OpenCloudOS-Kernel/arch/arm/mm/dma-mapping-nommu.c

241 lines
6.2 KiB
C
Raw Normal View History

ARM: NOMMU: Introduce dma operations for noMMU R/M classes of cpus can have memory covered by MPU which in turn might configure RAM as Normal i.e. bufferable and cacheable. It breaks dma_alloc_coherent() and friends, since data can stuck in caches now or be buffered. This patch factors out DMA support for NOMMU configuration into separate entity which provides dedicated dma_ops. We have to handle there several cases: - configurations with MMU/MPU setup - configurations without MMU/MPU setup - special case for M-class, since caches and MPU there are optional In general we rely on default DMA area for coherent allocations or/and per-device memory reserves suitable for coherent DMA, so if such regions are set coherent allocations go from there. In case MMU/MPU was not setup we fallback to normal page allocator for DMA memory allocation. In case we run M-class cpus, for configuration without cache support (like Cortex-M3/M4) dma operations are forced to be coherent and wired with dma-noop (such decision is made based on cacheid global variable); however, if caches are detected there and no DMA coherent region is given (either default or per-device), dma is disallowed even MPU is not set - it is because M-class implement system memory map which defines part of address space as Normal memory. Reported-by: Alexandre Torgue <alexandre.torgue@st.com> Reported-by: Andras Szemzo <sza@esh.hu> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Tested-by: Andras Szemzo <sza@esh.hu> Tested-by: Alexandre TORGUE <alexandre.torgue@st.com> Reviewed-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Russell King <rmk+kernel@armlinux.org.uk> [hch: removed the dma_supported() implementation that isn't required anymore] Signed-off-by: Christoph Hellwig <hch@lst.de>
2017-05-24 18:24:30 +08:00
/*
* Based on linux/arch/arm/mm/dma-mapping.c
*
* Copyright (C) 2000-2004 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/dma-direct.h>
ARM: NOMMU: Introduce dma operations for noMMU R/M classes of cpus can have memory covered by MPU which in turn might configure RAM as Normal i.e. bufferable and cacheable. It breaks dma_alloc_coherent() and friends, since data can stuck in caches now or be buffered. This patch factors out DMA support for NOMMU configuration into separate entity which provides dedicated dma_ops. We have to handle there several cases: - configurations with MMU/MPU setup - configurations without MMU/MPU setup - special case for M-class, since caches and MPU there are optional In general we rely on default DMA area for coherent allocations or/and per-device memory reserves suitable for coherent DMA, so if such regions are set coherent allocations go from there. In case MMU/MPU was not setup we fallback to normal page allocator for DMA memory allocation. In case we run M-class cpus, for configuration without cache support (like Cortex-M3/M4) dma operations are forced to be coherent and wired with dma-noop (such decision is made based on cacheid global variable); however, if caches are detected there and no DMA coherent region is given (either default or per-device), dma is disallowed even MPU is not set - it is because M-class implement system memory map which defines part of address space as Normal memory. Reported-by: Alexandre Torgue <alexandre.torgue@st.com> Reported-by: Andras Szemzo <sza@esh.hu> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Tested-by: Andras Szemzo <sza@esh.hu> Tested-by: Alexandre TORGUE <alexandre.torgue@st.com> Reviewed-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Russell King <rmk+kernel@armlinux.org.uk> [hch: removed the dma_supported() implementation that isn't required anymore] Signed-off-by: Christoph Hellwig <hch@lst.de>
2017-05-24 18:24:30 +08:00
#include <linux/scatterlist.h>
#include <asm/cachetype.h>
#include <asm/cacheflush.h>
#include <asm/outercache.h>
#include <asm/cp15.h>
#include "dma.h"
/*
* dma_direct_ops is used if
ARM: NOMMU: Introduce dma operations for noMMU R/M classes of cpus can have memory covered by MPU which in turn might configure RAM as Normal i.e. bufferable and cacheable. It breaks dma_alloc_coherent() and friends, since data can stuck in caches now or be buffered. This patch factors out DMA support for NOMMU configuration into separate entity which provides dedicated dma_ops. We have to handle there several cases: - configurations with MMU/MPU setup - configurations without MMU/MPU setup - special case for M-class, since caches and MPU there are optional In general we rely on default DMA area for coherent allocations or/and per-device memory reserves suitable for coherent DMA, so if such regions are set coherent allocations go from there. In case MMU/MPU was not setup we fallback to normal page allocator for DMA memory allocation. In case we run M-class cpus, for configuration without cache support (like Cortex-M3/M4) dma operations are forced to be coherent and wired with dma-noop (such decision is made based on cacheid global variable); however, if caches are detected there and no DMA coherent region is given (either default or per-device), dma is disallowed even MPU is not set - it is because M-class implement system memory map which defines part of address space as Normal memory. Reported-by: Alexandre Torgue <alexandre.torgue@st.com> Reported-by: Andras Szemzo <sza@esh.hu> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Tested-by: Andras Szemzo <sza@esh.hu> Tested-by: Alexandre TORGUE <alexandre.torgue@st.com> Reviewed-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Russell King <rmk+kernel@armlinux.org.uk> [hch: removed the dma_supported() implementation that isn't required anymore] Signed-off-by: Christoph Hellwig <hch@lst.de>
2017-05-24 18:24:30 +08:00
* - MMU/MPU is off
* - cpu is v7m w/o cache support
* - device is coherent
* otherwise arm_nommu_dma_ops is used.
