0x%x)\n",
phy_no, reg_value);
if (reg_value & BIT(4))
hisi_sas_notify_phy_event(phy, HISI_PHYE_LINK_RESET);
}
if (pci_dev->revision > 0x20 && (irq_value & msk)) {
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct sas_phy *sphy = sas_phy->phy;
phy_get_events_v3_hw(hisi_hba, phy_no);
if (irq_value & BIT(CHL_INT2_RX_INVLD_DW_OFF))
dev_info(dev, "phy%d invalid dword cnt: %u\n", phy_no,
sphy->invalid_dword_count);
if (irq_value & BIT(CHL_INT2_RX_CODE_ERR_OFF))
dev_info(dev, "phy%d code violation cnt: %u\n", phy_no,
phy->code_violation_err_count);
if (irq_value & BIT(CHL_INT2_RX_DISP_ERR_OFF))
dev_info(dev, "phy%d disparity error cnt: %u\n", phy_no,
sphy->running_disparity_error_count);
}
if ((irq_value & BIT(CHL_INT2_RX_INVLD_DW_OFF)) &&
(pci_dev->revision == 0x20)) {
u32 reg_value;
int rc;
rc = hisi_sas_read32_poll_timeout_atomic(
HILINK_ERR_DFX, reg_value,
!((reg_value >> 8) & BIT(phy_no)),
1000, 10000);
if (rc)
hisi_sas_notify_phy_event(phy, HISI_PHYE_LINK_RESET);
}
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT2, irq_value);
}
static void handle_chl_int0_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 irq_value0 = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT0);
if (irq_value0 & CHL_INT0_PHY_RDY_MSK)
hisi_sas_phy_oob_ready(hisi_hba, phy_no);
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0,
irq_value0 & (~CHL_INT0_SL_RX_BCST_ACK_MSK)
& (~CHL_INT0_SL_PHY_ENABLE_MSK)
& (~CHL_INT0_NOT_RDY_MSK));
}
static irqreturn_t int_chnl_int_v3_hw(int irq_no, void *p)
{
struct hisi_hba *hisi_hba = p;
u32 irq_msk;
int phy_no = 0;
irq_msk = hisi_sas_read32(hisi_hba, CHNL_INT_STATUS)
& CHNL_INT_STS_MSK;
while (irq_msk) {
if (irq_msk & (CHNL_INT_STS_INT0_MSK << (phy_no * CHNL_WIDTH)))
handle_chl_int0_v3_hw(hisi_hba, phy_no);
if (irq_msk & (CHNL_INT_STS_INT1_MSK << (phy_no * CHNL_WIDTH)))
handle_chl_int1_v3_hw(hisi_hba, phy_no);
if (irq_msk & (CHNL_INT_STS_INT2_MSK << (phy_no * CHNL_WIDTH)))
handle_chl_int2_v3_hw(hisi_hba, phy_no);
irq_msk &= ~(CHNL_INT_STS_PHY_MSK << (phy_no * CHNL_WIDTH));
phy_no++;
}
return IRQ_HANDLED;
}
static const struct hisi_sas_hw_error multi_bit_ecc_errors[] = {
{
.irq_msk = BIT(SAS_ECC_INTR_DQE_ECC_MB_OFF),
.msk = HGC_DQE_ECC_MB_ADDR_MSK,
.shift = HGC_DQE_ECC_MB_ADDR_OFF,
.msg = "hgc_dqe_eccbad_intr",
.reg = HGC_DQE_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_IOST_ECC_MB_OFF),
.msk = HGC_IOST_ECC_MB_ADDR_MSK,
.shift = HGC_IOST_ECC_MB_ADDR_OFF,
.msg = "hgc_iost_eccbad_intr",
.reg = HGC_IOST_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_ITCT_ECC_MB_OFF),
.msk = HGC_ITCT_ECC_MB_ADDR_MSK,
.shift = HGC_ITCT_ECC_MB_ADDR_OFF,
.msg = "hgc_itct_eccbad_intr",
.reg = HGC_ITCT_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_IOSTLIST_ECC_MB_OFF),
.msk = HGC_LM_DFX_STATUS2_IOSTLIST_MSK,
.shift = HGC_LM_DFX_STATUS2_IOSTLIST_OFF,
.msg = "hgc_iostl_eccbad_intr",
.reg = HGC_LM_DFX_STATUS2,
},
{
.irq_msk = BIT(SAS_ECC_INTR_ITCTLIST_ECC_MB_OFF),
.msk = HGC_LM_DFX_STATUS2_ITCTLIST_MSK,
.shift = HGC_LM_DFX_STATUS2_ITCTLIST_OFF,
.msg = "hgc_itctl_eccbad_intr",
.reg = HGC_LM_DFX_STATUS2,
},
{
.irq_msk = BIT(SAS_ECC_INTR_CQE_ECC_MB_OFF),
.msk = HGC_CQE_ECC_MB_ADDR_MSK,
.shift = HGC_CQE_ECC_MB_ADDR_OFF,
.msg = "hgc_cqe_eccbad_intr",
.reg = HGC_CQE_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM0_ECC_MB_OFF),
.msk = HGC_RXM_DFX_STATUS14_MEM0_MSK,
.shift = HGC_RXM_DFX_STATUS14_MEM0_OFF,
.msg = "rxm_mem0_eccbad_intr",
.reg = HGC_RXM_DFX_STATUS14,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM1_ECC_MB_OFF),
.msk = HGC_RXM_DFX_STATUS14_MEM1_MSK,
.shift = HGC_RXM_DFX_STATUS14_MEM1_OFF,
.msg = "rxm_mem1_eccbad_intr",
.reg = HGC_RXM_DFX_STATUS14,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM2_ECC_MB_OFF),
.msk = HGC_RXM_DFX_STATUS14_MEM2_MSK,
.shift = HGC_RXM_DFX_STATUS14_MEM2_OFF,
.msg = "rxm_mem2_eccbad_intr",
.reg = HGC_RXM_DFX_STATUS14,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM3_ECC_MB_OFF),
.msk = HGC_RXM_DFX_STATUS15_MEM3_MSK,
.shift = HGC_RXM_DFX_STATUS15_MEM3_OFF,
.msg = "rxm_mem3_eccbad_intr",
.reg = HGC_RXM_DFX_STATUS15,
},
{
.irq_msk = BIT(SAS_ECC_INTR_OOO_RAM_ECC_MB_OFF),
.msk = AM_ROB_ECC_ERR_ADDR_MSK,
.shift = AM_ROB_ECC_ERR_ADDR_OFF,
.msg = "ooo_ram_eccbad_intr",
.reg = AM_ROB_ECC_ERR_ADDR,
},
};
static void multi_bit_ecc_error_process_v3_hw(struct hisi_hba *hisi_hba,
u32 irq_value)
{
struct device *dev = hisi_hba->dev;
const struct hisi_sas_hw_error *ecc_error;
u32 val;
int i;
for (i = 0; i < ARRAY_SIZE(multi_bit_ecc_errors); i++) {
ecc_error = &multi_bit_ecc_errors[i];
if (irq_value & ecc_error->irq_msk) {
val = hisi_sas_read32(hisi_hba, ecc_error->reg);
val &= ecc_error->msk;
val >>= ecc_error->shift;
dev_err(dev, "%s (0x%x) found: mem addr is 0x%08X\n",
ecc_error->msg, irq_value, val);
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
}
}
}
static void fatal_ecc_int_v3_hw(struct hisi_hba *hisi_hba)
{
u32 irq_value, irq_msk;
irq_msk = hisi_sas_read32(hisi_hba, SAS_ECC_INTR_MSK);
hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0xffffffff);
irq_value = hisi_sas_read32(hisi_hba, SAS_ECC_INTR);
if (irq_value)
multi_bit_ecc_error_process_v3_hw(hisi_hba, irq_value);
hisi_sas_write32(hisi_hba, SAS_ECC_INTR, irq_value);
hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, irq_msk);
}
static const struct hisi_sas_hw_error axi_error[] = {
{ .msk = BIT(0), .msg = "IOST_AXI_W_ERR" },
{ .msk = BIT(1), .msg = "IOST_AXI_R_ERR" },
{ .msk = BIT(2), .msg = "ITCT_AXI_W_ERR" },
{ .msk = BIT(3), .msg = "ITCT_AXI_R_ERR" },
{ .msk = BIT(4), .msg = "SATA_AXI_W_ERR" },
{ .msk = BIT(5), .msg = "SATA_AXI_R_ERR" },
{ .msk = BIT(6), .msg = "DQE_AXI_R_ERR" },
{ .msk = BIT(7), .msg = "CQE_AXI_W_ERR" },
{}
};
static const struct hisi_sas_hw_error fifo_error[] = {
{ .msk = BIT(8), .msg = "CQE_WINFO_FIFO" },
{ .msk = BIT(9), .msg = "CQE_MSG_FIFIO" },
{ .msk = BIT(10), .msg = "GETDQE_FIFO" },
{ .msk = BIT(11), .msg = "CMDP_FIFO" },
{ .msk = BIT(12), .msg = "AWTCTRL_FIFO" },
{}
};
static const struct hisi_sas_hw_error fatal_axi_error[] = {
{
.irq_msk = BIT(ENT_INT_SRC3_WP_DEPTH_OFF),
.msg = "write pointer and depth",
},
{
.irq_msk = BIT(ENT_INT_SRC3_IPTT_SLOT_NOMATCH_OFF),
.msg = "iptt no match slot",
},
{
.irq_msk = BIT(ENT_INT_SRC3_RP_DEPTH_OFF),
.msg = "read pointer and depth",
},
{
.irq_msk = BIT(ENT_INT_SRC3_AXI_OFF),
.reg = HGC_AXI_FIFO_ERR_INFO,
.sub = axi_error,
},
{
.irq_msk = BIT(ENT_INT_SRC3_FIFO_OFF),
.reg = HGC_AXI_FIFO_ERR_INFO,
