OpenCloudOS-Kernel/fs/ocfs2/ioctl.c

976 lines
22 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/ocfs2/ioctl.c
*
* Copyright (C) 2006 Herbert Poetzl
* adapted from Remy Card's ext2/ioctl.c
*/
#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/blkdev.h>
#include <linux/compat.h>
#include <linux/fileattr.h>
#include <cluster/masklog.h>
#include "ocfs2.h"
#include "alloc.h"
#include "dlmglue.h"
#include "file.h"
#include "inode.h"
#include "journal.h"
#include "ocfs2_fs.h"
#include "ioctl.h"
#include "resize.h"
#include "refcounttree.h"
#include "sysfile.h"
#include "dir.h"
#include "buffer_head_io.h"
#include "suballoc.h"
#include "move_extents.h"
#define o2info_from_user(a, b) \
copy_from_user(&(a), (b), sizeof(a))
#define o2info_to_user(a, b) \
copy_to_user((typeof(a) __user *)b, &(a), sizeof(a))
/*
* This is just a best-effort to tell userspace that this request
* caused the error.
*/
static inline void o2info_set_request_error(struct ocfs2_info_request *kreq,
struct ocfs2_info_request __user *req)
{
kreq->ir_flags |= OCFS2_INFO_FL_ERROR;
(void)put_user(kreq->ir_flags, (__u32 __user *)&(req->ir_flags));
}
static inline void o2info_set_request_filled(struct ocfs2_info_request *req)
{
req->ir_flags |= OCFS2_INFO_FL_FILLED;
}
static inline void o2info_clear_request_filled(struct ocfs2_info_request *req)
{
req->ir_flags &= ~OCFS2_INFO_FL_FILLED;
}
static inline int o2info_coherent(struct ocfs2_info_request *req)
{
return (!(req->ir_flags & OCFS2_INFO_FL_NON_COHERENT));
}
int ocfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa)
{
struct inode *inode = d_inode(dentry);
unsigned int flags;
int status;
status = ocfs2_inode_lock(inode, NULL, 0);
if (status < 0) {
mlog_errno(status);
return status;
}
ocfs2_get_inode_flags(OCFS2_I(inode));
flags = OCFS2_I(inode)->ip_attr;
ocfs2_inode_unlock(inode, 0);
fileattr_fill_flags(fa, flags & OCFS2_FL_VISIBLE);
return status;
}
int ocfs2_fileattr_set(struct user_namespace *mnt_userns,
struct dentry *dentry, struct fileattr *fa)
{
struct inode *inode = d_inode(dentry);
unsigned int flags = fa->flags;
struct ocfs2_inode_info *ocfs2_inode = OCFS2_I(inode);
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
handle_t *handle = NULL;
struct buffer_head *bh = NULL;
unsigned oldflags;
int status;
if (fileattr_has_fsx(fa))
return -EOPNOTSUPP;
status = ocfs2_inode_lock(inode, &bh, 1);
if (status < 0) {
mlog_errno(status);
goto bail;
}
if (!S_ISDIR(inode->i_mode))
flags &= ~OCFS2_DIRSYNC_FL;
oldflags = ocfs2_inode->ip_attr;
flags = flags & OCFS2_FL_MODIFIABLE;
flags |= oldflags & ~OCFS2_FL_MODIFIABLE;
/* Check already done by VFS, but repeat with ocfs lock */
status = -EPERM;
if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
!capable(CAP_LINUX_IMMUTABLE))
goto bail_unlock;
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
status = PTR_ERR(handle);
mlog_errno(status);
goto bail_unlock;
}
ocfs2_inode->ip_attr = flags;
ocfs2_set_inode_flags(inode);
