OpenCloudOS-Kernel/drivers/video/fbdev/omap/lcd_mipid.c

615 lines
14 KiB
C
Raw Normal View History

/*
* LCD driver for MIPI DBI-C / DCS compatible LCDs
*
* Copyright (C) 2006 Nokia Corporation
* Author: Imre Deak <imre.deak@nokia.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/device.h>
#include <linux/delay.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/spi/spi.h>
#include <linux/module.h>
#include <linux/platform_data/lcd-mipid.h>
#include "omapfb.h"
#define MIPID_MODULE_NAME "lcd_mipid"
#define MIPID_CMD_READ_DISP_ID 0x04
#define MIPID_CMD_READ_RED 0x06
#define MIPID_CMD_READ_GREEN 0x07
#define MIPID_CMD_READ_BLUE 0x08
#define MIPID_CMD_READ_DISP_STATUS 0x09
#define MIPID_CMD_RDDSDR 0x0F
#define MIPID_CMD_SLEEP_IN 0x10
#define MIPID_CMD_SLEEP_OUT 0x11
#define MIPID_CMD_DISP_OFF 0x28
#define MIPID_CMD_DISP_ON 0x29
#define MIPID_ESD_CHECK_PERIOD msecs_to_jiffies(5000)
#define to_mipid_device(p) container_of(p, struct mipid_device, \
panel)
struct mipid_device {
int enabled;
int revision;
unsigned int saved_bklight_level;
unsigned long hw_guard_end; /* next value of jiffies
when we can issue the
next sleep in/out command */
unsigned long hw_guard_wait; /* max guard time in jiffies */
struct omapfb_device *fbdev;
struct spi_device *spi;
struct mutex mutex;
struct lcd_panel panel;
struct workqueue_struct *esd_wq;
struct delayed_work esd_work;
void (*esd_check)(struct mipid_device *m);
};
static void mipid_transfer(struct mipid_device *md, int cmd, const u8 *wbuf,
int wlen, u8 *rbuf, int rlen)
{
struct spi_message m;
struct spi_transfer *x, xfer[4];
u16 w;
int r;
BUG_ON(md->spi == NULL);
spi_message_init(&m);
memset(xfer, 0, sizeof(xfer));
x = &xfer[0];
cmd &= 0xff;
x->tx_buf = &cmd;
x->bits_per_word = 9;
x->len = 2;
spi_message_add_tail(x, &m);
if (wlen) {
x++;
x->tx_buf = wbuf;
x->len = wlen;
x->bits_per_word = 9;
spi_message_add_tail(x, &m);
}
if (rlen) {
x++;
x->rx_buf = &w;
x->len = 1;
spi_message_add_tail(x, &m);
if (rlen > 1) {
/* Arrange for the extra clock before the first
* data bit.
*/
x->bits_per_word = 9;
x->len = 2;
x++;
x->rx_buf = &rbuf[1];
x->len = rlen - 1;
spi_message_add_tail(x, &m);
}
}
r = spi_sync(md->spi, &m);
if (r < 0)
dev_dbg(&md->spi->dev, "spi_sync %d\n", r);
if (rlen)
rbuf[0] = w & 0xff;
}
static inline void mipid_cmd(struct mipid_device *md, int cmd)
{
mipid_transfer(md, cmd, NULL, 0, NULL, 0);
}
static inline void mipid_write(struct mipid_device *md,
int reg, const u8 *buf, int len)
{
mipid_transfer(md, reg, buf, len, NULL, 0);
}
static inline void mipid_read(struct mipid_device *md,
int reg, u8 *buf, int len)
{
mipid_transfer(md, reg, NULL, 0, buf, len);
}
static void set_data_lines(struct mipid_device *md, int data_lines)
{
u16 par;
switch (data_lines) {
case 16:
par = 0x150;
break;
case 18:
par = 0x160;
break;
case 24:
par = 0x170;
break;
}
mipid_write(md, 0x3a, (u8 *)&par, 2);
}
static void send_init_string(struct mipid_device *md)
{
u16 initpar[] = { 0x0102, 0x0100, 0x0100 };
mipid_write(md, 0xc2, (u8 *)initpar, sizeof(initpar));
set_data_lines(md, md->panel.data_lines);
}
static void hw_guard_start(struct mipid_device *md, int guard_msec)
{
md->hw_guard_wait = msecs_to_jiffies(guard_msec);
md->hw_guard_end = jiffies + md->hw_guard_wait;
}
static void hw_guard_wait(struct mipid_device *md)
{
unsigned long wait = md->hw_guard_end - jiffies;
if ((long)wait > 0 && wait <= md->hw_guard_wait) {
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(wait);
}
}
static void set_sleep_mode(struct mipid_device *md, int on)
{
int cmd, sleep_time = 50;
if (on)
cmd = MIPID_CMD_SLEEP_IN;
else
cmd = MIPID_CMD_SLEEP_OUT;
hw_guard_wait(md);
mipid_cmd(md, cmd);
hw_guard_start(md, 120);
/*
* When we enable the panel, it seems we _have_ to sleep
* 120 ms before sending the init string. When disabling the
* panel we'll sleep for the duration of 2 frames, so that the
* controller can still provide the PCLK,HS,VS signals.