.sub = fifo_error,
},
{
.irq_msk = BIT(ENT_INT_SRC3_LM_OFF),
.msg = "LM add/fetch list",
},
{
.irq_msk = BIT(ENT_INT_SRC3_ABT_OFF),
.msg = "SAS_HGC_ABT fetch LM list",
},
{
.irq_msk = BIT(ENT_INT_SRC3_DQE_POISON_OFF),
.msg = "read dqe poison",
},
{
.irq_msk = BIT(ENT_INT_SRC3_IOST_POISON_OFF),
.msg = "read iost poison",
},
{
.irq_msk = BIT(ENT_INT_SRC3_ITCT_POISON_OFF),
.msg = "read itct poison",
},
{
.irq_msk = BIT(ENT_INT_SRC3_ITCT_NCQ_POISON_OFF),
.msg = "read itct ncq poison",
},
};
static irqreturn_t fatal_axi_int_v3_hw(int irq_no, void *p)
{
u32 irq_value, irq_msk;
struct hisi_hba *hisi_hba = p;
struct device *dev = hisi_hba->dev;
struct pci_dev *pdev = hisi_hba->pci_dev;
int i;
irq_msk = hisi_sas_read32(hisi_hba, ENT_INT_SRC_MSK3);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, irq_msk | 0x1df00);
irq_value = hisi_sas_read32(hisi_hba, ENT_INT_SRC3);
irq_value &= ~irq_msk;
for (i = 0; i < ARRAY_SIZE(fatal_axi_error); i++) {
const struct hisi_sas_hw_error *error = &fatal_axi_error[i];
if (!(irq_value & error->irq_msk))
continue;
if (error->sub) {
const struct hisi_sas_hw_error *sub = error->sub;
u32 err_value = hisi_sas_read32(hisi_hba, error->reg);
for (; sub->msk || sub->msg; sub++) {
if (!(err_value & sub->msk))
continue;
dev_err(dev, "%s error (0x%x) found!\n",
sub->msg, irq_value);
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
}
} else {
dev_err(dev, "%s error (0x%x) found!\n",
error->msg, irq_value);
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
}
if (pdev->revision < 0x21) {
u32 reg_val;
reg_val = hisi_sas_read32(hisi_hba,
AXI_MASTER_CFG_BASE +
AM_CTRL_GLOBAL);
reg_val |= AM_CTRL_SHUTDOWN_REQ_MSK;
hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE +
AM_CTRL_GLOBAL, reg_val);
}
}
fatal_ecc_int_v3_hw(hisi_hba);
if (irq_value & BIT(ENT_INT_SRC3_ITC_INT_OFF)) {
u32 reg_val = hisi_sas_read32(hisi_hba, ITCT_CLR);
u32 dev_id = reg_val & ITCT_DEV_MSK;
struct hisi_sas_device *sas_dev =
&hisi_hba->devices[dev_id];
hisi_sas_write32(hisi_hba, ITCT_CLR, 0);
dev_dbg(dev, "clear ITCT ok\n");
complete(sas_dev->completion);
}
hisi_sas_write32(hisi_hba, ENT_INT_SRC3, irq_value & 0x1df00);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, irq_msk);
return IRQ_HANDLED;
}
static void
slot_err_v3_hw(struct hisi_hba *hisi_hba, struct sas_task *task,
struct hisi_sas_slot *slot)
{
struct task_status_struct *ts = &task->task_status;
struct hisi_sas_complete_v3_hdr *complete_queue =
hisi_hba->complete_hdr[slot->cmplt_queue];
struct hisi_sas_complete_v3_hdr *complete_hdr =
&complete_queue[slot->cmplt_queue_slot];
struct hisi_sas_err_record_v3 *record =
hisi_sas_status_buf_addr_mem(slot);
u32 dma_rx_err_type = le32_to_cpu(record->dma_rx_err_type);
u32 trans_tx_fail_type = le32_to_cpu(record->trans_tx_fail_type);
u32 dw3 = le32_to_cpu(complete_hdr->dw3);
switch (task->task_proto) {
case SAS_PROTOCOL_SSP:
if (dma_rx_err_type & RX_DATA_LEN_UNDERFLOW_MSK) {
ts->residual = trans_tx_fail_type;
ts->stat = SAS_DATA_UNDERRUN;
} else if (dw3 & CMPLT_HDR_IO_IN_TARGET_MSK) {
ts->stat = SAS_QUEUE_FULL;
slot->abort = 1;
} else {
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
}
break;
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
if (dma_rx_err_type & RX_DATA_LEN_UNDERFLOW_MSK) {
ts->residual = trans_tx_fail_type;
ts->stat = SAS_DATA_UNDERRUN;
} else if (dw3 & CMPLT_HDR_IO_IN_TARGET_MSK) {
ts->stat = SAS_PHY_DOWN;
slot->abort = 1;
} else {
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
}
hisi_sas_sata_done(task, slot);
break;
case SAS_PROTOCOL_SMP:
ts->stat = SAM_STAT_CHECK_CONDITION;
break;
default:
break;
}
}
static int
slot_complete_v3_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot)
{
struct sas_task *task = slot->task;
struct hisi_sas_device *sas_dev;
struct device *dev = hisi_hba->dev;
struct task_status_struct *ts;
struct domain_device *device;
struct sas_ha_struct *ha;
enum exec_status sts;
struct hisi_sas_complete_v3_hdr *complete_queue =
hisi_hba->complete_hdr[slot->cmplt_queue];
struct hisi_sas_complete_v3_hdr *complete_hdr =
&complete_queue[slot->cmplt_queue_slot];
unsigned long flags;
bool is_internal = slot->is_internal;
u32 dw0, dw1, dw3;
if (unlikely(!task || !task->lldd_task || !task->dev))
return -EINVAL;
ts = &task->task_status;
device = task->dev;
ha = device->port->ha;
sas_dev = device->lldd_dev;
spin_lock_irqsave(&task->task_state_lock, flags);
task->task_state_flags &=
~(SAS_TASK_STATE_PENDING | SAS_TASK_AT_INITIATOR);
spin_unlock_irqrestore(&task->task_state_lock, flags);
memset(ts, 0, sizeof(*ts));
ts->resp = SAS_TASK_COMPLETE;
if (unlikely(!sas_dev)) {
dev_dbg(dev, "slot complete: port has not device\n");
ts->stat = SAS_PHY_DOWN;
goto out;
}
dw0 = le32_to_cpu(complete_hdr->dw0);
dw1 = le32_to_cpu(complete_hdr->dw1);
dw3 = le32_to_cpu(complete_hdr->dw3);
/*
* Use SAS+TMF status codes
*/
switch ((dw0 & CMPLT_HDR_ABORT_STAT_MSK) >> CMPLT_HDR_ABORT_STAT_OFF) {
case STAT_IO_ABORTED:
/* this IO has been aborted by abort command */
ts->stat = SAS_ABORTED_TASK;
goto out;
case STAT_IO_COMPLETE:
/* internal abort command complete */
ts->stat = TMF_RESP_FUNC_SUCC;
goto out;
case STAT_IO_NO_DEVICE:
ts->stat = TMF_RESP_FUNC_COMPLETE;
goto out;
case STAT_IO_NOT_VALID:
/*
* abort single IO, the controller can't find the IO
*/
ts->stat = TMF_RESP_FUNC_FAILED;
goto out;
default:
break;
}
/* check for erroneous completion */
if ((dw0 & CMPLT_HDR_CMPLT_MSK) == 0x3) {
u32 *error_info = hisi_sas_status_buf_addr_mem(slot);
slot_err_v3_hw(hisi_hba, task, slot);
if (ts->stat != SAS_DATA_UNDERRUN)
dev_info(dev, "erroneous completion iptt=%d task=%pK dev id=%d CQ hdr: 0x%x 0x%x 0x%x 0x%x Error info: 0x%x 0x%x 0x%x 0x%x\n",
slot->idx, task, sas_dev->device_id,
dw0, dw1, complete_hdr->act, dw3,
error_info[0], error_info[1],
error_info[2], error_info[3]);
if (unlikely(slot->abort))
return ts->stat;
goto out;
}
switch (task->task_proto) {
case SAS_PROTOCOL_SSP: {
struct ssp_response_iu *iu =
hisi_sas_status_buf_addr_mem(slot) +
sizeof(struct hisi_sas_err_record);
sas_ssp_task_response(dev, task, iu);
break;
}
case SAS_PROTOCOL_SMP: {
struct scatterlist *sg_resp = &task->smp_task.smp_resp;
void *to = page_address(sg_page(sg_resp));
ts->stat = SAM_STAT_GOOD;
dma_unmap_sg(dev, &task->smp_task.smp_req, 1,
DMA_TO_DEVICE);
memcpy(to + sg_resp->offset,
hisi_sas_status_buf_addr_mem(slot) +
sizeof(struct hisi_sas_err_record),
sg_resp->length);
break;
}