status = ocfs2_mark_inode_dirty(handle, inode, bh);
if (status < 0)
mlog_errno(status);
ocfs2_commit_trans(osb, handle);
bail_unlock:
ocfs2_inode_unlock(inode, 1);
bail:
brelse(bh);
return status;
}
static int ocfs2_info_handle_blocksize(struct inode *inode,
struct ocfs2_info_request __user *req)
{
struct ocfs2_info_blocksize oib;
if (o2info_from_user(oib, req))
return -EFAULT;
oib.ib_blocksize = inode->i_sb->s_blocksize;
o2info_set_request_filled(&oib.ib_req);
if (o2info_to_user(oib, req))
return -EFAULT;
return 0;
}
static int ocfs2_info_handle_clustersize(struct inode *inode,
struct ocfs2_info_request __user *req)
{
struct ocfs2_info_clustersize oic;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
if (o2info_from_user(oic, req))
return -EFAULT;
oic.ic_clustersize = osb->s_clustersize;
o2info_set_request_filled(&oic.ic_req);
if (o2info_to_user(oic, req))
return -EFAULT;
return 0;
}
static int ocfs2_info_handle_maxslots(struct inode *inode,
struct ocfs2_info_request __user *req)
{
struct ocfs2_info_maxslots oim;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
if (o2info_from_user(oim, req))
return -EFAULT;
oim.im_max_slots = osb->max_slots;
o2info_set_request_filled(&oim.im_req);
if (o2info_to_user(oim, req))
return -EFAULT;
return 0;
}
static int ocfs2_info_handle_label(struct inode *inode,
struct ocfs2_info_request __user *req)
{
struct ocfs2_info_label oil;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
if (o2info_from_user(oil, req))
return -EFAULT;
memcpy(oil.il_label, osb->vol_label, OCFS2_MAX_VOL_LABEL_LEN);
o2info_set_request_filled(&oil.il_req);
if (o2info_to_user(oil, req))
return -EFAULT;
return 0;
}
static int ocfs2_info_handle_uuid(struct inode *inode,
struct ocfs2_info_request __user *req)
{
struct ocfs2_info_uuid oiu;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
if (o2info_from_user(oiu, req))
return -EFAULT;
memcpy(oiu.iu_uuid_str, osb->uuid_str, OCFS2_TEXT_UUID_LEN + 1);
o2info_set_request_filled(&oiu.iu_req);
if (o2info_to_user(oiu, req))
return -EFAULT;
return 0;
}
static int ocfs2_info_handle_fs_features(struct inode *inode,
struct ocfs2_info_request __user *req)
{
struct ocfs2_info_fs_features oif;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
if (o2info_from_user(oif, req))
return -EFAULT;
oif.if_compat_features = osb->s_feature_compat;
oif.if_incompat_features = osb->s_feature_incompat;
oif.if_ro_compat_features = osb->s_feature_ro_compat;
o2info_set_request_filled(&oif.if_req);
if (o2info_to_user(oif, req))
return -EFAULT;
return 0;
}
static int ocfs2_info_handle_journal_size(struct inode *inode,
struct ocfs2_info_request __user *req)
{
struct ocfs2_info_journal_size oij;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
if (o2info_from_user(oij, req))
return -EFAULT;
oij.ij_journal_size = i_size_read(osb->journal->j_inode);
o2info_set_request_filled(&oij.ij_req);
if (o2info_to_user(oij, req))
return -EFAULT;
return 0;
}
