OpenCloudOS-Kernel/sound/soc/davinci/davinci-mcasp.c

1964 lines
52 KiB
C
Raw Normal View History

/*
* ALSA SoC McASP Audio Layer for TI DAVINCI processor
*
* Multi-channel Audio Serial Port Driver
*
* Author: Nirmal Pandey <n-pandey@ti.com>,
* Suresh Rajashekara <suresh.r@ti.com>
* Steve Chen <schen@.mvista.com>
*
* Copyright: (C) 2009 MontaVista Software, Inc., <source@mvista.com>
* Copyright: (C) 2009 Texas Instruments, India
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/of_device.h>
#include <linux/platform_data/davinci_asp.h>
#include <linux/math64.h>
#include <sound/asoundef.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
#include <sound/dmaengine_pcm.h>
#include <sound/omap-pcm.h>
#include "edma-pcm.h"
#include "davinci-mcasp.h"
#define MCASP_MAX_AFIFO_DEPTH 64
static u32 context_regs[] = {
DAVINCI_MCASP_TXFMCTL_REG,
DAVINCI_MCASP_RXFMCTL_REG,
DAVINCI_MCASP_TXFMT_REG,
DAVINCI_MCASP_RXFMT_REG,
DAVINCI_MCASP_ACLKXCTL_REG,
DAVINCI_MCASP_ACLKRCTL_REG,
DAVINCI_MCASP_AHCLKXCTL_REG,
DAVINCI_MCASP_AHCLKRCTL_REG,
DAVINCI_MCASP_PDIR_REG,
DAVINCI_MCASP_RXMASK_REG,
DAVINCI_MCASP_TXMASK_REG,
DAVINCI_MCASP_RXTDM_REG,
DAVINCI_MCASP_TXTDM_REG,
};
struct davinci_mcasp_context {
u32 config_regs[ARRAY_SIZE(context_regs)];
u32 afifo_regs[2]; /* for read/write fifo control registers */
u32 *xrsr_regs; /* for serializer configuration */
bool pm_state;
};
struct davinci_mcasp_ruledata {
struct davinci_mcasp *mcasp;
int serializers;
};
struct davinci_mcasp {
struct snd_dmaengine_dai_dma_data dma_data[2];
void __iomem *base;
u32 fifo_base;
struct device *dev;
struct snd_pcm_substream *substreams[2];
/* McASP specific data */
int tdm_slots;
u32 tdm_mask[2];
int slot_width;
u8 op_mode;
u8 num_serializer;
u8 *serial_dir;
u8 version;
u8 bclk_div;
int streams;
u32 irq_request[2];
int dma_request[2];
int sysclk_freq;
bool bclk_master;
/* McASP FIFO related */
u8 txnumevt;
u8 rxnumevt;
bool dat_port;
/* Used for comstraint setting on the second stream */
u32 channels;
#ifdef CONFIG_PM_SLEEP
struct davinci_mcasp_context context;
#endif
struct davinci_mcasp_ruledata ruledata[2];
struct snd_pcm_hw_constraint_list chconstr[2];
};
static inline void mcasp_set_bits(struct davinci_mcasp *mcasp, u32 offset,
u32 val)
{
void __iomem *reg = mcasp->base + offset;
__raw_writel(__raw_readl(reg) | val, reg);
}
static inline void mcasp_clr_bits(struct davinci_mcasp *mcasp, u32 offset,
u32 val)
{
void __iomem *reg = mcasp->base + offset;
__raw_writel((__raw_readl(reg) & ~(val)), reg);
}
static inline void mcasp_mod_bits(struct davinci_mcasp *mcasp, u32 offset,
u32 val, u32 mask)
{
void __iomem *reg = mcasp->base + offset;
__raw_writel((__raw_readl(reg) & ~mask) | val, reg);
}
static inline void mcasp_set_reg(struct davinci_mcasp *mcasp, u32 offset,
u32 val)
{
__raw_writel(val, mcasp->base + offset);
}
static inline u32 mcasp_get_reg(struct davinci_mcasp *mcasp, u32 offset)
{
return (u32)__raw_readl(mcasp->base + offset);
}
static void mcasp_set_ctl_reg(struct davinci_mcasp *mcasp, u32 ctl_reg, u32 val)
{
int i = 0;
mcasp_set_bits(mcasp, ctl_reg, val);
/* programming GBLCTL needs to read back from GBLCTL and verfiy */
/* loop count is to avoid the lock-up */
for (i = 0; i < 1000; i++) {
if ((mcasp_get_reg(mcasp, ctl_reg) & val) == val)
break;
}
if (i == 1000 && ((mcasp_get_reg(mcasp, ctl_reg) & val) != val))
printk(KERN_ERR "GBLCTL write error\n");
}
static bool mcasp_is_synchronous(struct davinci_mcasp *mcasp)
{
u32 rxfmctl = mcasp_get_reg(mcasp, DAVINCI_MCASP_RXFMCTL_REG);
u32 aclkxctl = mcasp_get_reg(mcasp, DAVINCI_MCASP_ACLKXCTL_REG);
return !(aclkxctl & TX_ASYNC) && rxfmctl & AFSRE;
}
static void mcasp_start_rx(struct davinci_mcasp *mcasp)
{
if (mcasp->rxnumevt) { /* enable FIFO */
u32 reg = mcasp->fifo_base + MCASP_RFIFOCTL_OFFSET;
mcasp_clr_bits(mcasp, reg, FIFO_ENABLE);
mcasp_set_bits(mcasp, reg, FIFO_ENABLE);
}
/* Start clocks */
mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLR_REG, RXHCLKRST);
mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLR_REG, RXCLKRST);
/*
* When ASYNC == 0 the transmit and receive sections operate
* synchronously from the transmit clock and frame sync. We need to make
* sure that the TX signlas are enabled when starting reception.