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
ts->stat = SAM_STAT_GOOD;
hisi_sas_sata_done(task, slot);
break;
default:
ts->stat = SAM_STAT_CHECK_CONDITION;
break;
}
if (!slot->port->port_attached) {
dev_warn(dev, "slot complete: port %d has removed\n",
slot->port->sas_port.id);
ts->stat = SAS_PHY_DOWN;
}
out:
sts = ts->stat;
spin_lock_irqsave(&task->task_state_lock, flags);
if (task->task_state_flags & SAS_TASK_STATE_ABORTED) {
spin_unlock_irqrestore(&task->task_state_lock, flags);
dev_info(dev, "slot complete: task(%pK) aborted\n", task);
return SAS_ABORTED_TASK;
}
task->task_state_flags |= SAS_TASK_STATE_DONE;
spin_unlock_irqrestore(&task->task_state_lock, flags);
hisi_sas_slot_task_free(hisi_hba, task, slot);
if (!is_internal && (task->task_proto != SAS_PROTOCOL_SMP)) {
spin_lock_irqsave(&device->done_lock, flags);
if (test_bit(SAS_HA_FROZEN, &ha->state)) {
spin_unlock_irqrestore(&device->done_lock, flags);
dev_info(dev, "slot complete: task(%pK) ignored\n ",
task);
return sts;
}
spin_unlock_irqrestore(&device->done_lock, flags);
}
if (task->task_done)
task->task_done(task);
return sts;
}
static irqreturn_t cq_thread_v3_hw(int irq_no, void *p)
{
struct hisi_sas_cq *cq = p;
struct hisi_hba *hisi_hba = cq->hisi_hba;
struct hisi_sas_slot *slot;
struct hisi_sas_complete_v3_hdr *complete_queue;
u32 rd_point = cq->rd_point, wr_point;
int queue = cq->id;
complete_queue = hisi_hba->complete_hdr[queue];
wr_point = hisi_sas_read32(hisi_hba, COMPL_Q_0_WR_PTR +
(0x14 * queue));
while (rd_point != wr_point) {
struct hisi_sas_complete_v3_hdr *complete_hdr;
struct device *dev = hisi_hba->dev;
u32 dw1;
int iptt;
complete_hdr = &complete_queue[rd_point];
dw1 = le32_to_cpu(complete_hdr->dw1);
iptt = dw1 & CMPLT_HDR_IPTT_MSK;
if (likely(iptt < HISI_SAS_COMMAND_ENTRIES_V3_HW)) {
slot = &hisi_hba->slot_info[iptt];
slot->cmplt_queue_slot = rd_point;
slot->cmplt_queue = queue;
slot_complete_v3_hw(hisi_hba, slot);
} else
dev_err(dev, "IPTT %d is invalid, discard it.\n", iptt);
if (++rd_point >= HISI_SAS_QUEUE_SLOTS)
rd_point = 0;
}
/* update rd_point */
cq->rd_point = rd_point;
hisi_sas_write32(hisi_hba, COMPL_Q_0_RD_PTR + (0x14 * queue), rd_point);
return IRQ_HANDLED;
}
static irqreturn_t cq_interrupt_v3_hw(int irq_no, void *p)
{
struct hisi_sas_cq *cq = p;
struct hisi_hba *hisi_hba = cq->hisi_hba;
int queue = cq->id;
hisi_sas_write32(hisi_hba, OQ_INT_SRC, 1 << queue);
return IRQ_WAKE_THREAD;
}
static void setup_reply_map_v3_hw(struct hisi_hba *hisi_hba, int nvecs)
{
const struct cpumask *mask;
int queue, cpu;
for (queue = 0; queue < nvecs; queue++) {
struct hisi_sas_cq *cq = &hisi_hba->cq[queue];
mask = pci_irq_get_affinity(hisi_hba->pci_dev, queue +
BASE_VECTORS_V3_HW);
if (!mask)
goto fallback;
cq->irq_mask = mask;
for_each_cpu(cpu, mask)
hisi_hba->reply_map[cpu] = queue;
}
return;
fallback:
for_each_possible_cpu(cpu)
hisi_hba->reply_map[cpu] = cpu % hisi_hba->queue_count;
/* Don't clean all CQ masks */
}
static int interrupt_init_v3_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
struct pci_dev *pdev = hisi_hba->pci_dev;
int vectors, rc, i;
int max_msi = HISI_SAS_MSI_COUNT_V3_HW, min_msi;
if (auto_affine_msi_experimental) {
struct irq_affinity desc = {
.pre_vectors = BASE_VECTORS_V3_HW,
};
dev_info(dev, "Enable MSI auto-affinity\n");
min_msi = MIN_AFFINE_VECTORS_V3_HW;
hisi_hba->reply_map = devm_kcalloc(dev, nr_cpu_ids,
sizeof(unsigned int),
GFP_KERNEL);
if (!hisi_hba->reply_map)
return -ENOMEM;
vectors = pci_alloc_irq_vectors_affinity(hisi_hba->pci_dev,
min_msi, max_msi,
PCI_IRQ_MSI |
PCI_IRQ_AFFINITY,
&desc);
if (vectors < 0)
return -ENOENT;
setup_reply_map_v3_hw(hisi_hba, vectors - BASE_VECTORS_V3_HW);
} else {
min_msi = max_msi;
vectors = pci_alloc_irq_vectors(hisi_hba->pci_dev, min_msi,
max_msi, PCI_IRQ_MSI);
if (vectors < 0)
return vectors;
}
scsi: hisi_sas: Issue internal abort on all relevant queues To support queue mapped to a CPU, it needs to be ensured that issuing an internal abort is safe, in that it is guaranteed that an internal abort is processed for a single IO or a device after all the relevant command(s) which it is attempting to abort have been processed by the controller. Currently we only deliver commands for any device on a single queue to solve this problem, as we know that commands issued on the same queue will be processed in order, and we will not have a scenario where the internal abort is racing against a command(s) which it is trying to abort. To enqueue commands on queue mapped to a CPU, choosing a queue for an command is based on the associated queue for the current CPU, so this is not safe for internal abort since it would definitely not be guaranteed that commands for the command devices are issued on the same queue. To solve this issue, we take a bludgeoning approach, and issue a separate internal abort on any queue(s) relevant to the command or device, in that we will be guaranteed that at least one of these internal aborts will be received last in the controller. So, for aborting a single command, we can just force the internal abort to be issued on the same queue as the command which we are trying to abort. For aborting all commands associated with a device, we issue a separate internal abort on all relevant queues. Issuing multiple internal aborts in this fashion would have not side affect. Signed-off-by: John Garry <john.garry@huawei.com> Signed-off-by: Xiang Chen <chenxiang66@hisilicon.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2019-02-06 18:52:54 +08:00
hisi_hba->cq_nvecs = vectors - BASE_VECTORS_V3_HW;
rc = devm_request_irq(dev, pci_irq_vector(pdev, 1),
int_phy_up_down_bcast_v3_hw, 0,
DRV_NAME " phy", hisi_hba);
if (rc) {
dev_err(dev, "could not request phy interrupt, rc=%d\n", rc);
rc = -ENOENT;
goto free_irq_vectors;
}
rc = devm_request_irq(dev, pci_irq_vector(pdev, 2),
int_chnl_int_v3_hw, 0,
DRV_NAME " channel", hisi_hba);
if (rc) {
dev_err(dev, "could not request chnl interrupt, rc=%d\n", rc);
rc = -ENOENT;
goto free_irq_vectors;
}
rc = devm_request_irq(dev, pci_irq_vector(pdev, 11),
fatal_axi_int_v3_hw, 0,
DRV_NAME " fatal", hisi_hba);
if (rc) {
dev_err(dev, "could not request fatal interrupt, rc=%d\n", rc);
rc = -ENOENT;
goto free_irq_vectors;
}
if (hisi_sas_intr_conv)
dev_info(dev, "Enable interrupt converge\n");