static int ocfs2_info_scan_inode_alloc(struct ocfs2_super *osb,
struct inode *inode_alloc, u64 blkno,
struct ocfs2_info_freeinode *fi,
u32 slot)
{
int status = 0, unlock = 0;
struct buffer_head *bh = NULL;
struct ocfs2_dinode *dinode_alloc = NULL;
if (inode_alloc)
inode_lock(inode_alloc);
if (inode_alloc && o2info_coherent(&fi->ifi_req)) {
status = ocfs2_inode_lock(inode_alloc, &bh, 0);
if (status < 0) {
mlog_errno(status);
goto bail;
}
unlock = 1;
} else {
status = ocfs2_read_blocks_sync(osb, blkno, 1, &bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
dinode_alloc = (struct ocfs2_dinode *)bh->b_data;
fi->ifi_stat[slot].lfi_total =
le32_to_cpu(dinode_alloc->id1.bitmap1.i_total);
fi->ifi_stat[slot].lfi_free =
le32_to_cpu(dinode_alloc->id1.bitmap1.i_total) -
le32_to_cpu(dinode_alloc->id1.bitmap1.i_used);
bail:
if (unlock)
ocfs2_inode_unlock(inode_alloc, 0);
if (inode_alloc)
inode_unlock(inode_alloc);
brelse(bh);
return status;
}
static int ocfs2_info_handle_freeinode(struct inode *inode,
struct ocfs2_info_request __user *req)
{
u32 i;
u64 blkno = -1;
char namebuf[40];
int status, type = INODE_ALLOC_SYSTEM_INODE;
struct ocfs2_info_freeinode *oifi = NULL;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct inode *inode_alloc = NULL;
oifi = kzalloc(sizeof(struct ocfs2_info_freeinode), GFP_KERNEL);
if (!oifi) {
status = -ENOMEM;
mlog_errno(status);
goto out_err;
}
if (o2info_from_user(*oifi, req)) {
status = -EFAULT;
goto out_free;
}
oifi->ifi_slotnum = osb->max_slots;
for (i = 0; i < oifi->ifi_slotnum; i++) {
if (o2info_coherent(&oifi->ifi_req)) {
inode_alloc = ocfs2_get_system_file_inode(osb, type, i);
if (!inode_alloc) {
mlog(ML_ERROR, "unable to get alloc inode in "
"slot %u\n", i);
status = -EIO;
goto bail;
}
} else {
ocfs2_sprintf_system_inode_name(namebuf,
sizeof(namebuf),
type, i);
status = ocfs2_lookup_ino_from_name(osb->sys_root_inode,
namebuf,
strlen(namebuf),
&blkno);
if (status < 0) {
status = -ENOENT;
goto bail;
}
}
status = ocfs2_info_scan_inode_alloc(osb, inode_alloc, blkno, oifi, i);
iput(inode_alloc);
inode_alloc = NULL;
if (status < 0)
goto bail;
}
o2info_set_request_filled(&oifi->ifi_req);
if (o2info_to_user(*oifi, req)) {
status = -EFAULT;
goto out_free;
}
status = 0;
bail:
if (status)
o2info_set_request_error(&oifi->ifi_req, req);
out_free:
kfree(oifi);
out_err:
return status;
}
static void o2ffg_update_histogram(struct ocfs2_info_free_chunk_list *hist,
unsigned int chunksize)
{
u32 index;
index = __ilog2_u32(chunksize);
if (index >= OCFS2_INFO_MAX_HIST)
index = OCFS2_INFO_MAX_HIST - 1;
hist->fc_chunks[index]++;
hist->fc_clusters[index] += chunksize;
}
static void o2ffg_update_stats(struct ocfs2_info_freefrag_stats *stats,
unsigned int chunksize)
{
if (chunksize > stats->ffs_max)
stats->ffs_max = chunksize;
if (chunksize < stats->ffs_min)
stats->ffs_min = chunksize;
stats->ffs_avg += chunksize;
stats->ffs_free_chunks_real++;
}
static void ocfs2_info_update_ffg(struct ocfs2_info_freefrag *ffg,