*/
if (mcasp_is_synchronous(mcasp)) {
mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXHCLKRST);
mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXCLKRST);
}
/* Activate serializer(s) */
mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLR_REG, RXSERCLR);
/* Release RX state machine */
mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLR_REG, RXSMRST);
/* Release Frame Sync generator */
mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLR_REG, RXFSRST);
if (mcasp_is_synchronous(mcasp))
mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXFSRST);
/* enable receive IRQs */
mcasp_set_bits(mcasp, DAVINCI_MCASP_EVTCTLR_REG,
mcasp->irq_request[SNDRV_PCM_STREAM_CAPTURE]);
}
static void mcasp_start_tx(struct davinci_mcasp *mcasp)
{
u32 cnt;
if (mcasp->txnumevt) { /* enable FIFO */
u32 reg = mcasp->fifo_base + MCASP_WFIFOCTL_OFFSET;
mcasp_clr_bits(mcasp, reg, FIFO_ENABLE);
mcasp_set_bits(mcasp, reg, FIFO_ENABLE);
}
/* Start clocks */
mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXHCLKRST);
mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXCLKRST);
/* Activate serializer(s) */
mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXSERCLR);
/* wait for XDATA to be cleared */
cnt = 0;
while (!(mcasp_get_reg(mcasp, DAVINCI_MCASP_TXSTAT_REG) &
~XRDATA) && (cnt < 100000))
cnt++;
/* Release TX state machine */
mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXSMRST);
/* Release Frame Sync generator */
mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXFSRST);
/* enable transmit IRQs */
mcasp_set_bits(mcasp, DAVINCI_MCASP_EVTCTLX_REG,
mcasp->irq_request[SNDRV_PCM_STREAM_PLAYBACK]);
}
static void davinci_mcasp_start(struct davinci_mcasp *mcasp, int stream)
{
mcasp->streams++;
if (stream == SNDRV_PCM_STREAM_PLAYBACK)
mcasp_start_tx(mcasp);
else
mcasp_start_rx(mcasp);
}
static void mcasp_stop_rx(struct davinci_mcasp *mcasp)
{
/* disable IRQ sources */
mcasp_clr_bits(mcasp, DAVINCI_MCASP_EVTCTLR_REG,
mcasp->irq_request[SNDRV_PCM_STREAM_CAPTURE]);
/*
* In synchronous mode stop the TX clocks if no other stream is
* running
*/
if (mcasp_is_synchronous(mcasp) && !mcasp->streams)
mcasp_set_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, 0);
mcasp_set_reg(mcasp, DAVINCI_MCASP_GBLCTLR_REG, 0);
mcasp_set_reg(mcasp, DAVINCI_MCASP_RXSTAT_REG, 0xFFFFFFFF);
if (mcasp->rxnumevt) { /* disable FIFO */
u32 reg = mcasp->fifo_base + MCASP_RFIFOCTL_OFFSET;
mcasp_clr_bits(mcasp, reg, FIFO_ENABLE);
}
}
static void mcasp_stop_tx(struct davinci_mcasp *mcasp)
{
u32 val = 0;
/* disable IRQ sources */
mcasp_clr_bits(mcasp, DAVINCI_MCASP_EVTCTLX_REG,
mcasp->irq_request[SNDRV_PCM_STREAM_PLAYBACK]);
/*
* In synchronous mode keep TX clocks running if the capture stream is
* still running.
*/
if (mcasp_is_synchronous(mcasp) && mcasp->streams)
val = TXHCLKRST | TXCLKRST | TXFSRST;
mcasp_set_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, val);
mcasp_set_reg(mcasp, DAVINCI_MCASP_TXSTAT_REG, 0xFFFFFFFF);
if (mcasp->txnumevt) { /* disable FIFO */
u32 reg = mcasp->fifo_base + MCASP_WFIFOCTL_OFFSET;
mcasp_clr_bits(mcasp, reg, FIFO_ENABLE);
}
}
static void davinci_mcasp_stop(struct davinci_mcasp *mcasp, int stream)
{
mcasp->streams--;
if (stream == SNDRV_PCM_STREAM_PLAYBACK)
mcasp_stop_tx(mcasp);
else
mcasp_stop_rx(mcasp);
}
static irqreturn_t davinci_mcasp_tx_irq_handler(int irq, void *data)
{
struct davinci_mcasp *mcasp = (struct davinci_mcasp *)data;
struct snd_pcm_substream *substream;
u32 irq_mask = mcasp->irq_request[SNDRV_PCM_STREAM_PLAYBACK];
u32 handled_mask = 0;
u32 stat;
stat = mcasp_get_reg(mcasp, DAVINCI_MCASP_TXSTAT_REG);
if (stat & XUNDRN & irq_mask) {
dev_warn(mcasp->dev, "Transmit buffer underflow\n");
handled_mask |= XUNDRN;
substream = mcasp->substreams[SNDRV_PCM_STREAM_PLAYBACK];
if (substream) {
snd_pcm_stream_lock_irq(substream);
if (snd_pcm_running(substream))
snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
snd_pcm_stream_unlock_irq(substream);
}
}
if (!handled_mask)
dev_warn(mcasp->dev, "unhandled tx event. txstat: 0x%08x\n",
stat);
if (stat & XRERR)
handled_mask |= XRERR;
/* Ack the handled event only */
mcasp_set_reg(mcasp, DAVINCI_MCASP_TXSTAT_REG, handled_mask);
return IRQ_RETVAL(handled_mask);
}
static irqreturn_t davinci_mcasp_rx_irq_handler(int irq, void *data)
{
struct davinci_mcasp *mcasp = (struct davinci_mcasp *)data;
struct snd_pcm_substream *substream;
u32 irq_mask = mcasp->irq_request[SNDRV_PCM_STREAM_CAPTURE];
u32 handled_mask = 0;
u32 stat;
stat = mcasp_get_reg(mcasp, DAVINCI_MCASP_RXSTAT_REG);
if (stat & ROVRN & irq_mask) {
dev_warn(mcasp->dev, "Receive buffer overflow\n");
handled_mask |= ROVRN;
substream = mcasp->substreams[SNDRV_PCM_STREAM_CAPTURE];
if (substream) {
snd_pcm_stream_lock_irq(substream);
if (snd_pcm_running(substream))
snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
snd_pcm_stream_unlock_irq(substream);
}
}
if (!handled_mask)
dev_warn(mcasp->dev, "unhandled rx event. rxstat: 0x%08x\n",
stat);
if (stat & XRERR)
handled_mask |= XRERR;
/* Ack the handled event only */
mcasp_set_reg(mcasp, DAVINCI_MCASP_RXSTAT_REG, handled_mask);
return IRQ_RETVAL(handled_mask);
}
static irqreturn_t davinci_mcasp_common_irq_handler(int irq, void *data)
{
struct davinci_mcasp *mcasp = (struct davinci_mcasp *)data;
irqreturn_t ret = IRQ_NONE;
if (mcasp->substreams[SNDRV_PCM_STREAM_PLAYBACK])
ret = davinci_mcasp_tx_irq_handler(irq, data);
if (mcasp->substreams[SNDRV_PCM_STREAM_CAPTURE])
ret |= davinci_mcasp_rx_irq_handler(irq, data);
return ret;
}
static int davinci_mcasp_set_dai_fmt(struct snd_soc_dai *cpu_dai,
unsigned int fmt)
{
struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(cpu_dai);
int ret = 0;
u32 data_delay;
bool fs_pol_rising;
bool inv_fs = false;
pm_runtime_get_sync(mcasp->dev);
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_DSP_A:
mcasp_clr_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXDUR);
mcasp_clr_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, FSRDUR);
/* 1st data bit occur one ACLK cycle after the frame sync */
data_delay = 1;
break;
case SND_SOC_DAIFMT_DSP_B:
case SND_SOC_DAIFMT_AC97:
mcasp_clr_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXDUR);
mcasp_clr_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, FSRDUR);
/* No delay after FS */
data_delay = 0;
break;
case SND_SOC_DAIFMT_I2S:
/* configure a full-word SYNC pulse (LRCLK) */
mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXDUR);
mcasp_set_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, FSRDUR);
/* 1st data bit occur one ACLK cycle after the frame sync */
data_delay = 1;
/* FS need to be inverted */
inv_fs = true;
break;
case SND_SOC_DAIFMT_LEFT_J:
/* configure a full-word SYNC pulse (LRCLK) */
mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXDUR);
mcasp_set_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, FSRDUR);
/* No delay after FS */
data_delay = 0;
break;
default:
ret = -EINVAL;
goto out;
}
mcasp_mod_bits(mcasp, DAVINCI_MCASP_TXFMT_REG, FSXDLY(data_delay),
FSXDLY(3));
mcasp_mod_bits(mcasp, DAVINCI_MCASP_RXFMT_REG, FSRDLY(data_delay),
FSRDLY(3));
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
/* codec is clock and frame slave */
mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXE);
mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, AFSXE);
mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRE);
mcasp_set_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, AFSRE);
mcasp_set_bits(mcasp, DAVINCI_MCASP_PDIR_REG, ACLKX | ACLKR);
mcasp_set_bits(mcasp, DAVINCI_MCASP_PDIR_REG, AFSX | AFSR);
mcasp->bclk_master = 1;
break;
case SND_SOC_DAIFMT_CBS_CFM:
/* codec is clock slave and frame master */
mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXE);
mcasp_clr_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, AFSXE);
mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRE);
mcasp_clr_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, AFSRE);
mcasp_set_bits(mcasp, DAVINCI_MCASP_PDIR_REG, ACLKX | ACLKR);
mcasp_clr_bits(mcasp, DAVINCI_MCASP_PDIR_REG, AFSX | AFSR);
mcasp->bclk_master = 1;
break;
case SND_SOC_DAIFMT_CBM_CFS:
/* codec is clock master and frame slave */
mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXE);
mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, AFSXE);
mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRE);
mcasp_set_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, AFSRE);
mcasp_clr_bits(mcasp, DAVINCI_MCASP_PDIR_REG, ACLKX | ACLKR);
mcasp_set_bits(mcasp, DAVINCI_MCASP_PDIR_REG, AFSX | AFSR);
mcasp->bclk_master = 0;
break;
case SND_SOC_DAIFMT_CBM_CFM:
/* codec is clock and frame master */
mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXE);
mcasp_clr_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, AFSXE);
mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRE);
mcasp_clr_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, AFSRE);
mcasp_clr_bits(mcasp, DAVINCI_MCASP_PDIR_REG,
ACLKX | AHCLKX | AFSX | ACLKR | AHCLKR | AFSR);
mcasp->bclk_master = 0;
break;
default:
ret = -EINVAL;
goto out;
}
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_IB_NF:
mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXPOL);
mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRPOL);
fs_pol_rising = true;
break;
case SND_SOC_DAIFMT_NB_IF:
mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXPOL);
mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRPOL);
fs_pol_rising = false;
break;
case SND_SOC_DAIFMT_IB_IF:
mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXPOL);
mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRPOL);
fs_pol_rising = false;
break;
case SND_SOC_DAIFMT_NB_NF:
mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXPOL);
mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRPOL);
fs_pol_rising = true;
break;
default:
ret = -EINVAL;
goto out;
}
if (inv_fs)
fs_pol_rising = !fs_pol_rising;
if (fs_pol_rising) {
mcasp_clr_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXPOL);
mcasp_clr_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, FSRPOL);
} else {
mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXPOL);
mcasp_set_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, FSRPOL);
}
out:
pm_runtime_put(mcasp->dev);
return ret;
}
static int __davinci_mcasp_set_clkdiv(struct snd_soc_dai *dai, int div_id,
int div, bool explicit)
{
struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(dai);
pm_runtime_get_sync(mcasp->dev);
switch (div_id) {
case 0: /* MCLK divider */
mcasp_mod_bits(mcasp, DAVINCI_MCASP_AHCLKXCTL_REG,
AHCLKXDIV(div - 1), AHCLKXDIV_MASK);
mcasp_mod_bits(mcasp, DAVINCI_MCASP_AHCLKRCTL_REG,
AHCLKRDIV(div - 1), AHCLKRDIV_MASK);
break;
case 1: /* BCLK divider */
mcasp_mod_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG,
ACLKXDIV(div - 1), ACLKXDIV_MASK);
mcasp_mod_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG,
ACLKRDIV(div - 1), ACLKRDIV_MASK);
if (explicit)
mcasp->bclk_div = div;
break;
case 2: /*
* BCLK/LRCLK ratio descries how many bit-clock cycles
* fit into one frame. The clock ratio is given for a
* full period of data (for I2S format both left and
* right channels), so it has to be divided by number
* of tdm-slots (for I2S - divided by 2).