*/
if (!on)
sleep_time = 120;
msleep(sleep_time);
}
static void set_display_state(struct mipid_device *md, int enabled)
{
int cmd = enabled ? MIPID_CMD_DISP_ON : MIPID_CMD_DISP_OFF;
mipid_cmd(md, cmd);
}
static int mipid_set_bklight_level(struct lcd_panel *panel, unsigned int level)
{
struct mipid_device *md = to_mipid_device(panel);
struct mipid_platform_data *pd = md->spi->dev.platform_data;
if (pd->get_bklight_max == NULL || pd->set_bklight_level == NULL)
return -ENODEV;
if (level > pd->get_bklight_max(pd))
return -EINVAL;
if (!md->enabled) {
md->saved_bklight_level = level;
return 0;
}
pd->set_bklight_level(pd, level);
return 0;
}
static unsigned int mipid_get_bklight_level(struct lcd_panel *panel)
{
struct mipid_device *md = to_mipid_device(panel);
struct mipid_platform_data *pd = md->spi->dev.platform_data;
if (pd->get_bklight_level == NULL)
return -ENODEV;
return pd->get_bklight_level(pd);
}
static unsigned int mipid_get_bklight_max(struct lcd_panel *panel)
{
struct mipid_device *md = to_mipid_device(panel);
struct mipid_platform_data *pd = md->spi->dev.platform_data;
if (pd->get_bklight_max == NULL)
return -ENODEV;
return pd->get_bklight_max(pd);
}
static unsigned long mipid_get_caps(struct lcd_panel *panel)
{
return OMAPFB_CAPS_SET_BACKLIGHT;
}
static u16 read_first_pixel(struct mipid_device *md)
{
u16 pixel;
u8 red, green, blue;
mutex_lock(&md->mutex);
mipid_read(md, MIPID_CMD_READ_RED, &red, 1);
mipid_read(md, MIPID_CMD_READ_GREEN, &green, 1);
mipid_read(md, MIPID_CMD_READ_BLUE, &blue, 1);
mutex_unlock(&md->mutex);
switch (md->panel.data_lines) {
case 16:
pixel = ((red >> 1) << 11) | (green << 5) | (blue >> 1);
break;
case 24:
/* 24 bit -> 16 bit */
pixel = ((red >> 3) << 11) | ((green >> 2) << 5) |
(blue >> 3);
break;
default:
pixel = 0;
BUG();
}
return pixel;
}
static int mipid_run_test(struct lcd_panel *panel, int test_num)
{
struct mipid_device *md = to_mipid_device(panel);
static const u16 test_values[4] = {
0x0000, 0xffff, 0xaaaa, 0x5555,
};
int i;
if (test_num != MIPID_TEST_RGB_LINES)
return MIPID_TEST_INVALID;
for (i = 0; i < ARRAY_SIZE(test_values); i++) {
int delay;
unsigned long tmo;
omapfb_write_first_pixel(md->fbdev, test_values[i]);
tmo = jiffies + msecs_to_jiffies(100);
delay = 25;
while (1) {
u16 pixel;
msleep(delay);
pixel = read_first_pixel(md);
if (pixel == test_values[i])
break;
if (time_after(jiffies, tmo)) {
dev_err(&md->spi->dev,
"MIPI LCD RGB I/F test failed: "
"expecting %04x, got %04x\n",
test_values[i], pixel);
return MIPID_TEST_FAILED;
}
delay = 10;
}
}
return 0;
}
static void ls041y3_esd_recover(struct mipid_device *md)
{
dev_err(&md->spi->dev, "performing LCD ESD recovery\n");
set_sleep_mode(md, 1);
set_sleep_mode(md, 0);
}
static void ls041y3_esd_check_mode1(struct mipid_device *md)
{
u8 state1, state2;
mipid_read(md, MIPID_CMD_RDDSDR, &state1, 1);
set_sleep_mode(md, 0);
mipid_read(md, MIPID_CMD_RDDSDR, &state2, 1);
dev_dbg(&md->spi->dev, "ESD mode 1 state1 %02x state2 %02x\n",
state1, state2);
/* Each sleep out command will trigger a self diagnostic and flip
* Bit6 if the test passes.