scsi: hisi_sas: Issue internal abort on all relevant queues To support queue mapped to a CPU, it needs to be ensured that issuing an internal abort is safe, in that it is guaranteed that an internal abort is processed for a single IO or a device after all the relevant command(s) which it is attempting to abort have been processed by the controller. Currently we only deliver commands for any device on a single queue to solve this problem, as we know that commands issued on the same queue will be processed in order, and we will not have a scenario where the internal abort is racing against a command(s) which it is trying to abort. To enqueue commands on queue mapped to a CPU, choosing a queue for an command is based on the associated queue for the current CPU, so this is not safe for internal abort since it would definitely not be guaranteed that commands for the command devices are issued on the same queue. To solve this issue, we take a bludgeoning approach, and issue a separate internal abort on any queue(s) relevant to the command or device, in that we will be guaranteed that at least one of these internal aborts will be received last in the controller. So, for aborting a single command, we can just force the internal abort to be issued on the same queue as the command which we are trying to abort. For aborting all commands associated with a device, we issue a separate internal abort on all relevant queues. Issuing multiple internal aborts in this fashion would have not side affect. Signed-off-by: John Garry <john.garry@huawei.com> Signed-off-by: Xiang Chen <chenxiang66@hisilicon.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2019-02-06 18:52:54 +08:00
for (i = 0; i < hisi_hba->cq_nvecs; i++) {
struct hisi_sas_cq *cq = &hisi_hba->cq[i];
int nr = hisi_sas_intr_conv ? 16 : 16 + i;
unsigned long irqflags = hisi_sas_intr_conv ? IRQF_SHARED :
IRQF_ONESHOT;
cq->irq_no = pci_irq_vector(pdev, nr);
rc = devm_request_threaded_irq(dev, cq->irq_no,
cq_interrupt_v3_hw,
cq_thread_v3_hw,
irqflags,
DRV_NAME " cq", cq);
if (rc) {
dev_err(dev, "could not request cq%d interrupt, rc=%d\n",
i, rc);
rc = -ENOENT;
goto free_irq_vectors;
}
}
return 0;
free_irq_vectors:
pci_free_irq_vectors(pdev);
return rc;
}
static int hisi_sas_v3_init(struct hisi_hba *hisi_hba)
{
int rc;
rc = hw_init_v3_hw(hisi_hba);
if (rc)
return rc;
rc = interrupt_init_v3_hw(hisi_hba);
if (rc)
return rc;
return 0;
}
static void phy_set_linkrate_v3_hw(struct hisi_hba *hisi_hba, int phy_no,
struct sas_phy_linkrates *r)
{
enum sas_linkrate max = r->maximum_linkrate;
u32 prog_phy_link_rate = 0x800;
prog_phy_link_rate |= hisi_sas_get_prog_phy_linkrate_mask(max);
hisi_sas_phy_write32(hisi_hba, phy_no, PROG_PHY_LINK_RATE,
prog_phy_link_rate);
}
static void interrupt_disable_v3_hw(struct hisi_hba *hisi_hba)
{
struct pci_dev *pdev = hisi_hba->pci_dev;
int i;
synchronize_irq(pci_irq_vector(pdev, 1));
synchronize_irq(pci_irq_vector(pdev, 2));
synchronize_irq(pci_irq_vector(pdev, 11));
for (i = 0; i < hisi_hba->queue_count; i++) {
hisi_sas_write32(hisi_hba, OQ0_INT_SRC_MSK + 0x4 * i, 0x1);
synchronize_irq(pci_irq_vector(pdev, i + 16));
}
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK2, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, 0xffffffff);
hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0xffffffff);
for (i = 0; i < hisi_hba->n_phy; i++) {
hisi_sas_phy_write32(hisi_hba, i, CHL_INT1_MSK, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_NOT_RDY_MSK, 0x1);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_PHY_ENA_MSK, 0x1);
hisi_sas_phy_write32(hisi_hba, i, SL_RX_BCAST_CHK_MSK, 0x1);
}
}
static u32 get_phys_state_v3_hw(struct hisi_hba *hisi_hba)
{
return hisi_sas_read32(hisi_hba, PHY_STATE);
}
static int disable_host_v3_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
u32 status, reg_val;
int rc;
interrupt_disable_v3_hw(hisi_hba);
hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0x0);
hisi_sas_stop_phys(hisi_hba);
mdelay(10);
reg_val = hisi_sas_read32(hisi_hba, AXI_MASTER_CFG_BASE +
AM_CTRL_GLOBAL);
reg_val |= AM_CTRL_SHUTDOWN_REQ_MSK;
hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE +
AM_CTRL_GLOBAL, reg_val);
/* wait until bus idle */
rc = hisi_sas_read32_poll_timeout(AXI_MASTER_CFG_BASE +
AM_CURR_TRANS_RETURN, status,
status == 0x3, 10, 100);
if (rc) {
dev_err(dev, "axi bus is not idle, rc=%d\n", rc);
return rc;
}
return 0;
}
static int soft_reset_v3_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
int rc;
rc = disable_host_v3_hw(hisi_hba);
if (rc) {
dev_err(dev, "soft reset: disable host failed rc=%d\n", rc);
return rc;
}
hisi_sas_init_mem(hisi_hba);
return hw_init_v3_hw(hisi_hba);
}
static int write_gpio_v3_hw(struct hisi_hba *hisi_hba, u8 reg_type,
u8 reg_index, u8 reg_count, u8 *write_data)
{
struct device *dev = hisi_hba->dev;
u32 *data = (u32 *)write_data;
int i;
switch (reg_type) {
case SAS_GPIO_REG_TX:
if ((reg_index + reg_count) > ((hisi_hba->n_phy + 3) / 4)) {
dev_err(dev, "write gpio: invalid reg range[%d, %d]\n",
reg_index, reg_index + reg_count - 1);
return -EINVAL;
}
for (i = 0; i < reg_count; i++)
hisi_sas_write32(hisi_hba,
SAS_GPIO_TX_0_1 + (reg_index + i) * 4,
data[i]);
break;
default:
dev_err(dev, "write gpio: unsupported or bad reg type %d\n",
reg_type);
return -EINVAL;
}
return 0;
}
static void wait_cmds_complete_timeout_v3_hw(struct hisi_hba *hisi_hba,
int delay_ms, int timeout_ms)
{
struct device *dev = hisi_hba->dev;
int entries, entries_old = 0, time;
for (time = 0; time < timeout_ms; time += delay_ms) {
entries = hisi_sas_read32(hisi_hba, CQE_SEND_CNT);
if (entries == entries_old)
break;
entries_old = entries;
msleep(delay_ms);
}
if (time >= timeout_ms) {
dev_dbg(dev, "Wait commands complete timeout!\n");
return;
}
dev_dbg(dev, "wait commands complete %dms\n", time);
}
static ssize_t intr_conv_v3_hw_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%u\n", hisi_sas_intr_conv);
}
static DEVICE_ATTR_RO(intr_conv_v3_hw);
static void config_intr_coal_v3_hw(struct hisi_hba *hisi_hba)
{
/* config those registers between enable and disable PHYs */
hisi_sas_stop_phys(hisi_hba);
if (hisi_hba->intr_coal_ticks == 0 ||
hisi_hba->intr_coal_count == 0) {
hisi_sas_write32(hisi_hba, INT_COAL_EN, 0x1);
hisi_sas_write32(hisi_hba, OQ_INT_COAL_TIME, 0x1);
hisi_sas_write32(hisi_hba, OQ_INT_COAL_CNT, 0x1);
} else {
hisi_sas_write32(hisi_hba, INT_COAL_EN, 0x3);
hisi_sas_write32(hisi_hba, OQ_INT_COAL_TIME,
hisi_hba->intr_coal_ticks);
hisi_sas_write32(hisi_hba, OQ_INT_COAL_CNT,
hisi_hba->intr_coal_count);
}
phys_init_v3_hw(hisi_hba);