* Instead of storing this ratio, we calculate a new
* tdm_slot width by dividing the the ratio by the
* number of configured tdm slots.
*/
mcasp->slot_width = div / mcasp->tdm_slots;
if (div % mcasp->tdm_slots)
dev_warn(mcasp->dev,
"%s(): BCLK/LRCLK %d is not divisible by %d tdm slots",
__func__, div, mcasp->tdm_slots);
break;
default:
return -EINVAL;
}
pm_runtime_put(mcasp->dev);
return 0;
}
static int davinci_mcasp_set_clkdiv(struct snd_soc_dai *dai, int div_id,
int div)
{
return __davinci_mcasp_set_clkdiv(dai, div_id, div, 1);
}
static int davinci_mcasp_set_sysclk(struct snd_soc_dai *dai, int clk_id,
unsigned int freq, int dir)
{
struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(dai);
pm_runtime_get_sync(mcasp->dev);
if (dir == SND_SOC_CLOCK_OUT) {
mcasp_set_bits(mcasp, DAVINCI_MCASP_AHCLKXCTL_REG, AHCLKXE);
mcasp_set_bits(mcasp, DAVINCI_MCASP_AHCLKRCTL_REG, AHCLKRE);
mcasp_set_bits(mcasp, DAVINCI_MCASP_PDIR_REG, AHCLKX);
} else {
mcasp_clr_bits(mcasp, DAVINCI_MCASP_AHCLKXCTL_REG, AHCLKXE);
mcasp_clr_bits(mcasp, DAVINCI_MCASP_AHCLKRCTL_REG, AHCLKRE);
mcasp_clr_bits(mcasp, DAVINCI_MCASP_PDIR_REG, AHCLKX);
}
mcasp->sysclk_freq = freq;
pm_runtime_put(mcasp->dev);
return 0;
}
/* All serializers must have equal number of channels */
static int davinci_mcasp_ch_constraint(struct davinci_mcasp *mcasp, int stream,
int serializers)
{
struct snd_pcm_hw_constraint_list *cl = &mcasp->chconstr[stream];
unsigned int *list = (unsigned int *) cl->list;
int slots = mcasp->tdm_slots;
int i, count = 0;
if (mcasp->tdm_mask[stream])
slots = hweight32(mcasp->tdm_mask[stream]);
for (i = 2; i <= slots; i++)
list[count++] = i;
for (i = 2; i <= serializers; i++)
list[count++] = i*slots;
cl->count = count;
return 0;
}
static int davinci_mcasp_set_ch_constraints(struct davinci_mcasp *mcasp)
{
int rx_serializers = 0, tx_serializers = 0, ret, i;
for (i = 0; i < mcasp->num_serializer; i++)
if (mcasp->serial_dir[i] == TX_MODE)
tx_serializers++;
else if (mcasp->serial_dir[i] == RX_MODE)
rx_serializers++;
ret = davinci_mcasp_ch_constraint(mcasp, SNDRV_PCM_STREAM_PLAYBACK,
tx_serializers);
if (ret)
return ret;
ret = davinci_mcasp_ch_constraint(mcasp, SNDRV_PCM_STREAM_CAPTURE,
rx_serializers);
return ret;
}
static int davinci_mcasp_set_tdm_slot(struct snd_soc_dai *dai,
unsigned int tx_mask,
unsigned int rx_mask,
int slots, int slot_width)
{
struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(dai);
dev_dbg(mcasp->dev,
"%s() tx_mask 0x%08x rx_mask 0x%08x slots %d width %d\n",
__func__, tx_mask, rx_mask, slots, slot_width);
if (tx_mask >= (1<<slots) || rx_mask >= (1<<slots)) {
dev_err(mcasp->dev,
"Bad tdm mask tx: 0x%08x rx: 0x%08x slots %d\n",
tx_mask, rx_mask, slots);
return -EINVAL;
}
if (slot_width &&
(slot_width < 8 || slot_width > 32 || slot_width % 4 != 0)) {
dev_err(mcasp->dev, "%s: Unsupported slot_width %d\n",
__func__, slot_width);
return -EINVAL;
}
mcasp->tdm_slots = slots;
mcasp->tdm_mask[SNDRV_PCM_STREAM_PLAYBACK] = rx_mask;
mcasp->tdm_mask[SNDRV_PCM_STREAM_CAPTURE] = tx_mask;
mcasp->slot_width = slot_width;
return davinci_mcasp_set_ch_constraints(mcasp);
}
static int davinci_config_channel_size(struct davinci_mcasp *mcasp,
int sample_width)
{
u32 fmt;
u32 tx_rotate = (sample_width / 4) & 0x7;
u32 mask = (1ULL << sample_width) - 1;
u32 slot_width = sample_width;
/*
* For captured data we should not rotate, inversion and masking is
* enoguh to get the data to the right position:
* Format data from bus after reverse (XRBUF)
* S16_LE: |LSB|MSB|xxx|xxx| |xxx|xxx|MSB|LSB|
* S24_3LE: |LSB|DAT|MSB|xxx| |xxx|MSB|DAT|LSB|
* S24_LE: |LSB|DAT|MSB|xxx| |xxx|MSB|DAT|LSB|
* S32_LE: |LSB|DAT|DAT|MSB| |MSB|DAT|DAT|LSB|
*/
u32 rx_rotate = 0;
/*
* Setting the tdm slot width either with set_clkdiv() or
* set_tdm_slot() allows us to for example send 32 bits per
* channel to the codec, while only 16 of them carry audio
* payload.
*/
if (mcasp->slot_width) {
/*
* When we have more bclk then it is needed for the
* data, we need to use the rotation to move the
* received samples to have correct alignment.