unsigned int chunksize)
{
o2ffg_update_histogram(&(ffg->iff_ffs.ffs_fc_hist), chunksize);
o2ffg_update_stats(&(ffg->iff_ffs), chunksize);
}
static int ocfs2_info_freefrag_scan_chain(struct ocfs2_super *osb,
struct inode *gb_inode,
struct ocfs2_dinode *gb_dinode,
struct ocfs2_chain_rec *rec,
struct ocfs2_info_freefrag *ffg,
u32 chunks_in_group)
{
int status = 0, used;
u64 blkno;
struct buffer_head *bh = NULL;
struct ocfs2_group_desc *bg = NULL;
unsigned int max_bits, num_clusters;
unsigned int offset = 0, cluster, chunk;
unsigned int chunk_free, last_chunksize = 0;
if (!le32_to_cpu(rec->c_free))
goto bail;
do {
if (!bg)
blkno = le64_to_cpu(rec->c_blkno);
else
blkno = le64_to_cpu(bg->bg_next_group);
if (bh) {
brelse(bh);
bh = NULL;
}
if (o2info_coherent(&ffg->iff_req))
status = ocfs2_read_group_descriptor(gb_inode,
gb_dinode,
blkno, &bh);
else
status = ocfs2_read_blocks_sync(osb, blkno, 1, &bh);
if (status < 0) {
mlog(ML_ERROR, "Can't read the group descriptor # "
"%llu from device.", (unsigned long long)blkno);
status = -EIO;
goto bail;
}
bg = (struct ocfs2_group_desc *)bh->b_data;
if (!le16_to_cpu(bg->bg_free_bits_count))
continue;
max_bits = le16_to_cpu(bg->bg_bits);
offset = 0;
for (chunk = 0; chunk < chunks_in_group; chunk++) {
/*
* last chunk may be not an entire one.
*/
if ((offset + ffg->iff_chunksize) > max_bits)
num_clusters = max_bits - offset;
else
num_clusters = ffg->iff_chunksize;
chunk_free = 0;
for (cluster = 0; cluster < num_clusters; cluster++) {
used = ocfs2_test_bit(offset,
(unsigned long *)bg->bg_bitmap);
/*
* - chunk_free counts free clusters in #N chunk.
* - last_chunksize records the size(in) clusters
* for the last real free chunk being counted.
*/
if (!used) {
last_chunksize++;
chunk_free++;
}
if (used && last_chunksize) {
ocfs2_info_update_ffg(ffg,
last_chunksize);
last_chunksize = 0;
}
offset++;
}
if (chunk_free == ffg->iff_chunksize)
ffg->iff_ffs.ffs_free_chunks++;
}
/*
* need to update the info for last free chunk.
*/
if (last_chunksize)
ocfs2_info_update_ffg(ffg, last_chunksize);
} while (le64_to_cpu(bg->bg_next_group));
bail:
brelse(bh);
return status;
}
static int ocfs2_info_freefrag_scan_bitmap(struct ocfs2_super *osb,
struct inode *gb_inode, u64 blkno,
struct ocfs2_info_freefrag *ffg)
{
u32 chunks_in_group;
int status = 0, unlock = 0, i;
struct buffer_head *bh = NULL;
struct ocfs2_chain_list *cl = NULL;
struct ocfs2_chain_rec *rec = NULL;
struct ocfs2_dinode *gb_dinode = NULL;
if (gb_inode)
inode_lock(gb_inode);
if (o2info_coherent(&ffg->iff_req)) {
status = ocfs2_inode_lock(gb_inode, &bh, 0);
if (status < 0) {
mlog_errno(status);
goto bail;
}
unlock = 1;
} else {
status = ocfs2_read_blocks_sync(osb, blkno, 1, &bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
gb_dinode = (struct ocfs2_dinode *)bh->b_data;
cl = &(gb_dinode->id2.i_chain);
/*
* Chunksize(in) clusters from userspace should be
* less than clusters in a group.