*
* arm_nommu_dma_ops rely on consistent DMA memory (please, refer to
* [1] on how to declare such memory).
*
* [1] Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt
*/
static void *arm_nommu_dma_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp,
unsigned long attrs)
{
void *ret;
ARM: NOMMU: Introduce dma operations for noMMU R/M classes of cpus can have memory covered by MPU which in turn might configure RAM as Normal i.e. bufferable and cacheable. It breaks dma_alloc_coherent() and friends, since data can stuck in caches now or be buffered. This patch factors out DMA support for NOMMU configuration into separate entity which provides dedicated dma_ops. We have to handle there several cases: - configurations with MMU/MPU setup - configurations without MMU/MPU setup - special case for M-class, since caches and MPU there are optional In general we rely on default DMA area for coherent allocations or/and per-device memory reserves suitable for coherent DMA, so if such regions are set coherent allocations go from there. In case MMU/MPU was not setup we fallback to normal page allocator for DMA memory allocation. In case we run M-class cpus, for configuration without cache support (like Cortex-M3/M4) dma operations are forced to be coherent and wired with dma-noop (such decision is made based on cacheid global variable); however, if caches are detected there and no DMA coherent region is given (either default or per-device), dma is disallowed even MPU is not set - it is because M-class implement system memory map which defines part of address space as Normal memory. Reported-by: Alexandre Torgue <alexandre.torgue@st.com> Reported-by: Andras Szemzo <sza@esh.hu> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Tested-by: Andras Szemzo <sza@esh.hu> Tested-by: Alexandre TORGUE <alexandre.torgue@st.com> Reviewed-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Russell King <rmk+kernel@armlinux.org.uk> [hch: removed the dma_supported() implementation that isn't required anymore] Signed-off-by: Christoph Hellwig <hch@lst.de>
2017-05-24 18:24:30 +08:00
/*
* Try generic allocator first if we are advertised that
* consistency is not required.
*/
if (attrs & DMA_ATTR_NON_CONSISTENT)
return dma_direct_alloc_pages(dev, size, dma_handle, gfp,
attrs);
ret = dma_alloc_from_global_coherent(size, dma_handle);
/*
* dma_alloc_from_global_coherent() may fail because:
*
ARM: NOMMU: Introduce dma operations for noMMU R/M classes of cpus can have memory covered by MPU which in turn might configure RAM as Normal i.e. bufferable and cacheable. It breaks dma_alloc_coherent() and friends, since data can stuck in caches now or be buffered. This patch factors out DMA support for NOMMU configuration into separate entity which provides dedicated dma_ops. We have to handle there several cases: - configurations with MMU/MPU setup - configurations without MMU/MPU setup - special case for M-class, since caches and MPU there are optional In general we rely on default DMA area for coherent allocations or/and per-device memory reserves suitable for coherent DMA, so if such regions are set coherent allocations go from there. In case MMU/MPU was not setup we fallback to normal page allocator for DMA memory allocation. In case we run M-class cpus, for configuration without cache support (like Cortex-M3/M4) dma operations are forced to be coherent and wired with dma-noop (such decision is made based on cacheid global variable); however, if caches are detected there and no DMA coherent region is given (either default or per-device), dma is disallowed even MPU is not set - it is because M-class implement system memory map which defines part of address space as Normal memory. Reported-by: Alexandre Torgue <alexandre.torgue@st.com> Reported-by: Andras Szemzo <sza@esh.hu> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Tested-by: Andras Szemzo <sza@esh.hu> Tested-by: Alexandre TORGUE <alexandre.torgue@st.com> Reviewed-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Russell King <rmk+kernel@armlinux.org.uk> [hch: removed the dma_supported() implementation that isn't required anymore] Signed-off-by: Christoph Hellwig <hch@lst.de>
2017-05-24 18:24:30 +08:00
* - no consistent DMA region has been defined, so we can't
* continue.