*/
slot_width = mcasp->slot_width;
rx_rotate = (slot_width - sample_width) / 4;
}
/* mapping of the XSSZ bit-field as described in the datasheet */
fmt = (slot_width >> 1) - 1;
if (mcasp->op_mode != DAVINCI_MCASP_DIT_MODE) {
mcasp_mod_bits(mcasp, DAVINCI_MCASP_RXFMT_REG, RXSSZ(fmt),
RXSSZ(0x0F));
mcasp_mod_bits(mcasp, DAVINCI_MCASP_TXFMT_REG, TXSSZ(fmt),
TXSSZ(0x0F));
mcasp_mod_bits(mcasp, DAVINCI_MCASP_TXFMT_REG, TXROT(tx_rotate),
TXROT(7));
mcasp_mod_bits(mcasp, DAVINCI_MCASP_RXFMT_REG, RXROT(rx_rotate),
RXROT(7));
mcasp_set_reg(mcasp, DAVINCI_MCASP_RXMASK_REG, mask);
}
mcasp_set_reg(mcasp, DAVINCI_MCASP_TXMASK_REG, mask);
return 0;
}
static int mcasp_common_hw_param(struct davinci_mcasp *mcasp, int stream,
int period_words, int channels)
{
struct snd_dmaengine_dai_dma_data *dma_data = &mcasp->dma_data[stream];
int i;
u8 tx_ser = 0;
u8 rx_ser = 0;
u8 slots = mcasp->tdm_slots;
u8 max_active_serializers = (channels + slots - 1) / slots;
int active_serializers, numevt;
u32 reg;
/* Default configuration */
if (mcasp->version < MCASP_VERSION_3)
mcasp_set_bits(mcasp, DAVINCI_MCASP_PWREMUMGT_REG, MCASP_SOFT);
/* All PINS as McASP */
mcasp_set_reg(mcasp, DAVINCI_MCASP_PFUNC_REG, 0x00000000);
if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
mcasp_set_reg(mcasp, DAVINCI_MCASP_TXSTAT_REG, 0xFFFFFFFF);
mcasp_clr_bits(mcasp, DAVINCI_MCASP_XEVTCTL_REG, TXDATADMADIS);
} else {
mcasp_set_reg(mcasp, DAVINCI_MCASP_RXSTAT_REG, 0xFFFFFFFF);
mcasp_clr_bits(mcasp, DAVINCI_MCASP_REVTCTL_REG, RXDATADMADIS);
}
for (i = 0; i < mcasp->num_serializer; i++) {
mcasp_set_bits(mcasp, DAVINCI_MCASP_XRSRCTL_REG(i),
mcasp->serial_dir[i]);
if (mcasp->serial_dir[i] == TX_MODE &&
tx_ser < max_active_serializers) {
mcasp_set_bits(mcasp, DAVINCI_MCASP_PDIR_REG, AXR(i));
mcasp_mod_bits(mcasp, DAVINCI_MCASP_XRSRCTL_REG(i),
DISMOD_LOW, DISMOD_MASK);
tx_ser++;
} else if (mcasp->serial_dir[i] == RX_MODE &&
rx_ser < max_active_serializers) {
mcasp_clr_bits(mcasp, DAVINCI_MCASP_PDIR_REG, AXR(i));
rx_ser++;
} else {
mcasp_mod_bits(mcasp, DAVINCI_MCASP_XRSRCTL_REG(i),
SRMOD_INACTIVE, SRMOD_MASK);
}
}
if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
active_serializers = tx_ser;
numevt = mcasp->txnumevt;
reg = mcasp->fifo_base + MCASP_WFIFOCTL_OFFSET;
} else {
active_serializers = rx_ser;
numevt = mcasp->rxnumevt;
reg = mcasp->fifo_base + MCASP_RFIFOCTL_OFFSET;
}
if (active_serializers < max_active_serializers) {
dev_warn(mcasp->dev, "stream has more channels (%d) than are "
"enabled in mcasp (%d)\n", channels,
active_serializers * slots);
return -EINVAL;
}
/* AFIFO is not in use */
if (!numevt) {
/* Configure the burst size for platform drivers */
if (active_serializers > 1) {
/*
* If more than one serializers are in use we have one
* DMA request to provide data for all serializers.
* For example if three serializers are enabled the DMA
* need to transfer three words per DMA request.
*/
dma_data->maxburst = active_serializers;
} else {
dma_data->maxburst = 0;
}
return 0;
}
if (period_words % active_serializers) {
dev_err(mcasp->dev, "Invalid combination of period words and "
"active serializers: %d, %d\n", period_words,
active_serializers);
return -EINVAL;
}
/*
* Calculate the optimal AFIFO depth for platform side:
* The number of words for numevt need to be in steps of active
* serializers.
*/
numevt = (numevt / active_serializers) * active_serializers;
while (period_words % numevt && numevt > 0)
numevt -= active_serializers;
if (numevt <= 0)
numevt = active_serializers;
mcasp_mod_bits(mcasp, reg, active_serializers, NUMDMA_MASK);
mcasp_mod_bits(mcasp, reg, NUMEVT(numevt), NUMEVT_MASK);
/* Configure the burst size for platform drivers */
if (numevt == 1)
numevt = 0;
dma_data->maxburst = numevt;
return 0;
}
static int mcasp_i2s_hw_param(struct davinci_mcasp *mcasp, int stream,
int channels)
{
int i, active_slots;
int total_slots;
int active_serializers;
u32 mask = 0;
u32 busel = 0;
total_slots = mcasp->tdm_slots;
/*
* If more than one serializer is needed, then use them with
* all the specified tdm_slots. Otherwise, one serializer can
* cope with the transaction using just as many slots as there
* are channels in the stream.
