OpenCloudOS-Kernel/drivers/net/bonding/bond_procfs.c

313 lines
8.8 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
#include <linux/proc_fs.h>
#include <linux/export.h>
#include <net/net_namespace.h>
#include <net/netns/generic.h>
#include <net/bonding.h>
#include "bonding_priv.h"
static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos)
__acquires(RCU)
{
struct bonding *bond = PDE_DATA(file_inode(seq->file));
struct list_head *iter;
struct slave *slave;
loff_t off = 0;
rcu_read_lock();
if (*pos == 0)
return SEQ_START_TOKEN;
bond_for_each_slave_rcu(bond, slave, iter)
if (++off == *pos)
return slave;
return NULL;
}
static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct bonding *bond = PDE_DATA(file_inode(seq->file));
struct list_head *iter;
struct slave *slave;
bool found = false;
++*pos;
if (v == SEQ_START_TOKEN)
return bond_first_slave_rcu(bond);
bond_for_each_slave_rcu(bond, slave, iter) {
if (found)
return slave;
if (slave == v)
found = true;
}
return NULL;
}
static void bond_info_seq_stop(struct seq_file *seq, void *v)
__releases(RCU)
{
rcu_read_unlock();
}
static void bond_info_show_master(struct seq_file *seq)
{
struct bonding *bond = PDE_DATA(file_inode(seq->file));
const struct bond_opt_value *optval;
struct slave *curr, *primary;
int i;
curr = rcu_dereference(bond->curr_active_slave);
seq_printf(seq, "Bonding Mode: %s",
bond_mode_name(BOND_MODE(bond)));
if (BOND_MODE(bond) == BOND_MODE_ACTIVEBACKUP &&
bond->params.fail_over_mac) {
optval = bond_opt_get_val(BOND_OPT_FAIL_OVER_MAC,
bond->params.fail_over_mac);
seq_printf(seq, " (fail_over_mac %s)", optval->string);
}
seq_printf(seq, "\n");
if (bond_mode_uses_xmit_hash(bond)) {
optval = bond_opt_get_val(BOND_OPT_XMIT_HASH,
bond->params.xmit_policy);
seq_printf(seq, "Transmit Hash Policy: %s (%d)\n",
optval->string, bond->params.xmit_policy);
}
if (bond_uses_primary(bond)) {
primary = rcu_dereference(bond->primary_slave);
seq_printf(seq, "Primary Slave: %s",
primary ? primary->dev->name : "None");
if (primary) {
optval = bond_opt_get_val(BOND_OPT_PRIMARY_RESELECT,
bond->params.primary_reselect);
seq_printf(seq, " (primary_reselect %s)",
optval->string);
}
seq_printf(seq, "\nCurrently Active Slave: %s\n",
(curr) ? curr->dev->name : "None");
}
seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ?
"up" : "down");
seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon);
seq_printf(seq, "Up Delay (ms): %d\n",
bond->params.updelay * bond->params.miimon);
seq_printf(seq, "Down Delay (ms): %d\n",
bond->params.downdelay * bond->params.miimon);
seq_printf(seq, "Peer Notification Delay (ms): %d\n",
bond->params.peer_notif_delay * bond->params.miimon);
/* ARP information */
if (bond->params.arp_interval > 0) {
int printed = 0;
seq_printf(seq, "ARP Polling Interval (ms): %d\n",
bond->params.arp_interval);
seq_printf(seq, "ARP IP target/s (n.n.n.n form):");
for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) {
if (!bond->params.arp_targets[i])
break;
if (printed)
seq_printf(seq, ",");
seq_printf(seq, " %pI4", &bond->params.arp_targets[i]);
printed = 1;
}
seq_printf(seq, "\n");
}
if (BOND_MODE(bond) == BOND_MODE_8023AD) {
struct ad_info ad_info;
seq_puts(seq, "\n802.3ad info\n");
seq_printf(seq, "LACP rate: %s\n",
(bond->params.lacp_fast) ? "fast" : "slow");
seq_printf(seq, "Min links: %d\n", bond->params.min_links);
optval = bond_opt_get_val(BOND_OPT_AD_SELECT,
bond->params.ad_select);
seq_printf(seq, "Aggregator selection policy (ad_select): %s\n",
optval->string);
if (capable(CAP_NET_ADMIN)) {
seq_printf(seq, "System priority: %d\n",
BOND_AD_INFO(bond).system.sys_priority);
seq_printf(seq, "System MAC address: %pM\n",
&BOND_AD_INFO(bond).system.sys_mac_addr);
if (__bond_3ad_get_active_agg_info(bond, &ad_info)) {
seq_printf(seq,
"bond %s has no active aggregator\n",
bond->dev->name);
} else {
seq_printf(seq, "Active Aggregator Info:\n");
seq_printf(seq, "\tAggregator ID: %d\n",
ad_info.aggregator_id);
seq_printf(seq, "\tNumber of ports: %d\n",
ad_info.ports);
seq_printf(seq, "\tActor Key: %d\n",
ad_info.actor_key);
seq_printf(seq, "\tPartner Key: %d\n",
ad_info.partner_key);
seq_printf(seq, "\tPartner Mac Address: %pM\n",