*/
if (ffg->iff_chunksize > le16_to_cpu(cl->cl_cpg)) {
status = -EINVAL;
goto bail;
}
memset(&ffg->iff_ffs, 0, sizeof(struct ocfs2_info_freefrag_stats));
ffg->iff_ffs.ffs_min = ~0U;
ffg->iff_ffs.ffs_clusters =
le32_to_cpu(gb_dinode->id1.bitmap1.i_total);
ffg->iff_ffs.ffs_free_clusters = ffg->iff_ffs.ffs_clusters -
le32_to_cpu(gb_dinode->id1.bitmap1.i_used);
chunks_in_group = le16_to_cpu(cl->cl_cpg) / ffg->iff_chunksize + 1;
for (i = 0; i < le16_to_cpu(cl->cl_next_free_rec); i++) {
rec = &(cl->cl_recs[i]);
status = ocfs2_info_freefrag_scan_chain(osb, gb_inode,
gb_dinode,
rec, ffg,
chunks_in_group);
if (status)
goto bail;
}
if (ffg->iff_ffs.ffs_free_chunks_real)
ffg->iff_ffs.ffs_avg = (ffg->iff_ffs.ffs_avg /
ffg->iff_ffs.ffs_free_chunks_real);
bail:
if (unlock)
ocfs2_inode_unlock(gb_inode, 0);
if (gb_inode)
inode_unlock(gb_inode);
iput(gb_inode);
brelse(bh);
return status;
}
static int ocfs2_info_handle_freefrag(struct inode *inode,
struct ocfs2_info_request __user *req)
{
u64 blkno = -1;
char namebuf[40];
int status, type = GLOBAL_BITMAP_SYSTEM_INODE;
struct ocfs2_info_freefrag *oiff;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct inode *gb_inode = NULL;
oiff = kzalloc(sizeof(struct ocfs2_info_freefrag), GFP_KERNEL);
if (!oiff) {
status = -ENOMEM;
mlog_errno(status);
goto out_err;
}
if (o2info_from_user(*oiff, req)) {
status = -EFAULT;
goto out_free;
}
/*
* chunksize from userspace should be power of 2.
*/
if ((oiff->iff_chunksize & (oiff->iff_chunksize - 1)) ||
(!oiff->iff_chunksize)) {
status = -EINVAL;
goto bail;
}
if (o2info_coherent(&oiff->iff_req)) {
gb_inode = ocfs2_get_system_file_inode(osb, type,
OCFS2_INVALID_SLOT);
if (!gb_inode) {
mlog(ML_ERROR, "unable to get global_bitmap inode\n");
status = -EIO;
goto bail;
}
} else {
ocfs2_sprintf_system_inode_name(namebuf, sizeof(namebuf), type,
OCFS2_INVALID_SLOT);
status = ocfs2_lookup_ino_from_name(osb->sys_root_inode,
namebuf,
strlen(namebuf),
&blkno);
if (status < 0) {
status = -ENOENT;
goto bail;
}
}
status = ocfs2_info_freefrag_scan_bitmap(osb, gb_inode, blkno, oiff);
if (status < 0)
goto bail;
o2info_set_request_filled(&oiff->iff_req);
if (o2info_to_user(*oiff, req)) {
status = -EFAULT;
goto out_free;
}
status = 0;
bail:
if (status)
o2info_set_request_error(&oiff->iff_req, req);
out_free:
kfree(oiff);
out_err:
return status;
}
static int ocfs2_info_handle_unknown(struct inode *inode,
struct ocfs2_info_request __user *req)
{
struct ocfs2_info_request oir;
if (o2info_from_user(oir, req))
return -EFAULT;
o2info_clear_request_filled(&oir);
if (o2info_to_user(oir, req))
return -EFAULT;
return 0;
}
/*
* Validate and distinguish OCFS2_IOC_INFO requests.
*
* - validate the magic number.
* - distinguish different requests.
* - validate size of different requests.