*/
if (mcasp->tdm_mask[stream]) {
active_slots = hweight32(mcasp->tdm_mask[stream]);
active_serializers = (channels + active_slots - 1) /
active_slots;
if (active_serializers == 1) {
active_slots = channels;
for (i = 0; i < total_slots; i++) {
if ((1 << i) & mcasp->tdm_mask[stream]) {
mask |= (1 << i);
if (--active_slots <= 0)
break;
}
}
}
} else {
active_serializers = (channels + total_slots - 1) / total_slots;
if (active_serializers == 1)
active_slots = channels;
else
active_slots = total_slots;
for (i = 0; i < active_slots; i++)
mask |= (1 << i);
}
mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, TX_ASYNC);
if (!mcasp->dat_port)
busel = TXSEL;
if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
mcasp_set_reg(mcasp, DAVINCI_MCASP_TXTDM_REG, mask);
mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMT_REG, busel | TXORD);
mcasp_mod_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG,
FSXMOD(total_slots), FSXMOD(0x1FF));
} else if (stream == SNDRV_PCM_STREAM_CAPTURE) {
mcasp_set_reg(mcasp, DAVINCI_MCASP_RXTDM_REG, mask);
mcasp_set_bits(mcasp, DAVINCI_MCASP_RXFMT_REG, busel | RXORD);
mcasp_mod_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG,
FSRMOD(total_slots), FSRMOD(0x1FF));
}
return 0;
}
/* S/PDIF */
static int mcasp_dit_hw_param(struct davinci_mcasp *mcasp,
unsigned int rate)
{
u32 cs_value = 0;
u8 *cs_bytes = (u8*) &cs_value;
/* Set the TX format : 24 bit right rotation, 32 bit slot, Pad 0
and LSB first */
mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMT_REG, TXROT(6) | TXSSZ(15));
/* Set TX frame synch : DIT Mode, 1 bit width, internal, rising edge */
mcasp_set_reg(mcasp, DAVINCI_MCASP_TXFMCTL_REG, AFSXE | FSXMOD(0x180));
/* Set the TX tdm : for all the slots */
mcasp_set_reg(mcasp, DAVINCI_MCASP_TXTDM_REG, 0xFFFFFFFF);
/* Set the TX clock controls : div = 1 and internal */
mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXE | TX_ASYNC);
mcasp_clr_bits(mcasp, DAVINCI_MCASP_XEVTCTL_REG, TXDATADMADIS);
/* Only 44100 and 48000 are valid, both have the same setting */
mcasp_set_bits(mcasp, DAVINCI_MCASP_AHCLKXCTL_REG, AHCLKXDIV(3));
/* Enable the DIT */
mcasp_set_bits(mcasp, DAVINCI_MCASP_TXDITCTL_REG, DITEN);
/* Set S/PDIF channel status bits */
cs_bytes[0] = IEC958_AES0_CON_NOT_COPYRIGHT;
cs_bytes[1] = IEC958_AES1_CON_PCM_CODER;
switch (rate) {
case 22050:
cs_bytes[3] |= IEC958_AES3_CON_FS_22050;
break;
case 24000:
cs_bytes[3] |= IEC958_AES3_CON_FS_24000;
break;
case 32000:
cs_bytes[3] |= IEC958_AES3_CON_FS_32000;
break;
case 44100:
cs_bytes[3] |= IEC958_AES3_CON_FS_44100;
break;
case 48000:
cs_bytes[3] |= IEC958_AES3_CON_FS_48000;
break;
case 88200:
cs_bytes[3] |= IEC958_AES3_CON_FS_88200;
break;
case 96000:
cs_bytes[3] |= IEC958_AES3_CON_FS_96000;
break;
case 176400:
cs_bytes[3] |= IEC958_AES3_CON_FS_176400;
break;
case 192000:
cs_bytes[3] |= IEC958_AES3_CON_FS_192000;
break;
default:
printk(KERN_WARNING "unsupported sampling rate: %d\n", rate);
return -EINVAL;
}
mcasp_set_reg(mcasp, DAVINCI_MCASP_DITCSRA_REG, cs_value);
mcasp_set_reg(mcasp, DAVINCI_MCASP_DITCSRB_REG, cs_value);
return 0;
}
static int davinci_mcasp_calc_clk_div(struct davinci_mcasp *mcasp,
unsigned int bclk_freq,
int *error_ppm)
{
int div = mcasp->sysclk_freq / bclk_freq;
int rem = mcasp->sysclk_freq % bclk_freq;
if (rem != 0) {
if (div == 0 ||
((mcasp->sysclk_freq / div) - bclk_freq) >
(bclk_freq - (mcasp->sysclk_freq / (div+1)))) {
div++;
rem = rem - bclk_freq;
}
}
if (error_ppm)
*error_ppm =
(div*1000000 + (int)div64_long(1000000LL*rem,
(int)bclk_freq))
/div - 1000000;
return div;
}
static int davinci_mcasp_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *cpu_dai)
{
struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(cpu_dai);
int word_length;
int channels = params_channels(params);
int period_size = params_period_size(params);
int ret;
/*
* If mcasp is BCLK master, and a BCLK divider was not provided by
* the machine driver, we need to calculate the ratio.