ad_info.partner_system);
}
}
}
}
static void bond_info_show_slave(struct seq_file *seq,
const struct slave *slave)
{
struct bonding *bond = PDE_DATA(file_inode(seq->file));
seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name);
seq_printf(seq, "MII Status: %s\n", bond_slave_link_status(slave->link));
if (slave->speed == SPEED_UNKNOWN)
seq_printf(seq, "Speed: %s\n", "Unknown");
else
seq_printf(seq, "Speed: %d Mbps\n", slave->speed);
if (slave->duplex == DUPLEX_UNKNOWN)
seq_printf(seq, "Duplex: %s\n", "Unknown");
else
seq_printf(seq, "Duplex: %s\n", slave->duplex ? "full" : "half");
seq_printf(seq, "Link Failure Count: %u\n",
slave->link_failure_count);
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 05:32:42 +08:00
seq_printf(seq, "Permanent HW addr: %*phC\n",
slave->dev->addr_len, slave->perm_hwaddr);
seq_printf(seq, "Slave queue ID: %d\n", slave->queue_id);
if (BOND_MODE(bond) == BOND_MODE_8023AD) {
const struct port *port = &SLAVE_AD_INFO(slave)->port;
const struct aggregator *agg = port->aggregator;
if (agg) {
seq_printf(seq, "Aggregator ID: %d\n",
agg->aggregator_identifier);
seq_printf(seq, "Actor Churn State: %s\n",
bond_3ad_churn_desc(port->sm_churn_actor_state));
seq_printf(seq, "Partner Churn State: %s\n",
bond_3ad_churn_desc(port->sm_churn_partner_state));
seq_printf(seq, "Actor Churned Count: %d\n",
port->churn_actor_count);
seq_printf(seq, "Partner Churned Count: %d\n",
port->churn_partner_count);
if (capable(CAP_NET_ADMIN)) {
seq_puts(seq, "details actor lacp pdu:\n");
seq_printf(seq, " system priority: %d\n",
port->actor_system_priority);
seq_printf(seq, " system mac address: %pM\n",
&port->actor_system);
seq_printf(seq, " port key: %d\n",
port->actor_oper_port_key);
seq_printf(seq, " port priority: %d\n",
port->actor_port_priority);
seq_printf(seq, " port number: %d\n",
port->actor_port_number);
seq_printf(seq, " port state: %d\n",
port->actor_oper_port_state);
seq_puts(seq, "details partner lacp pdu:\n");
seq_printf(seq, " system priority: %d\n",
port->partner_oper.system_priority);
seq_printf(seq, " system mac address: %pM\n",
&port->partner_oper.system);
seq_printf(seq, " oper key: %d\n",
port->partner_oper.key);
seq_printf(seq, " port priority: %d\n",
port->partner_oper.port_priority);
seq_printf(seq, " port number: %d\n",
port->partner_oper.port_number);
seq_printf(seq, " port state: %d\n",
port->partner_oper.port_state);
}
} else {
seq_puts(seq, "Aggregator ID: N/A\n");
}
}
}
static int bond_info_seq_show(struct seq_file *seq, void *v)
{
if (v == SEQ_START_TOKEN) {
seq_printf(seq, "%s\n", bond_version);
bond_info_show_master(seq);
} else
bond_info_show_slave(seq, v);
return 0;
}
static const struct seq_operations bond_info_seq_ops = {
.start = bond_info_seq_start,
.next = bond_info_seq_next,
.stop = bond_info_seq_stop,
.show = bond_info_seq_show,
};
void bond_create_proc_entry(struct bonding *bond)
{
struct net_device *bond_dev = bond->dev;
struct bond_net *bn = net_generic(dev_net(bond_dev), bond_net_id);
if (bn->proc_dir) {
bond->proc_entry = proc_create_seq_data(bond_dev->name, 0444,
bn->proc_dir, &bond_info_seq_ops, bond);
if (bond->proc_entry == NULL)
netdev_warn(bond_dev, "Cannot create /proc/net/%s/%s\n",
DRV_NAME, bond_dev->name);
else
memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ);
}
}
void bond_remove_proc_entry(struct bonding *bond)
{
struct net_device *bond_dev = bond->dev;
struct bond_net *bn = net_generic(dev_net(bond_dev), bond_net_id);
if (bn->proc_dir && bond->proc_entry) {
remove_proc_entry(bond->proc_file_name, bn->proc_dir);
memset(bond->proc_file_name, 0, IFNAMSIZ);
bond->proc_entry = NULL;
}
}
/* Create the bonding directory under /proc/net, if doesn't exist yet.
* Caller must hold rtnl_lock.
*/
void __net_init bond_create_proc_dir(struct bond_net *bn)
{
if (!bn->proc_dir) {
bn->proc_dir = proc_mkdir(DRV_NAME, bn->net->proc_net);
if (!bn->proc_dir)
pr_warn("Warning: Cannot create /proc/net/%s\n",
DRV_NAME);
}
}
/* Destroy the bonding directory under /proc/net, if empty.
* Caller must hold rtnl_lock.
*/
void __net_exit bond_destroy_proc_dir(struct bond_net *bn)
{
if (bn->proc_dir) {
remove_proc_entry(DRV_NAME, bn->net->proc_net);
bn->proc_dir = NULL;
}
}