*/
static int ocfs2_info_handle_request(struct inode *inode,
struct ocfs2_info_request __user *req)
{
int status = -EFAULT;
struct ocfs2_info_request oir;
if (o2info_from_user(oir, req))
goto bail;
status = -EINVAL;
if (oir.ir_magic != OCFS2_INFO_MAGIC)
goto bail;
switch (oir.ir_code) {
case OCFS2_INFO_BLOCKSIZE:
if (oir.ir_size == sizeof(struct ocfs2_info_blocksize))
status = ocfs2_info_handle_blocksize(inode, req);
break;
case OCFS2_INFO_CLUSTERSIZE:
if (oir.ir_size == sizeof(struct ocfs2_info_clustersize))
status = ocfs2_info_handle_clustersize(inode, req);
break;
case OCFS2_INFO_MAXSLOTS:
if (oir.ir_size == sizeof(struct ocfs2_info_maxslots))
status = ocfs2_info_handle_maxslots(inode, req);
break;
case OCFS2_INFO_LABEL:
if (oir.ir_size == sizeof(struct ocfs2_info_label))
status = ocfs2_info_handle_label(inode, req);
break;
case OCFS2_INFO_UUID:
if (oir.ir_size == sizeof(struct ocfs2_info_uuid))
status = ocfs2_info_handle_uuid(inode, req);
break;
case OCFS2_INFO_FS_FEATURES:
if (oir.ir_size == sizeof(struct ocfs2_info_fs_features))
status = ocfs2_info_handle_fs_features(inode, req);
break;
case OCFS2_INFO_JOURNAL_SIZE:
if (oir.ir_size == sizeof(struct ocfs2_info_journal_size))
status = ocfs2_info_handle_journal_size(inode, req);
break;
case OCFS2_INFO_FREEINODE:
if (oir.ir_size == sizeof(struct ocfs2_info_freeinode))
status = ocfs2_info_handle_freeinode(inode, req);
break;
case OCFS2_INFO_FREEFRAG:
if (oir.ir_size == sizeof(struct ocfs2_info_freefrag))
status = ocfs2_info_handle_freefrag(inode, req);
break;
default:
status = ocfs2_info_handle_unknown(inode, req);
break;
}
bail:
return status;
}
static int ocfs2_get_request_ptr(struct ocfs2_info *info, int idx,
u64 *req_addr, int compat_flag)
{
int status = -EFAULT;
u64 __user *bp = NULL;
if (compat_flag) {
#ifdef CONFIG_COMPAT
/*
* pointer bp stores the base address of a pointers array,
* which collects all addresses of separate request.
*/
bp = (u64 __user *)(unsigned long)compat_ptr(info->oi_requests);
#else
BUG();
#endif
} else
bp = (u64 __user *)(unsigned long)(info->oi_requests);
if (o2info_from_user(*req_addr, bp + idx))
goto bail;
status = 0;
bail:
return status;
}
/*
* OCFS2_IOC_INFO handles an array of requests passed from userspace.
*
* ocfs2_info_handle() recevies a large info aggregation, grab and
* validate the request count from header, then break it into small
* pieces, later specific handlers can handle them one by one.
*
* Idea here is to make each separate request small enough to ensure
* a better backward&forward compatibility, since a small piece of
* request will be less likely to be broken if disk layout get changed.