*/
if (mcasp->bclk_master && mcasp->bclk_div == 0 && mcasp->sysclk_freq) {
int slots = mcasp->tdm_slots;
int rate = params_rate(params);
int sbits = params_width(params);
int ppm, div;
if (mcasp->slot_width)
sbits = mcasp->slot_width;
div = davinci_mcasp_calc_clk_div(mcasp, rate*sbits*slots,
&ppm);
if (ppm)
dev_info(mcasp->dev, "Sample-rate is off by %d PPM\n",
ppm);
__davinci_mcasp_set_clkdiv(cpu_dai, 1, div, 0);
}
ret = mcasp_common_hw_param(mcasp, substream->stream,
period_size * channels, channels);
if (ret)
return ret;
if (mcasp->op_mode == DAVINCI_MCASP_DIT_MODE)
ret = mcasp_dit_hw_param(mcasp, params_rate(params));
else
ret = mcasp_i2s_hw_param(mcasp, substream->stream,
channels);
if (ret)
return ret;
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_U8:
case SNDRV_PCM_FORMAT_S8:
word_length = 8;
break;
case SNDRV_PCM_FORMAT_U16_LE:
case SNDRV_PCM_FORMAT_S16_LE:
word_length = 16;
break;
case SNDRV_PCM_FORMAT_U24_3LE:
case SNDRV_PCM_FORMAT_S24_3LE:
word_length = 24;
break;
case SNDRV_PCM_FORMAT_U24_LE:
case SNDRV_PCM_FORMAT_S24_LE:
word_length = 24;
break;
case SNDRV_PCM_FORMAT_U32_LE:
case SNDRV_PCM_FORMAT_S32_LE:
word_length = 32;
break;
default:
printk(KERN_WARNING "davinci-mcasp: unsupported PCM format");
return -EINVAL;
}
davinci_config_channel_size(mcasp, word_length);
if (mcasp->op_mode == DAVINCI_MCASP_IIS_MODE)
mcasp->channels = channels;
return 0;
}
static int davinci_mcasp_trigger(struct snd_pcm_substream *substream,
int cmd, struct snd_soc_dai *cpu_dai)
{
struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(cpu_dai);
int ret = 0;
switch (cmd) {
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
davinci_mcasp_start(mcasp, substream->stream);
break;
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
davinci_mcasp_stop(mcasp, substream->stream);
break;
default:
ret = -EINVAL;
}
return ret;
}
static const unsigned int davinci_mcasp_dai_rates[] = {
8000, 11025, 16000, 22050, 32000, 44100, 48000, 64000,
88200, 96000, 176400, 192000,
};
#define DAVINCI_MAX_RATE_ERROR_PPM 1000
static int davinci_mcasp_hw_rule_rate(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct davinci_mcasp_ruledata *rd = rule->private;
struct snd_interval *ri =
hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
int sbits = params_width(params);
int slots = rd->mcasp->tdm_slots;
struct snd_interval range;
int i;
if (rd->mcasp->slot_width)
sbits = rd->mcasp->slot_width;
snd_interval_any(&range);
range.empty = 1;
for (i = 0; i < ARRAY_SIZE(davinci_mcasp_dai_rates); i++) {
if (snd_interval_test(ri, davinci_mcasp_dai_rates[i])) {
uint bclk_freq = sbits*slots*
davinci_mcasp_dai_rates[i];
int ppm;
davinci_mcasp_calc_clk_div(rd->mcasp, bclk_freq, &ppm);
if (abs(ppm) < DAVINCI_MAX_RATE_ERROR_PPM) {
if (range.empty) {
range.min = davinci_mcasp_dai_rates[i];
range.empty = 0;
}
range.max = davinci_mcasp_dai_rates[i];
}
}
}
dev_dbg(rd->mcasp->dev,
"Frequencies %d-%d -> %d-%d for %d sbits and %d tdm slots\n",
ri->min, ri->max, range.min, range.max, sbits, slots);
return snd_interval_refine(hw_param_interval(params, rule->var),
&range);
}
static int davinci_mcasp_hw_rule_format(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct davinci_mcasp_ruledata *rd = rule->private;
struct snd_mask *fmt = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
struct snd_mask nfmt;
int rate = params_rate(params);
int slots = rd->mcasp->tdm_slots;
int i, count = 0;
snd_mask_none(&nfmt);
for (i = 0; i < SNDRV_PCM_FORMAT_LAST; i++) {
if (snd_mask_test(fmt, i)) {
uint sbits = snd_pcm_format_width(i);
int ppm;
if (rd->mcasp->slot_width)
sbits = rd->mcasp->slot_width;
davinci_mcasp_calc_clk_div(rd->mcasp, sbits*slots*rate,
&ppm);
if (abs(ppm) < DAVINCI_MAX_RATE_ERROR_PPM) {
snd_mask_set(&nfmt, i);
count++;
}
}
}
dev_dbg(rd->mcasp->dev,
"%d possible sample format for %d Hz and %d tdm slots\n",
count, rate, slots);
return snd_mask_refine(fmt, &nfmt);
}
static int davinci_mcasp_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(cpu_dai);
struct davinci_mcasp_ruledata *ruledata =
&mcasp->ruledata[substream->stream];
u32 max_channels = 0;
int i, dir;
int tdm_slots = mcasp->tdm_slots;
if (mcasp->tdm_mask[substream->stream])
tdm_slots = hweight32(mcasp->tdm_mask[substream->stream]);
mcasp->substreams[substream->stream] = substream;
if (mcasp->op_mode == DAVINCI_MCASP_DIT_MODE)
return 0;
/*
* Limit the maximum allowed channels for the first stream:
* number of serializers for the direction * tdm slots per serializer
*/
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
dir = TX_MODE;
else
dir = RX_MODE;
for (i = 0; i < mcasp->num_serializer; i++) {
if (mcasp->serial_dir[i] == dir)
max_channels++;
}
ruledata->serializers = max_channels;
max_channels *= tdm_slots;
/*
* If the already active stream has less channels than the calculated
* limnit based on the seirializers * tdm_slots, we need to use that as
* a constraint for the second stream.
* Otherwise (first stream or less allowed channels) we use the
* calculated constraint.
*/
if (mcasp->channels && mcasp->channels < max_channels)
max_channels = mcasp->channels;
/*
* But we can always allow channels upto the amount of
* the available tdm_slots.
*/
if (max_channels < tdm_slots)
max_channels = tdm_slots;
snd_pcm_hw_constraint_minmax(substream->runtime,
SNDRV_PCM_HW_PARAM_CHANNELS,
2, max_channels);
snd_pcm_hw_constraint_list(substream->runtime,
0, SNDRV_PCM_HW_PARAM_CHANNELS,
&mcasp->chconstr[substream->stream]);
if (mcasp->slot_width)
snd_pcm_hw_constraint_minmax(substream->runtime,
SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
8, mcasp->slot_width);
/*
* If we rely on implicit BCLK divider setting we should
* set constraints based on what we can provide.