* - there is no space left in consistent DMA region, so we
* only can fallback to generic allocator if we are
* advertised that consistency is not required.
*/
WARN_ON_ONCE(ret == NULL);
return ret;
ARM: NOMMU: Introduce dma operations for noMMU R/M classes of cpus can have memory covered by MPU which in turn might configure RAM as Normal i.e. bufferable and cacheable. It breaks dma_alloc_coherent() and friends, since data can stuck in caches now or be buffered. This patch factors out DMA support for NOMMU configuration into separate entity which provides dedicated dma_ops. We have to handle there several cases: - configurations with MMU/MPU setup - configurations without MMU/MPU setup - special case for M-class, since caches and MPU there are optional In general we rely on default DMA area for coherent allocations or/and per-device memory reserves suitable for coherent DMA, so if such regions are set coherent allocations go from there. In case MMU/MPU was not setup we fallback to normal page allocator for DMA memory allocation. In case we run M-class cpus, for configuration without cache support (like Cortex-M3/M4) dma operations are forced to be coherent and wired with dma-noop (such decision is made based on cacheid global variable); however, if caches are detected there and no DMA coherent region is given (either default or per-device), dma is disallowed even MPU is not set - it is because M-class implement system memory map which defines part of address space as Normal memory. Reported-by: Alexandre Torgue <alexandre.torgue@st.com> Reported-by: Andras Szemzo <sza@esh.hu> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Tested-by: Andras Szemzo <sza@esh.hu> Tested-by: Alexandre TORGUE <alexandre.torgue@st.com> Reviewed-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Russell King <rmk+kernel@armlinux.org.uk> [hch: removed the dma_supported() implementation that isn't required anymore] Signed-off-by: Christoph Hellwig <hch@lst.de>
2017-05-24 18:24:30 +08:00
}
static void arm_nommu_dma_free(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_addr,
unsigned long attrs)
{
if (attrs & DMA_ATTR_NON_CONSISTENT) {
dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
} else {
int ret = dma_release_from_global_coherent(get_order(size),
cpu_addr);
WARN_ON_ONCE(ret == 0);
}
ARM: NOMMU: Introduce dma operations for noMMU R/M classes of cpus can have memory covered by MPU which in turn might configure RAM as Normal i.e. bufferable and cacheable. It breaks dma_alloc_coherent() and friends, since data can stuck in caches now or be buffered. This patch factors out DMA support for NOMMU configuration into separate entity which provides dedicated dma_ops. We have to handle there several cases: - configurations with MMU/MPU setup - configurations without MMU/MPU setup - special case for M-class, since caches and MPU there are optional In general we rely on default DMA area for coherent allocations or/and per-device memory reserves suitable for coherent DMA, so if such regions are set coherent allocations go from there. In case MMU/MPU was not setup we fallback to normal page allocator for DMA memory allocation. In case we run M-class cpus, for configuration without cache support (like Cortex-M3/M4) dma operations are forced to be coherent and wired with dma-noop (such decision is made based on cacheid global variable); however, if caches are detected there and no DMA coherent region is given (either default or per-device), dma is disallowed even MPU is not set - it is because M-class implement system memory map which defines part of address space as Normal memory. Reported-by: Alexandre Torgue <alexandre.torgue@st.com> Reported-by: Andras Szemzo <sza@esh.hu> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Tested-by: Andras Szemzo <sza@esh.hu> Tested-by: Alexandre TORGUE <alexandre.torgue@st.com> Reviewed-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Russell King <rmk+kernel@armlinux.org.uk> [hch: removed the dma_supported() implementation that isn't required anymore] Signed-off-by: Christoph Hellwig <hch@lst.de>
2017-05-24 18:24:30 +08:00
return;
}
static int arm_nommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
int ret;
if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
return ret;
return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
}