}
static ssize_t intr_coal_ticks_v3_hw_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct hisi_hba *hisi_hba = shost_priv(shost);
return scnprintf(buf, PAGE_SIZE, "%u\n",
hisi_hba->intr_coal_ticks);
}
static ssize_t intr_coal_ticks_v3_hw_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct hisi_hba *hisi_hba = shost_priv(shost);
u32 intr_coal_ticks;
int ret;
ret = kstrtou32(buf, 10, &intr_coal_ticks);
if (ret) {
dev_err(dev, "Input data of interrupt coalesce unmatch\n");
return -EINVAL;
}
if (intr_coal_ticks >= BIT(24)) {
dev_err(dev, "intr_coal_ticks must be less than 2^24!\n");
return -EINVAL;
}
hisi_hba->intr_coal_ticks = intr_coal_ticks;
config_intr_coal_v3_hw(hisi_hba);
return count;
}
static DEVICE_ATTR_RW(intr_coal_ticks_v3_hw);
static ssize_t intr_coal_count_v3_hw_show(struct device *dev,
struct device_attribute
*attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct hisi_hba *hisi_hba = shost_priv(shost);
return scnprintf(buf, PAGE_SIZE, "%u\n",
hisi_hba->intr_coal_count);
}
static ssize_t intr_coal_count_v3_hw_store(struct device *dev,
struct device_attribute
*attr, const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct hisi_hba *hisi_hba = shost_priv(shost);
u32 intr_coal_count;
int ret;
ret = kstrtou32(buf, 10, &intr_coal_count);
if (ret) {
dev_err(dev, "Input data of interrupt coalesce unmatch\n");
return -EINVAL;
}
if (intr_coal_count >= BIT(8)) {
dev_err(dev, "intr_coal_count must be less than 2^8!\n");
return -EINVAL;
}
hisi_hba->intr_coal_count = intr_coal_count;
config_intr_coal_v3_hw(hisi_hba);
return count;
}
static DEVICE_ATTR_RW(intr_coal_count_v3_hw);
static struct device_attribute *host_attrs_v3_hw[] = {
&dev_attr_phy_event_threshold,
&dev_attr_intr_conv_v3_hw,
&dev_attr_intr_coal_ticks_v3_hw,
&dev_attr_intr_coal_count_v3_hw,
NULL
};
static const struct hisi_sas_debugfs_reg_lu debugfs_port_reg_lu[] = {
HISI_SAS_DEBUGFS_REG(PHY_CFG),
HISI_SAS_DEBUGFS_REG(HARD_PHY_LINKRATE),
HISI_SAS_DEBUGFS_REG(PROG_PHY_LINK_RATE),
HISI_SAS_DEBUGFS_REG(PHY_CTRL),
HISI_SAS_DEBUGFS_REG(SL_CFG),
HISI_SAS_DEBUGFS_REG(AIP_LIMIT),
HISI_SAS_DEBUGFS_REG(SL_CONTROL),
HISI_SAS_DEBUGFS_REG(RX_PRIMS_STATUS),
HISI_SAS_DEBUGFS_REG(TX_ID_DWORD0),
HISI_SAS_DEBUGFS_REG(TX_ID_DWORD1),
HISI_SAS_DEBUGFS_REG(TX_ID_DWORD2),
HISI_SAS_DEBUGFS_REG(TX_ID_DWORD3),
HISI_SAS_DEBUGFS_REG(TX_ID_DWORD4),
HISI_SAS_DEBUGFS_REG(TX_ID_DWORD5),
HISI_SAS_DEBUGFS_REG(TX_ID_DWORD6),
HISI_SAS_DEBUGFS_REG(TXID_AUTO),
HISI_SAS_DEBUGFS_REG(RX_IDAF_DWORD0),
HISI_SAS_DEBUGFS_REG(RXOP_CHECK_CFG_H),
HISI_SAS_DEBUGFS_REG(STP_LINK_TIMER),
HISI_SAS_DEBUGFS_REG(STP_LINK_TIMEOUT_STATE),
HISI_SAS_DEBUGFS_REG(CON_CFG_DRIVER),
HISI_SAS_DEBUGFS_REG(SAS_SSP_CON_TIMER_CFG),
HISI_SAS_DEBUGFS_REG(SAS_SMP_CON_TIMER_CFG),
HISI_SAS_DEBUGFS_REG(SAS_STP_CON_TIMER_CFG),
HISI_SAS_DEBUGFS_REG(CHL_INT0),
HISI_SAS_DEBUGFS_REG(CHL_INT1),
HISI_SAS_DEBUGFS_REG(CHL_INT2),
HISI_SAS_DEBUGFS_REG(CHL_INT0_MSK),
HISI_SAS_DEBUGFS_REG(CHL_INT1_MSK),
HISI_SAS_DEBUGFS_REG(CHL_INT2_MSK),
HISI_SAS_DEBUGFS_REG(SAS_EC_INT_COAL_TIME),
HISI_SAS_DEBUGFS_REG(CHL_INT_COAL_EN),
HISI_SAS_DEBUGFS_REG(SAS_RX_TRAIN_TIMER),
HISI_SAS_DEBUGFS_REG(PHY_CTRL_RDY_MSK),
HISI_SAS_DEBUGFS_REG(PHYCTRL_NOT_RDY_MSK),
HISI_SAS_DEBUGFS_REG(PHYCTRL_DWS_RESET_MSK),
HISI_SAS_DEBUGFS_REG(PHYCTRL_PHY_ENA_MSK),
HISI_SAS_DEBUGFS_REG(SL_RX_BCAST_CHK_MSK),
HISI_SAS_DEBUGFS_REG(PHYCTRL_OOB_RESTART_MSK),
HISI_SAS_DEBUGFS_REG(DMA_TX_STATUS),
HISI_SAS_DEBUGFS_REG(DMA_RX_STATUS),
HISI_SAS_DEBUGFS_REG(COARSETUNE_TIME),
HISI_SAS_DEBUGFS_REG(ERR_CNT_DWS_LOST),
HISI_SAS_DEBUGFS_REG(ERR_CNT_RESET_PROB),
HISI_SAS_DEBUGFS_REG(ERR_CNT_INVLD_DW),
HISI_SAS_DEBUGFS_REG(ERR_CNT_CODE_ERR),
HISI_SAS_DEBUGFS_REG(ERR_CNT_DISP_ERR),
{}
};
static const struct hisi_sas_debugfs_reg debugfs_port_reg = {
.lu = debugfs_port_reg_lu,
.count = 0x100,
.base_off = PORT_BASE,
.read_port_reg = hisi_sas_phy_read32,
};
static const struct hisi_sas_debugfs_reg_lu debugfs_global_reg_lu[] = {
HISI_SAS_DEBUGFS_REG(DLVRY_QUEUE_ENABLE),
HISI_SAS_DEBUGFS_REG(PHY_CONTEXT),
HISI_SAS_DEBUGFS_REG(PHY_STATE),
HISI_SAS_DEBUGFS_REG(PHY_PORT_NUM_MA),
HISI_SAS_DEBUGFS_REG(PHY_CONN_RATE),
HISI_SAS_DEBUGFS_REG(ITCT_CLR),
HISI_SAS_DEBUGFS_REG(IO_SATA_BROKEN_MSG_ADDR_LO),
HISI_SAS_DEBUGFS_REG(IO_SATA_BROKEN_MSG_ADDR_HI),
HISI_SAS_DEBUGFS_REG(SATA_INITI_D2H_STORE_ADDR_LO),
HISI_SAS_DEBUGFS_REG(SATA_INITI_D2H_STORE_ADDR_HI),
HISI_SAS_DEBUGFS_REG(CFG_MAX_TAG),
HISI_SAS_DEBUGFS_REG(HGC_SAS_TX_OPEN_FAIL_RETRY_CTRL),
HISI_SAS_DEBUGFS_REG(HGC_SAS_TXFAIL_RETRY_CTRL),
HISI_SAS_DEBUGFS_REG(HGC_GET_ITV_TIME),
HISI_SAS_DEBUGFS_REG(DEVICE_MSG_WORK_MODE),
HISI_SAS_DEBUGFS_REG(OPENA_WT_CONTI_TIME),
HISI_SAS_DEBUGFS_REG(I_T_NEXUS_LOSS_TIME),
HISI_SAS_DEBUGFS_REG(MAX_CON_TIME_LIMIT_TIME),
HISI_SAS_DEBUGFS_REG(BUS_INACTIVE_LIMIT_TIME),
HISI_SAS_DEBUGFS_REG(REJECT_TO_OPEN_LIMIT_TIME),
HISI_SAS_DEBUGFS_REG(CQ_INT_CONVERGE_EN),
HISI_SAS_DEBUGFS_REG(CFG_AGING_TIME),
HISI_SAS_DEBUGFS_REG(HGC_DFX_CFG2),
HISI_SAS_DEBUGFS_REG(CFG_ABT_SET_QUERY_IPTT),
HISI_SAS_DEBUGFS_REG(CFG_ABT_SET_IPTT_DONE),
HISI_SAS_DEBUGFS_REG(HGC_IOMB_PROC1_STATUS),
HISI_SAS_DEBUGFS_REG(CHNL_INT_STATUS),
HISI_SAS_DEBUGFS_REG(HGC_AXI_FIFO_ERR_INFO),
HISI_SAS_DEBUGFS_REG(INT_COAL_EN),
HISI_SAS_DEBUGFS_REG(OQ_INT_COAL_TIME),
HISI_SAS_DEBUGFS_REG(OQ_INT_COAL_CNT),
HISI_SAS_DEBUGFS_REG(ENT_INT_COAL_TIME),
HISI_SAS_DEBUGFS_REG(ENT_INT_COAL_CNT),
HISI_SAS_DEBUGFS_REG(OQ_INT_SRC),
HISI_SAS_DEBUGFS_REG(OQ_INT_SRC_MSK),
HISI_SAS_DEBUGFS_REG(ENT_INT_SRC1),
HISI_SAS_DEBUGFS_REG(ENT_INT_SRC2),
HISI_SAS_DEBUGFS_REG(ENT_INT_SRC3),
HISI_SAS_DEBUGFS_REG(ENT_INT_SRC_MSK1),
HISI_SAS_DEBUGFS_REG(ENT_INT_SRC_MSK2),
HISI_SAS_DEBUGFS_REG(ENT_INT_SRC_MSK3),
HISI_SAS_DEBUGFS_REG(CHNL_PHYUPDOWN_INT_MSK),
HISI_SAS_DEBUGFS_REG(CHNL_ENT_INT_MSK),
HISI_SAS_DEBUGFS_REG(HGC_COM_INT_MSK),
HISI_SAS_DEBUGFS_REG(SAS_ECC_INTR),
HISI_SAS_DEBUGFS_REG(SAS_ECC_INTR_MSK),
HISI_SAS_DEBUGFS_REG(HGC_ERR_STAT_EN),
HISI_SAS_DEBUGFS_REG(CQE_SEND_CNT),
HISI_SAS_DEBUGFS_REG(DLVRY_Q_0_DEPTH),
HISI_SAS_DEBUGFS_REG(DLVRY_Q_0_WR_PTR),
HISI_SAS_DEBUGFS_REG(DLVRY_Q_0_RD_PTR),
HISI_SAS_DEBUGFS_REG(HYPER_STREAM_ID_EN_CFG),
HISI_SAS_DEBUGFS_REG(OQ0_INT_SRC_MSK),
HISI_SAS_DEBUGFS_REG(COMPL_Q_0_DEPTH),
HISI_SAS_DEBUGFS_REG(COMPL_Q_0_WR_PTR),
HISI_SAS_DEBUGFS_REG(COMPL_Q_0_RD_PTR),
HISI_SAS_DEBUGFS_REG(AWQOS_AWCACHE_CFG),
HISI_SAS_DEBUGFS_REG(ARQOS_ARCACHE_CFG),
HISI_SAS_DEBUGFS_REG(HILINK_ERR_DFX),
HISI_SAS_DEBUGFS_REG(SAS_GPIO_CFG_0),
HISI_SAS_DEBUGFS_REG(SAS_GPIO_CFG_1),