*/
if (!((state1 ^ state2) & (1 << 6)))
ls041y3_esd_recover(md);
}
static void ls041y3_esd_check_mode2(struct mipid_device *md)
{
int i;
u8 rbuf[2];
static const struct {
int cmd;
int wlen;
u16 wbuf[3];
} *rd, rd_ctrl[7] = {
{ 0xb0, 4, { 0x0101, 0x01fe, } },
{ 0xb1, 4, { 0x01de, 0x0121, } },
{ 0xc2, 4, { 0x0100, 0x0100, } },
{ 0xbd, 2, { 0x0100, } },
{ 0xc2, 4, { 0x01fc, 0x0103, } },
{ 0xb4, 0, },
{ 0x00, 0, },
};
rd = rd_ctrl;
for (i = 0; i < 3; i++, rd++)
mipid_write(md, rd->cmd, (u8 *)rd->wbuf, rd->wlen);
udelay(10);
mipid_read(md, rd->cmd, rbuf, 2);
rd++;
for (i = 0; i < 3; i++, rd++) {
udelay(10);
mipid_write(md, rd->cmd, (u8 *)rd->wbuf, rd->wlen);
}
dev_dbg(&md->spi->dev, "ESD mode 2 state %02x\n", rbuf[1]);
if (rbuf[1] == 0x00)
ls041y3_esd_recover(md);
}
static void ls041y3_esd_check(struct mipid_device *md)
{
ls041y3_esd_check_mode1(md);
if (md->revision >= 0x88)
ls041y3_esd_check_mode2(md);
}
static void mipid_esd_start_check(struct mipid_device *md)
{
if (md->esd_check != NULL)
queue_delayed_work(md->esd_wq, &md->esd_work,
MIPID_ESD_CHECK_PERIOD);
}
static void mipid_esd_stop_check(struct mipid_device *md)
{
if (md->esd_check != NULL)
cancel_delayed_work_sync(&md->esd_work);
}
static void mipid_esd_work(struct work_struct *work)
{
struct mipid_device *md = container_of(work, struct mipid_device,
esd_work.work);
mutex_lock(&md->mutex);
md->esd_check(md);
mutex_unlock(&md->mutex);
mipid_esd_start_check(md);
}
static int mipid_enable(struct lcd_panel *panel)
{
struct mipid_device *md = to_mipid_device(panel);
mutex_lock(&md->mutex);
if (md->enabled) {
mutex_unlock(&md->mutex);
return 0;
}
set_sleep_mode(md, 0);
md->enabled = 1;
send_init_string(md);
set_display_state(md, 1);
mipid_set_bklight_level(panel, md->saved_bklight_level);
mipid_esd_start_check(md);
mutex_unlock(&md->mutex);
return 0;
}
static void mipid_disable(struct lcd_panel *panel)
{
struct mipid_device *md = to_mipid_device(panel);
/*
* A final ESD work might be called before returning,
* so do this without holding the lock.