*/
static int ocfs2_info_handle(struct inode *inode, struct ocfs2_info *info,
int compat_flag)
{
int i, status = 0;
u64 req_addr;
struct ocfs2_info_request __user *reqp;
if ((info->oi_count > OCFS2_INFO_MAX_REQUEST) ||
(!info->oi_requests)) {
status = -EINVAL;
goto bail;
}
for (i = 0; i < info->oi_count; i++) {
status = ocfs2_get_request_ptr(info, i, &req_addr, compat_flag);
if (status)
break;
reqp = (struct ocfs2_info_request __user *)(unsigned long)req_addr;
if (!reqp) {
status = -EINVAL;
goto bail;
}
status = ocfs2_info_handle_request(inode, reqp);
if (status)
break;
}
bail:
return status;
}
long ocfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct inode *inode = file_inode(filp);
int new_clusters;
int status;
struct ocfs2_space_resv sr;
struct ocfs2_new_group_input input;
struct reflink_arguments args;
const char __user *old_path;
const char __user *new_path;
bool preserve;
struct ocfs2_info info;
void __user *argp = (void __user *)arg;
switch (cmd) {
case OCFS2_IOC_RESVSP:
case OCFS2_IOC_RESVSP64:
case OCFS2_IOC_UNRESVSP:
case OCFS2_IOC_UNRESVSP64:
if (copy_from_user(&sr, (int __user *) arg, sizeof(sr)))
return -EFAULT;
return ocfs2_change_file_space(filp, cmd, &sr);
case OCFS2_IOC_GROUP_EXTEND:
if (!capable(CAP_SYS_RESOURCE))
return -EPERM;
if (get_user(new_clusters, (int __user *)arg))
return -EFAULT;
status = mnt_want_write_file(filp);
if (status)
return status;
status = ocfs2_group_extend(inode, new_clusters);
mnt_drop_write_file(filp);
return status;
case OCFS2_IOC_GROUP_ADD:
case OCFS2_IOC_GROUP_ADD64:
if (!capable(CAP_SYS_RESOURCE))
return -EPERM;
if (copy_from_user(&input, (int __user *) arg, sizeof(input)))
return -EFAULT;
status = mnt_want_write_file(filp);
if (status)
return status;
status = ocfs2_group_add(inode, &input);
mnt_drop_write_file(filp);
return status;
case OCFS2_IOC_REFLINK:
if (copy_from_user(&args, argp, sizeof(args)))
return -EFAULT;
old_path = (const char __user *)(unsigned long)args.old_path;
new_path = (const char __user *)(unsigned long)args.new_path;
preserve = (args.preserve != 0);
return ocfs2_reflink_ioctl(inode, old_path, new_path, preserve);
case OCFS2_IOC_INFO:
if (copy_from_user(&info, argp, sizeof(struct ocfs2_info)))
return -EFAULT;
return ocfs2_info_handle(inode, &info, 0);
case FITRIM:
{
struct super_block *sb = inode->i_sb;
struct fstrim_range range;
int ret = 0;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!bdev_max_discard_sectors(sb->s_bdev))
return -EOPNOTSUPP;
if (copy_from_user(&range, argp, sizeof(range)))
return -EFAULT;
range.minlen = max_t(u64, bdev_discard_granularity(sb->s_bdev),
range.minlen);
ret = ocfs2_trim_fs(sb, &range);
if (ret < 0)
return ret;
if (copy_to_user(argp, &range, sizeof(range)))
return -EFAULT;
return 0;
}
case OCFS2_IOC_MOVE_EXT:
return ocfs2_ioctl_move_extents(filp, argp);
default:
return -ENOTTY;
}
}
#ifdef CONFIG_COMPAT
long ocfs2_compat_ioctl(struct file *file, unsigned cmd, unsigned long arg)
{
bool preserve;
struct reflink_arguments args;
struct inode *inode = file_inode(file);
struct ocfs2_info info;
void __user *argp = (void __user *)arg;
switch (cmd) {
case OCFS2_IOC_RESVSP:
case OCFS2_IOC_RESVSP64:
case OCFS2_IOC_UNRESVSP:
case OCFS2_IOC_UNRESVSP64:
case OCFS2_IOC_GROUP_EXTEND:
case OCFS2_IOC_GROUP_ADD:
case OCFS2_IOC_GROUP_ADD64:
break;
case OCFS2_IOC_REFLINK:
if (copy_from_user(&args, argp, sizeof(args)))
return -EFAULT;
preserve = (args.preserve != 0);
return ocfs2_reflink_ioctl(inode, compat_ptr(args.old_path),
compat_ptr(args.new_path), preserve);
case OCFS2_IOC_INFO:
if (copy_from_user(&info, argp, sizeof(struct ocfs2_info)))
return -EFAULT;
return ocfs2_info_handle(inode, &info, 1);
case FITRIM:
case OCFS2_IOC_MOVE_EXT:
break;
default:
return -ENOIOCTLCMD;
}
return ocfs2_ioctl(file, cmd, arg);
}
#endif