HISI_SAS_DEBUGFS_REG(SAS_GPIO_TX_0_1),
HISI_SAS_DEBUGFS_REG(SAS_CFG_DRIVE_VLD),
{}
};
static const struct hisi_sas_debugfs_reg debugfs_global_reg = {
.lu = debugfs_global_reg_lu,
.count = 0x800,
.read_global_reg = hisi_sas_read32,
};
static const struct hisi_sas_debugfs_reg_lu debugfs_axi_reg_lu[] = {
HISI_SAS_DEBUGFS_REG(AM_CFG_MAX_TRANS),
HISI_SAS_DEBUGFS_REG(AM_CFG_SINGLE_PORT_MAX_TRANS),
HISI_SAS_DEBUGFS_REG(AXI_CFG),
HISI_SAS_DEBUGFS_REG(AM_ROB_ECC_ERR_ADDR),
{}
};
static const struct hisi_sas_debugfs_reg debugfs_axi_reg = {
.lu = debugfs_axi_reg_lu,
.count = 0x61,
.base_off = AXI_MASTER_CFG_BASE,
.read_global_reg = hisi_sas_read32,
};
static const struct hisi_sas_debugfs_reg_lu debugfs_ras_reg_lu[] = {
HISI_SAS_DEBUGFS_REG(SAS_RAS_INTR1),
HISI_SAS_DEBUGFS_REG(SAS_RAS_INTR0_MASK),
HISI_SAS_DEBUGFS_REG(SAS_RAS_INTR1_MASK),
HISI_SAS_DEBUGFS_REG(CFG_SAS_RAS_INTR_MASK),
HISI_SAS_DEBUGFS_REG(SAS_RAS_INTR2),
HISI_SAS_DEBUGFS_REG(SAS_RAS_INTR2_MASK),
{}
};
static const struct hisi_sas_debugfs_reg debugfs_ras_reg = {
.lu = debugfs_ras_reg_lu,
.count = 0x10,
.base_off = RAS_BASE,
.read_global_reg = hisi_sas_read32,
};
static void debugfs_snapshot_prepare_v3_hw(struct hisi_hba *hisi_hba)
{
set_bit(HISI_SAS_REJECT_CMD_BIT, &hisi_hba->flags);
hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0);
wait_cmds_complete_timeout_v3_hw(hisi_hba, 100, 5000);
hisi_sas_sync_irqs(hisi_hba);
}
static void debugfs_snapshot_restore_v3_hw(struct hisi_hba *hisi_hba)
{
hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE,
(u32)((1ULL << hisi_hba->queue_count) - 1));
clear_bit(HISI_SAS_REJECT_CMD_BIT, &hisi_hba->flags);
}
static void read_iost_itct_cache_v3_hw(struct hisi_hba *hisi_hba,
enum hisi_sas_debugfs_cache_type type,
u32 *cache)
{
u32 cache_dw_size = HISI_SAS_IOST_ITCT_CACHE_DW_SZ *
HISI_SAS_IOST_ITCT_CACHE_NUM;
struct device *dev = hisi_hba->dev;
u32 *buf = cache;
u32 i, val;
hisi_sas_write32(hisi_hba, TAB_RD_TYPE, type);
for (i = 0; i < HISI_SAS_IOST_ITCT_CACHE_DW_SZ; i++) {
val = hisi_sas_read32(hisi_hba, TAB_DFX);
if (val == 0xffffffff)
break;
}
if (val != 0xffffffff) {
dev_err(dev, "Issue occurred in reading IOST/ITCT cache!\n");
return;
}
memset(buf, 0, cache_dw_size * 4);
buf[0] = val;
for (i = 1; i < cache_dw_size; i++)
buf[i] = hisi_sas_read32(hisi_hba, TAB_DFX);
}
static void hisi_sas_bist_test_prep_v3_hw(struct hisi_hba *hisi_hba)
{
u32 reg_val;
int phy_id = hisi_hba->debugfs_bist_phy_no;
/* disable PHY */
hisi_sas_phy_enable(hisi_hba, phy_id, 0);
/* disable ALOS */
reg_val = hisi_sas_phy_read32(hisi_hba, phy_id, SERDES_CFG);
reg_val |= CFG_ALOS_CHK_DISABLE_MSK;
hisi_sas_phy_write32(hisi_hba, phy_id, SERDES_CFG, reg_val);
}
static void hisi_sas_bist_test_restore_v3_hw(struct hisi_hba *hisi_hba)
{
u32 reg_val;
int phy_id = hisi_hba->debugfs_bist_phy_no;
/* disable loopback */
reg_val = hisi_sas_phy_read32(hisi_hba, phy_id, SAS_PHY_BIST_CTRL);
reg_val &= ~(CFG_RX_BIST_EN_MSK | CFG_TX_BIST_EN_MSK |
CFG_BIST_TEST_MSK);
hisi_sas_phy_write32(hisi_hba, phy_id, SAS_PHY_BIST_CTRL, reg_val);
/* enable ALOS */
reg_val = hisi_sas_phy_read32(hisi_hba, phy_id, SERDES_CFG);
reg_val &= ~CFG_ALOS_CHK_DISABLE_MSK;
hisi_sas_phy_write32(hisi_hba, phy_id, SERDES_CFG, reg_val);
/* restore the linkrate */
reg_val = hisi_sas_phy_read32(hisi_hba, phy_id, PROG_PHY_LINK_RATE);
/* init OOB link rate as 1.5 Gbits */
reg_val &= ~CFG_PROG_PHY_LINK_RATE_MSK;
reg_val |= (0x8 << CFG_PROG_PHY_LINK_RATE_OFF);
hisi_sas_phy_write32(hisi_hba, phy_id, PROG_PHY_LINK_RATE, reg_val);
/* enable PHY */
hisi_sas_phy_enable(hisi_hba, phy_id, 1);
}
#define SAS_PHY_BIST_CODE_INIT 0x1
#define SAS_PHY_BIST_CODE1_INIT 0X80
static int debugfs_set_bist_v3_hw(struct hisi_hba *hisi_hba, bool enable)
{
u32 reg_val, mode_tmp;
u32 linkrate = hisi_hba->debugfs_bist_linkrate;
u32 phy_id = hisi_hba->debugfs_bist_phy_no;
u32 code_mode = hisi_hba->debugfs_bist_code_mode;
u32 path_mode = hisi_hba->debugfs_bist_mode;
struct device *dev = hisi_hba->dev;
dev_info(dev, "BIST info:linkrate=%d phy_id=%d code_mode=%d path_mode=%d\n",
linkrate, phy_id, code_mode, path_mode);
mode_tmp = path_mode ? 2 : 1;
if (enable) {
/* some preparations before bist test */
hisi_sas_bist_test_prep_v3_hw(hisi_hba);
/* set linkrate of bit test*/
reg_val = hisi_sas_phy_read32(hisi_hba, phy_id,
PROG_PHY_LINK_RATE);
reg_val &= ~CFG_PROG_PHY_LINK_RATE_MSK;
reg_val |= (linkrate << CFG_PROG_PHY_LINK_RATE_OFF);
hisi_sas_phy_write32(hisi_hba, phy_id,
PROG_PHY_LINK_RATE, reg_val);
/* set code mode of bit test */
reg_val = hisi_sas_phy_read32(hisi_hba, phy_id,
SAS_PHY_BIST_CTRL);
reg_val &= ~(CFG_BIST_MODE_SEL_MSK |
CFG_LOOP_TEST_MODE_MSK |
CFG_RX_BIST_EN_MSK |
CFG_TX_BIST_EN_MSK |
CFG_BIST_TEST_MSK);
reg_val |= ((code_mode << CFG_BIST_MODE_SEL_OFF) |
(mode_tmp << CFG_LOOP_TEST_MODE_OFF) |
CFG_BIST_TEST_MSK);
hisi_sas_phy_write32(hisi_hba, phy_id,
SAS_PHY_BIST_CTRL, reg_val);
/* set the bist init value */
hisi_sas_phy_write32(hisi_hba, phy_id,
SAS_PHY_BIST_CODE,
SAS_PHY_BIST_CODE_INIT);
hisi_sas_phy_write32(hisi_hba, phy_id,
SAS_PHY_BIST_CODE1,
SAS_PHY_BIST_CODE1_INIT);
mdelay(100);
reg_val |= (CFG_RX_BIST_EN_MSK | CFG_TX_BIST_EN_MSK);
hisi_sas_phy_write32(hisi_hba, phy_id,
SAS_PHY_BIST_CTRL, reg_val);
/* clear error bit */
mdelay(100);
hisi_sas_phy_read32(hisi_hba, phy_id, SAS_BIST_ERR_CNT);
} else {
/* disable bist test and recover it */
hisi_hba->debugfs_bist_cnt += hisi_sas_phy_read32(hisi_hba,
phy_id, SAS_BIST_ERR_CNT);
hisi_sas_bist_test_restore_v3_hw(hisi_hba);
}
return 0;
}
static struct scsi_host_template sht_v3_hw = {
.name = DRV_NAME,
.module = THIS_MODULE,
.queuecommand = sas_queuecommand,
.target_alloc = sas_target_alloc,
.slave_configure = hisi_sas_slave_configure,
.scan_finished = hisi_sas_scan_finished,
.scan_start = hisi_sas_scan_start,
.change_queue_depth = sas_change_queue_depth,
.bios_param = sas_bios_param,
.this_id = -1,
.sg_tablesize = HISI_SAS_SGE_PAGE_CNT,
.sg_prot_tablesize = HISI_SAS_SGE_PAGE_CNT,
.max_sectors = SCSI_DEFAULT_MAX_SECTORS,
.eh_device_reset_handler = sas_eh_device_reset_handler,
.eh_target_reset_handler = sas_eh_target_reset_handler,
.target_destroy = sas_target_destroy,
.ioctl = sas_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = sas_ioctl,
#endif
.shost_attrs = host_attrs_v3_hw,
.tag_alloc_policy = BLK_TAG_ALLOC_RR,
.host_reset = hisi_sas_host_reset,
};
static const struct hisi_sas_hw hisi_sas_v3_hw = {
.hw_init = hisi_sas_v3_init,