*/
mipid_esd_stop_check(md);
mutex_lock(&md->mutex);
if (!md->enabled) {
mutex_unlock(&md->mutex);
return;
}
md->saved_bklight_level = mipid_get_bklight_level(panel);
mipid_set_bklight_level(panel, 0);
set_display_state(md, 0);
set_sleep_mode(md, 1);
md->enabled = 0;
mutex_unlock(&md->mutex);
}
static int panel_enabled(struct mipid_device *md)
{
u32 disp_status;
int enabled;
mipid_read(md, MIPID_CMD_READ_DISP_STATUS, (u8 *)&disp_status, 4);
disp_status = __be32_to_cpu(disp_status);
enabled = (disp_status & (1 << 17)) && (disp_status & (1 << 10));
dev_dbg(&md->spi->dev,
"LCD panel %senabled by bootloader (status 0x%04x)\n",
enabled ? "" : "not ", disp_status);
return enabled;
}
static int mipid_init(struct lcd_panel *panel,
struct omapfb_device *fbdev)
{
struct mipid_device *md = to_mipid_device(panel);
md->fbdev = fbdev;
md->esd_wq = create_singlethread_workqueue("mipid_esd");
if (md->esd_wq == NULL) {
dev_err(&md->spi->dev, "can't create ESD workqueue\n");
return -ENOMEM;
}
INIT_DELAYED_WORK(&md->esd_work, mipid_esd_work);
mutex_init(&md->mutex);
md->enabled = panel_enabled(md);
if (md->enabled)
mipid_esd_start_check(md);
else
md->saved_bklight_level = mipid_get_bklight_level(panel);
return 0;
}
static void mipid_cleanup(struct lcd_panel *panel)
{
struct mipid_device *md = to_mipid_device(panel);
if (md->enabled)
mipid_esd_stop_check(md);
destroy_workqueue(md->esd_wq);
}
static struct lcd_panel mipid_panel = {
.config = OMAP_LCDC_PANEL_TFT,
.bpp = 16,
.x_res = 800,
.y_res = 480,
.pixel_clock = 21940,
.hsw = 50,
.hfp = 20,
.hbp = 15,
.vsw = 2,
.vfp = 1,
.vbp = 3,
.init = mipid_init,
.cleanup = mipid_cleanup,
.enable = mipid_enable,
.disable = mipid_disable,
.get_caps = mipid_get_caps,
.set_bklight_level = mipid_set_bklight_level,
.get_bklight_level = mipid_get_bklight_level,
.get_bklight_max = mipid_get_bklight_max,
.run_test = mipid_run_test,
};
static int mipid_detect(struct mipid_device *md)
{
struct mipid_platform_data *pdata;
u8 display_id[3];
pdata = md->spi->dev.platform_data;
if (pdata == NULL) {
dev_err(&md->spi->dev, "missing platform data\n");
return -ENOENT;
}
mipid_read(md, MIPID_CMD_READ_DISP_ID, display_id, 3);
dev_dbg(&md->spi->dev, "MIPI display ID: %02x%02x%02x\n",
display_id[0], display_id[1], display_id[2]);
switch (display_id[0]) {
case 0x45:
md->panel.name = "lph8923";
break;
case 0x83:
md->panel.name = "ls041y3";
md->esd_check = ls041y3_esd_check;
break;
default:
md->panel.name = "unknown";
dev_err(&md->spi->dev, "invalid display ID\n");
return -ENODEV;
}
md->revision = display_id[1];
md->panel.data_lines = pdata->data_lines;
pr_info("omapfb: %s rev %02x LCD detected, %d data lines\n",
md->panel.name, md->revision, md->panel.data_lines);
return 0;
}
static int mipid_spi_probe(struct spi_device *spi)
{
struct mipid_device *md;
int r;
md = kzalloc(sizeof(*md), GFP_KERNEL);
if (md == NULL) {
dev_err(&spi->dev, "out of memory\n");
return -ENOMEM;
}
spi->mode = SPI_MODE_0;
md->spi = spi;
dev_set_drvdata(&spi->dev, md);
md->panel = mipid_panel;
r = mipid_detect(md);
if (r < 0)
return r;
omapfb_register_panel(&md->panel);
return 0;
}
static int mipid_spi_remove(struct spi_device *spi)
{
struct mipid_device *md = dev_get_drvdata(&spi->dev);
mipid_disable(&md->panel);
kfree(md);
return 0;
}
static struct spi_driver mipid_spi_driver = {
.driver = {
.name = MIPID_MODULE_NAME,
},
.probe = mipid_spi_probe,
.remove = mipid_spi_remove,
};
module_spi_driver(mipid_spi_driver);
MODULE_DESCRIPTION("MIPI display driver");
MODULE_LICENSE("GPL");