ARM: NOMMU: Introduce dma operations for noMMU R/M classes of cpus can have memory covered by MPU which in turn might configure RAM as Normal i.e. bufferable and cacheable. It breaks dma_alloc_coherent() and friends, since data can stuck in caches now or be buffered. This patch factors out DMA support for NOMMU configuration into separate entity which provides dedicated dma_ops. We have to handle there several cases: - configurations with MMU/MPU setup - configurations without MMU/MPU setup - special case for M-class, since caches and MPU there are optional In general we rely on default DMA area for coherent allocations or/and per-device memory reserves suitable for coherent DMA, so if such regions are set coherent allocations go from there. In case MMU/MPU was not setup we fallback to normal page allocator for DMA memory allocation. In case we run M-class cpus, for configuration without cache support (like Cortex-M3/M4) dma operations are forced to be coherent and wired with dma-noop (such decision is made based on cacheid global variable); however, if caches are detected there and no DMA coherent region is given (either default or per-device), dma is disallowed even MPU is not set - it is because M-class implement system memory map which defines part of address space as Normal memory. Reported-by: Alexandre Torgue <alexandre.torgue@st.com> Reported-by: Andras Szemzo <sza@esh.hu> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Tested-by: Andras Szemzo <sza@esh.hu> Tested-by: Alexandre TORGUE <alexandre.torgue@st.com> Reviewed-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Russell King <rmk+kernel@armlinux.org.uk> [hch: removed the dma_supported() implementation that isn't required anymore] Signed-off-by: Christoph Hellwig <hch@lst.de>
2017-05-24 18:24:30 +08:00
static void __dma_page_cpu_to_dev(phys_addr_t paddr, size_t size,
enum dma_data_direction dir)
{
dmac_map_area(__va(paddr), size, dir);
if (dir == DMA_FROM_DEVICE)
outer_inv_range(paddr, paddr + size);
else
outer_clean_range(paddr, paddr + size);
}
static void __dma_page_dev_to_cpu(phys_addr_t paddr, size_t size,
enum dma_data_direction dir)
{
if (dir != DMA_TO_DEVICE) {
outer_inv_range(paddr, paddr + size);
dmac_unmap_area(__va(paddr), size, dir);
}
}
static dma_addr_t arm_nommu_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
dma_addr_t handle = page_to_phys(page) + offset;
__dma_page_cpu_to_dev(handle, size, dir);
return handle;
}
static void arm_nommu_dma_unmap_page(struct device *dev, dma_addr_t handle,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
__dma_page_dev_to_cpu(handle, size, dir);
}
static int arm_nommu_dma_map_sg(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir,
unsigned long attrs)
{
int i;
struct scatterlist *sg;
for_each_sg(sgl, sg, nents, i) {
sg_dma_address(sg) = sg_phys(sg);
sg_dma_len(sg) = sg->length;
__dma_page_cpu_to_dev(sg_dma_address(sg), sg_dma_len(sg), dir);
}
return nents;
}
static void arm_nommu_dma_unmap_sg(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir,
unsigned long attrs)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i)
__dma_page_dev_to_cpu(sg_dma_address(sg), sg_dma_len(sg), dir);
}
static void arm_nommu_dma_sync_single_for_device(struct device *dev,
dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
__dma_page_cpu_to_dev(handle, size, dir);
}
static void arm_nommu_dma_sync_single_for_cpu(struct device *dev,
dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
__dma_page_cpu_to_dev(handle, size, dir);
}
static void arm_nommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i)
__dma_page_cpu_to_dev(sg_dma_address(sg), sg_dma_len(sg), dir);
}
static void arm_nommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i)
__dma_page_dev_to_cpu(sg_dma_address(sg), sg_dma_len(sg), dir);
}
const struct dma_map_ops arm_nommu_dma_ops = {
.alloc = arm_nommu_dma_alloc,
.free = arm_nommu_dma_free,
.mmap = arm_nommu_dma_mmap,