.setup_itct = setup_itct_v3_hw,
.get_wideport_bitmap = get_wideport_bitmap_v3_hw,
.complete_hdr_size = sizeof(struct hisi_sas_complete_v3_hdr),
.clear_itct = clear_itct_v3_hw,
.sl_notify_ssp = sl_notify_ssp_v3_hw,
.prep_ssp = prep_ssp_v3_hw,
.prep_smp = prep_smp_v3_hw,
.prep_stp = prep_ata_v3_hw,
.prep_abort = prep_abort_v3_hw,
.start_delivery = start_delivery_v3_hw,
.phys_init = phys_init_v3_hw,
.phy_start = start_phy_v3_hw,
.phy_disable = disable_phy_v3_hw,
.phy_hard_reset = phy_hard_reset_v3_hw,
.phy_get_max_linkrate = phy_get_max_linkrate_v3_hw,
.phy_set_linkrate = phy_set_linkrate_v3_hw,
.dereg_device = dereg_device_v3_hw,
.soft_reset = soft_reset_v3_hw,
.get_phys_state = get_phys_state_v3_hw,
.get_events = phy_get_events_v3_hw,
.write_gpio = write_gpio_v3_hw,
.wait_cmds_complete_timeout = wait_cmds_complete_timeout_v3_hw,
.debugfs_reg_array[DEBUGFS_GLOBAL] = &debugfs_global_reg,
.debugfs_reg_array[DEBUGFS_AXI] = &debugfs_axi_reg,
.debugfs_reg_array[DEBUGFS_RAS] = &debugfs_ras_reg,
.debugfs_reg_port = &debugfs_port_reg,
.snapshot_prepare = debugfs_snapshot_prepare_v3_hw,
.snapshot_restore = debugfs_snapshot_restore_v3_hw,
.read_iost_itct_cache = read_iost_itct_cache_v3_hw,
.set_bist = debugfs_set_bist_v3_hw,
};
static struct Scsi_Host *
hisi_sas_shost_alloc_pci(struct pci_dev *pdev)
{
struct Scsi_Host *shost;
struct hisi_hba *hisi_hba;
struct device *dev = &pdev->dev;
shost = scsi_host_alloc(&sht_v3_hw, sizeof(*hisi_hba));
if (!shost) {
dev_err(dev, "shost alloc failed\n");
return NULL;
}
hisi_hba = shost_priv(shost);
INIT_WORK(&hisi_hba->rst_work, hisi_sas_rst_work_handler);
INIT_WORK(&hisi_hba->debugfs_work, hisi_sas_debugfs_work_handler);
hisi_hba->hw = &hisi_sas_v3_hw;
hisi_hba->pci_dev = pdev;
hisi_hba->dev = dev;
hisi_hba->shost = shost;
SHOST_TO_SAS_HA(shost) = &hisi_hba->sha;
if (prot_mask & ~HISI_SAS_PROT_MASK)
dev_err(dev, "unsupported protection mask 0x%x, using default (0x0)\n",
prot_mask);
else
hisi_hba->prot_mask = prot_mask;
if (hisi_sas_get_fw_info(hisi_hba) < 0)
goto err_out;
if (hisi_sas_alloc(hisi_hba)) {
hisi_sas_free(hisi_hba);
goto err_out;
}
return shost;
err_out:
scsi_host_put(shost);
dev_err(dev, "shost alloc failed\n");
return NULL;
}
static int
hisi_sas_v3_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct Scsi_Host *shost;
struct hisi_hba *hisi_hba;
struct device *dev = &pdev->dev;
struct asd_sas_phy **arr_phy;
struct asd_sas_port **arr_port;
struct sas_ha_struct *sha;
int rc, phy_nr, port_nr, i;
rc = pci_enable_device(pdev);
if (rc)
goto err_out;
pci_set_master(pdev);
rc = pci_request_regions(pdev, DRV_NAME);
if (rc)
goto err_out_disable_device;
rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (rc)
rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (rc) {
dev_err(dev, "No usable DMA addressing method\n");
rc = -ENODEV;
goto err_out_regions;
}
shost = hisi_sas_shost_alloc_pci(pdev);
if (!shost) {
rc = -ENOMEM;
goto err_out_regions;
}
sha = SHOST_TO_SAS_HA(shost);
hisi_hba = shost_priv(shost);
dev_set_drvdata(dev, sha);
hisi_hba->regs = pcim_iomap(pdev, 5, 0);
if (!hisi_hba->regs) {
dev_err(dev, "cannot map register\n");
rc = -ENOMEM;
goto err_out_ha;
}
phy_nr = port_nr = hisi_hba->n_phy;
arr_phy = devm_kcalloc(dev, phy_nr, sizeof(void *), GFP_KERNEL);
arr_port = devm_kcalloc(dev, port_nr, sizeof(void *), GFP_KERNEL);
if (!arr_phy || !arr_port) {
rc = -ENOMEM;
goto err_out_ha;
}
sha->sas_phy = arr_phy;
sha->sas_port = arr_port;
sha->core.shost = shost;
sha->lldd_ha = hisi_hba;
shost->transportt = hisi_sas_stt;
shost->max_id = HISI_SAS_MAX_DEVICES;
shost->max_lun = ~0;
shost->max_channel = 1;
shost->max_cmd_len = 16;
shost->can_queue = HISI_SAS_UNRESERVED_IPTT;
shost->cmd_per_lun = HISI_SAS_UNRESERVED_IPTT;
sha->sas_ha_name = DRV_NAME;
sha->dev = dev;
sha->lldd_module = THIS_MODULE;
sha->sas_addr = &hisi_hba->sas_addr[0];
sha->num_phys = hisi_hba->n_phy;
for (i = 0; i < hisi_hba->n_phy; i++) {
sha->sas_phy[i] = &hisi_hba->phy[i].sas_phy;
sha->sas_port[i] = &hisi_hba->port[i].sas_port;
}
if (hisi_hba->prot_mask) {
dev_info(dev, "Registering for DIF/DIX prot_mask=0x%x\n",
prot_mask);
scsi_host_set_prot(hisi_hba->shost, prot_mask);
SCSI misc on 20190306 This is mostly update of the usual drivers: arcmsr, qla2xxx, lpfc, hisi_sas, target/iscsi and target/core. Additionally Christoph refactored gdth as part of the dma changes. The major mid-layer change this time is the removal of bidi commands and with them the whole of the osd/exofs driver and filesystem. Signed-off-by: James E.J. Bottomley <jejb@linux.ibm.com> -----BEGIN PGP SIGNATURE----- iJwEABMIAEQWIQTnYEDbdso9F2cI+arnQslM7pishQUCXIC54SYcamFtZXMuYm90 dG9tbGV5QGhhbnNlbnBhcnRuZXJzaGlwLmNvbQAKCRDnQslM7pishT1GAPwJEV23 ExPiPsnuVgKj49nLTagZ3rILRQcYNbL+MNYqxQEA0cT8FHzSDBfWY5OKPNE+RQ8z f69LpXGmMpuagKGvvd4= =Fhy1 -----END PGP SIGNATURE----- Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi Pull SCSI updates from James Bottomley: "This is mostly update of the usual drivers: arcmsr, qla2xxx, lpfc, hisi_sas, target/iscsi and target/core. Additionally Christoph refactored gdth as part of the dma changes. The major mid-layer change this time is the removal of bidi commands and with them the whole of the osd/exofs driver and filesystem. This is a major simplification for block and mq in particular" * tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: (240 commits) scsi: cxgb4i: validate tcp sequence number only if chip version <= T5 scsi: cxgb4i: get pf number from lldi->pf scsi: core: replace GFP_ATOMIC with GFP_KERNEL in scsi_scan.c scsi: mpt3sas: Add missing breaks in switch statements scsi: aacraid: Fix missing break in switch statement scsi: kill command serial number scsi: csiostor: drop serial_number usage scsi: mvumi: use request tag instead of serial_number scsi: dpt_i2o: remove serial number usage scsi: st: osst: Remove negative constant left-shifts scsi: ufs-bsg: Allow reading descriptors scsi: ufs: Allow reading descriptor via raw upiu scsi: ufs-bsg: Change the calling convention for write descriptor scsi: ufs: Remove unused device quirks Revert "scsi: ufs: disable vccq if it's not needed by UFS device" scsi: megaraid_sas: Remove a bunch of set but not used variables scsi: clean obsolete return values of eh_timed_out scsi: sd: Optimal I/O size should be a multiple of physical block size scsi: MAINTAINERS: SCSI initiator and target tweaks scsi: fcoe: make use of fip_mode enum complete ...
2019-03-10 08:53:47 +08:00
if (hisi_hba->prot_mask & HISI_SAS_DIX_PROT_MASK)
scsi_host_set_guard(hisi_hba->shost,
SHOST_DIX_GUARD_CRC);
}
if (hisi_sas_debugfs_enable)
hisi_sas_debugfs_init(hisi_hba);
rc = scsi_add_host(shost, dev);
if (rc)
goto err_out_ha;
rc = sas_register_ha(sha);
if (rc)
goto err_out_register_ha;
rc = hisi_hba->hw->hw_init(hisi_hba);
if (rc)
goto err_out_register_ha;
scsi_scan_host(shost);
return 0;
err_out_register_ha:
scsi_remove_host(shost);
err_out_ha:
hisi_sas_debugfs_exit(hisi_hba);
scsi_host_put(shost);
err_out_regions:
pci_release_regions(pdev);
err_out_disable_device:
pci_disable_device(pdev);
err_out:
return rc;
}
static void
hisi_sas_v3_destroy_irqs(struct pci_dev *pdev, struct hisi_hba *hisi_hba)
{
int i;
free_irq(pci_irq_vector(pdev, 1), hisi_hba);
free_irq(pci_irq_vector(pdev, 2), hisi_hba);
free_irq(pci_irq_vector(pdev, 11), hisi_hba);
scsi: hisi_sas: Issue internal abort on all relevant queues To support queue mapped to a CPU, it needs to be ensured that issuing an internal abort is safe, in that it is guaranteed that an internal abort is processed for a single IO or a device after all the relevant command(s) which it is attempting to abort have been processed by the controller. Currently we only deliver commands for any device on a single queue to solve this problem, as we know that commands issued on the same queue will be processed in order, and we will not have a scenario where the internal abort is racing against a command(s) which it is trying to abort. To enqueue commands on queue mapped to a CPU, choosing a queue for an command is based on the associated queue for the current CPU, so this is not safe for internal abort since it would definitely not be guaranteed that commands for the command devices are issued on the same queue. To solve this issue, we take a bludgeoning approach, and issue a separate internal abort on any queue(s) relevant to the command or device, in that we will be guaranteed that at least one of these internal aborts will be received last in the controller. So, for aborting a single command, we can just force the internal abort to be issued on the same queue as the command which we are trying to abort. For aborting all commands associated with a device, we issue a separate internal abort on all relevant queues. Issuing multiple internal aborts in this fashion would have not side affect. Signed-off-by: John Garry <john.garry@huawei.com> Signed-off-by: Xiang Chen <chenxiang66@hisilicon.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2019-02-06 18:52:54 +08:00
for (i = 0; i < hisi_hba->cq_nvecs; i++) {
struct hisi_sas_cq *cq = &hisi_hba->cq[i];
int nr = hisi_sas_intr_conv ? 16 : 16 + i;
free_irq(pci_irq_vector(pdev, nr), cq);
}
pci_free_irq_vectors(pdev);
}
static void hisi_sas_v3_remove(struct pci_dev *pdev)
{
struct device *dev = &pdev->dev;
struct sas_ha_struct *sha = dev_get_drvdata(dev);
struct hisi_hba *hisi_hba = sha->lldd_ha;
struct Scsi_Host *shost = sha->core.shost;
if (timer_pending(&hisi_hba->timer))
del_timer(&hisi_hba->timer);
sas_unregister_ha(sha);
sas_remove_host(sha->core.shost);
hisi_sas_v3_destroy_irqs(pdev, hisi_hba);
pci_release_regions(pdev);
pci_disable_device(pdev);
hisi_sas_free(hisi_hba);
hisi_sas_debugfs_exit(hisi_hba);
scsi_host_put(shost);
}
static void hisi_sas_reset_prepare_v3_hw(struct pci_dev *pdev)
{
struct sas_ha_struct *sha = pci_get_drvdata(pdev);
struct hisi_hba *hisi_hba = sha->lldd_ha;
struct device *dev = hisi_hba->dev;
int rc;
dev_info(dev, "FLR prepare\n");
set_bit(HISI_SAS_RESET_BIT, &hisi_hba->flags);
hisi_sas_controller_reset_prepare(hisi_hba);
rc = disable_host_v3_hw(hisi_hba);
if (rc)
dev_err(dev, "FLR: disable host failed rc=%d\n", rc);
}
static void hisi_sas_reset_done_v3_hw(struct pci_dev *pdev)
{
struct sas_ha_struct *sha = pci_get_drvdata(pdev);
struct hisi_hba *hisi_hba = sha->lldd_ha;
struct device *dev = hisi_hba->dev;
int rc;
hisi_sas_init_mem(hisi_hba);
rc = hw_init_v3_hw(hisi_hba);
if (rc) {
dev_err(dev, "FLR: hw init failed rc=%d\n", rc);
return;
}
hisi_sas_controller_reset_done(hisi_hba);
dev_info(dev, "FLR done\n");
}
enum {
/* instances of the controller */
hip08,
};
static int hisi_sas_v3_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct sas_ha_struct *sha = pci_get_drvdata(pdev);
struct hisi_hba *hisi_hba = sha->lldd_ha;
struct device *dev = hisi_hba->dev;
struct Scsi_Host *shost = hisi_hba->shost;
pci_power_t device_state;
int rc;
if (!pdev->pm_cap) {
dev_err(dev, "PCI PM not supported\n");
return -ENODEV;
}
if (test_and_set_bit(HISI_SAS_RESET_BIT, &hisi_hba->flags))
return -1;
scsi_block_requests(shost);
set_bit(HISI_SAS_REJECT_CMD_BIT, &hisi_hba->flags);
flush_workqueue(hisi_hba->wq);
rc = disable_host_v3_hw(hisi_hba);
if (rc) {
dev_err(dev, "PM suspend: disable host failed rc=%d\n", rc);
clear_bit(HISI_SAS_REJECT_CMD_BIT, &hisi_hba->flags);
clear_bit(HISI_SAS_RESET_BIT, &hisi_hba->flags);
scsi_unblock_requests(shost);
return rc;
}
hisi_sas_init_mem(hisi_hba);
device_state = pci_choose_state(pdev, state);
dev_warn(dev, "entering operating state [D%d]\n",
device_state);
pci_save_state(pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, device_state);
hisi_sas_release_tasks(hisi_hba);
sas_suspend_ha(sha);
return 0;
}
static int hisi_sas_v3_resume(struct pci_dev *pdev)
{
struct sas_ha_struct *sha = pci_get_drvdata(pdev);
struct hisi_hba *hisi_hba = sha->lldd_ha;
struct Scsi_Host *shost = hisi_hba->shost;
struct device *dev = hisi_hba->dev;
unsigned int rc;
pci_power_t device_state = pdev->current_state;
dev_warn(dev, "resuming from operating state [D%d]\n",
device_state);
pci_set_power_state(pdev, PCI_D0);
pci_enable_wake(pdev, PCI_D0, 0);
pci_restore_state(pdev);
rc = pci_enable_device(pdev);
if (rc) {
dev_err(dev, "enable device failed during resume (%d)\n", rc);
return rc;
}
pci_set_master(pdev);
scsi_unblock_requests(shost);
clear_bit(HISI_SAS_REJECT_CMD_BIT, &hisi_hba->flags);
sas_prep_resume_ha(sha);
rc = hw_init_v3_hw(hisi_hba);
if (rc) {
scsi_remove_host(shost);
pci_disable_device(pdev);
return rc;
}
hisi_hba->hw->phys_init(hisi_hba);
sas_resume_ha(sha);
clear_bit(HISI_SAS_RESET_BIT, &hisi_hba->flags);
return 0;
}
static const struct pci_device_id sas_v3_pci_table[] = {
{ PCI_VDEVICE(HUAWEI, 0xa230), hip08 },
{}
};
MODULE_DEVICE_TABLE(pci, sas_v3_pci_table);
static const struct pci_error_handlers hisi_sas_err_handler = {
.reset_prepare = hisi_sas_reset_prepare_v3_hw,
.reset_done = hisi_sas_reset_done_v3_hw,
};
static struct pci_driver sas_v3_pci_driver = {
.name = DRV_NAME,
.id_table = sas_v3_pci_table,
.probe = hisi_sas_v3_probe,
.remove = hisi_sas_v3_remove,
.suspend = hisi_sas_v3_suspend,
.resume = hisi_sas_v3_resume,
.err_handler = &hisi_sas_err_handler,
};
module_pci_driver(sas_v3_pci_driver);
module_param_named(intr_conv, hisi_sas_intr_conv, bool, 0444);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Garry <john.garry@huawei.com>");
MODULE_DESCRIPTION("HISILICON SAS controller v3 hw driver based on pci device");
MODULE_ALIAS("pci:" DRV_NAME);