ARM: NOMMU: Introduce dma operations for noMMU R/M classes of cpus can have memory covered by MPU which in turn might configure RAM as Normal i.e. bufferable and cacheable. It breaks dma_alloc_coherent() and friends, since data can stuck in caches now or be buffered. This patch factors out DMA support for NOMMU configuration into separate entity which provides dedicated dma_ops. We have to handle there several cases: - configurations with MMU/MPU setup - configurations without MMU/MPU setup - special case for M-class, since caches and MPU there are optional In general we rely on default DMA area for coherent allocations or/and per-device memory reserves suitable for coherent DMA, so if such regions are set coherent allocations go from there. In case MMU/MPU was not setup we fallback to normal page allocator for DMA memory allocation. In case we run M-class cpus, for configuration without cache support (like Cortex-M3/M4) dma operations are forced to be coherent and wired with dma-noop (such decision is made based on cacheid global variable); however, if caches are detected there and no DMA coherent region is given (either default or per-device), dma is disallowed even MPU is not set - it is because M-class implement system memory map which defines part of address space as Normal memory. Reported-by: Alexandre Torgue <alexandre.torgue@st.com> Reported-by: Andras Szemzo <sza@esh.hu> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Tested-by: Andras Szemzo <sza@esh.hu> Tested-by: Alexandre TORGUE <alexandre.torgue@st.com> Reviewed-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Russell King <rmk+kernel@armlinux.org.uk> [hch: removed the dma_supported() implementation that isn't required anymore] Signed-off-by: Christoph Hellwig <hch@lst.de>
2017-05-24 18:24:30 +08:00
.map_page = arm_nommu_dma_map_page,
.unmap_page = arm_nommu_dma_unmap_page,
.map_sg = arm_nommu_dma_map_sg,
.unmap_sg = arm_nommu_dma_unmap_sg,
.sync_single_for_device = arm_nommu_dma_sync_single_for_device,
.sync_single_for_cpu = arm_nommu_dma_sync_single_for_cpu,
.sync_sg_for_device = arm_nommu_dma_sync_sg_for_device,
.sync_sg_for_cpu = arm_nommu_dma_sync_sg_for_cpu,
};
EXPORT_SYMBOL(arm_nommu_dma_ops);
static const struct dma_map_ops *arm_nommu_get_dma_map_ops(bool coherent)
{
return coherent ? &dma_direct_ops : &arm_nommu_dma_ops;
ARM: NOMMU: Introduce dma operations for noMMU R/M classes of cpus can have memory covered by MPU which in turn might configure RAM as Normal i.e. bufferable and cacheable. It breaks dma_alloc_coherent() and friends, since data can stuck in caches now or be buffered. This patch factors out DMA support for NOMMU configuration into separate entity which provides dedicated dma_ops. We have to handle there several cases: - configurations with MMU/MPU setup - configurations without MMU/MPU setup - special case for M-class, since caches and MPU there are optional In general we rely on default DMA area for coherent allocations or/and per-device memory reserves suitable for coherent DMA, so if such regions are set coherent allocations go from there. In case MMU/MPU was not setup we fallback to normal page allocator for DMA memory allocation. In case we run M-class cpus, for configuration without cache support (like Cortex-M3/M4) dma operations are forced to be coherent and wired with dma-noop (such decision is made based on cacheid global variable); however, if caches are detected there and no DMA coherent region is given (either default or per-device), dma is disallowed even MPU is not set - it is because M-class implement system memory map which defines part of address space as Normal memory. Reported-by: Alexandre Torgue <alexandre.torgue@st.com> Reported-by: Andras Szemzo <sza@esh.hu> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Tested-by: Andras Szemzo <sza@esh.hu> Tested-by: Alexandre TORGUE <alexandre.torgue@st.com> Reviewed-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Russell King <rmk+kernel@armlinux.org.uk> [hch: removed the dma_supported() implementation that isn't required anymore] Signed-off-by: Christoph Hellwig <hch@lst.de>
2017-05-24 18:24:30 +08:00
}
void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
const struct iommu_ops *iommu, bool coherent)
{
const struct dma_map_ops *dma_ops;
if (IS_ENABLED(CONFIG_CPU_V7M)) {
/*
* Cache support for v7m is optional, so can be treated as
* coherent if no cache has been detected. Note that it is not
* enough to check if MPU is in use or not since in absense of
* MPU system memory map is used.
*/
dev->archdata.dma_coherent = (cacheid) ? coherent : true;
} else {
/*
* Assume coherent DMA in case MMU/MPU has not been set up.
*/
dev->archdata.dma_coherent = (get_cr() & CR_M) ? coherent : true;
}
dma_ops = arm_nommu_get_dma_map_ops(dev->archdata.dma_coherent);
set_dma_ops(dev, dma_ops);
}