*/
if (mcasp->bclk_master && mcasp->bclk_div == 0 && mcasp->sysclk_freq) {
int ret;
ruledata->mcasp = mcasp;
ret = snd_pcm_hw_rule_add(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_RATE,
davinci_mcasp_hw_rule_rate,
ruledata,
SNDRV_PCM_HW_PARAM_FORMAT, -1);
if (ret)
return ret;
ret = snd_pcm_hw_rule_add(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_FORMAT,
davinci_mcasp_hw_rule_format,
ruledata,
SNDRV_PCM_HW_PARAM_RATE, -1);
if (ret)
return ret;
}
return 0;
}
static void davinci_mcasp_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(cpu_dai);
mcasp->substreams[substream->stream] = NULL;
if (mcasp->op_mode == DAVINCI_MCASP_DIT_MODE)
return;
if (!cpu_dai->active)
mcasp->channels = 0;
}
static const struct snd_soc_dai_ops davinci_mcasp_dai_ops = {
.startup = davinci_mcasp_startup,
.shutdown = davinci_mcasp_shutdown,
.trigger = davinci_mcasp_trigger,
.hw_params = davinci_mcasp_hw_params,
.set_fmt = davinci_mcasp_set_dai_fmt,
.set_clkdiv = davinci_mcasp_set_clkdiv,
.set_sysclk = davinci_mcasp_set_sysclk,
.set_tdm_slot = davinci_mcasp_set_tdm_slot,
};
static int davinci_mcasp_dai_probe(struct snd_soc_dai *dai)
{
struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(dai);
dai->playback_dma_data = &mcasp->dma_data[SNDRV_PCM_STREAM_PLAYBACK];
dai->capture_dma_data = &mcasp->dma_data[SNDRV_PCM_STREAM_CAPTURE];
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int davinci_mcasp_suspend(struct snd_soc_dai *dai)
{
struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(dai);
struct davinci_mcasp_context *context = &mcasp->context;
u32 reg;
int i;
context->pm_state = pm_runtime_active(mcasp->dev);
if (!context->pm_state)
pm_runtime_get_sync(mcasp->dev);
for (i = 0; i < ARRAY_SIZE(context_regs); i++)
context->config_regs[i] = mcasp_get_reg(mcasp, context_regs[i]);
if (mcasp->txnumevt) {
reg = mcasp->fifo_base + MCASP_WFIFOCTL_OFFSET;
context->afifo_regs[0] = mcasp_get_reg(mcasp, reg);
}
if (mcasp->rxnumevt) {
reg = mcasp->fifo_base + MCASP_RFIFOCTL_OFFSET;
context->afifo_regs[1] = mcasp_get_reg(mcasp, reg);
}
for (i = 0; i < mcasp->num_serializer; i++)
context->xrsr_regs[i] = mcasp_get_reg(mcasp,
DAVINCI_MCASP_XRSRCTL_REG(i));
pm_runtime_put_sync(mcasp->dev);
return 0;
}
static int davinci_mcasp_resume(struct snd_soc_dai *dai)
{
struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(dai);
struct davinci_mcasp_context *context = &mcasp->context;
u32 reg;
int i;
pm_runtime_get_sync(mcasp->dev);
for (i = 0; i < ARRAY_SIZE(context_regs); i++)
mcasp_set_reg(mcasp, context_regs[i], context->config_regs[i]);
if (mcasp->txnumevt) {
reg = mcasp->fifo_base + MCASP_WFIFOCTL_OFFSET;
mcasp_set_reg(mcasp, reg, context->afifo_regs[0]);
}
if (mcasp->rxnumevt) {
reg = mcasp->fifo_base + MCASP_RFIFOCTL_OFFSET;
mcasp_set_reg(mcasp, reg, context->afifo_regs[1]);
}
for (i = 0; i < mcasp->num_serializer; i++)
mcasp_set_reg(mcasp, DAVINCI_MCASP_XRSRCTL_REG(i),
context->xrsr_regs[i]);
if (!context->pm_state)
pm_runtime_put_sync(mcasp->dev);
return 0;
}
#else
#define davinci_mcasp_suspend NULL
#define davinci_mcasp_resume NULL
#endif
#define DAVINCI_MCASP_RATES SNDRV_PCM_RATE_8000_192000
#define DAVINCI_MCASP_PCM_FMTS (SNDRV_PCM_FMTBIT_S8 | \
SNDRV_PCM_FMTBIT_U8 | \
SNDRV_PCM_FMTBIT_S16_LE | \
SNDRV_PCM_FMTBIT_U16_LE | \
SNDRV_PCM_FMTBIT_S24_LE | \
SNDRV_PCM_FMTBIT_U24_LE | \
SNDRV_PCM_FMTBIT_S24_3LE | \
SNDRV_PCM_FMTBIT_U24_3LE | \
SNDRV_PCM_FMTBIT_S32_LE | \
SNDRV_PCM_FMTBIT_U32_LE)
ASoC: multi-component - ASoC Multi-Component Support This patch extends the ASoC API to allow sound cards to have more than one CODEC and more than one platform DMA controller. This is achieved by dividing some current ASoC structures that contain both driver data and device data into structures that only either contain device data or driver data. i.e. struct snd_soc_codec ---> struct snd_soc_codec (device data) +-> struct snd_soc_codec_driver (driver data) struct snd_soc_platform ---> struct snd_soc_platform (device data) +-> struct snd_soc_platform_driver (driver data) struct snd_soc_dai ---> struct snd_soc_dai (device data) +-> struct snd_soc_dai_driver (driver data) struct snd_soc_device ---> deleted This now allows ASoC to be more tightly aligned with the Linux driver model and also means that every ASoC codec, platform and (platform) DAI is a kernel device. ASoC component private data is now stored as device private data. The ASoC sound card struct snd_soc_card has also been updated to store lists of it's components rather than a pointer to a codec and platform. The PCM runtime struct soc_pcm_runtime now has pointers to all its components. This patch adds DAPM support for ASoC multi-component and removes struct snd_soc_socdev from DAPM core. All DAPM calls are now made on a card, codec or runtime PCM level basis rather than using snd_soc_socdev. Other notable multi-component changes:- * Stream operations now de-reference less structures. * close_delayed work() now runs on a DAI basis rather than looping all DAIs in a card. * PM suspend()/resume() operations can now handle N CODECs and Platforms per sound card. * Added soc_bind_dai_link() to bind the component devices to the sound card. * Added soc_dai_link_probe() and soc_dai_link_remove() to probe and remove DAI link components. * sysfs entries can now be registered per component per card. * snd_soc_new_pcms() functionailty rolled into dai_link_probe(). * snd_soc_register_codec() now does all the codec list and mutex init. This patch changes the probe() and remove() of the CODEC drivers as follows:- o Make CODEC driver a platform driver o Moved all struct snd_soc_codec list, mutex, etc initialiasation to core. o Removed all static codec pointers (drivers now support > 1 codec dev) o snd_soc_register_pcms() now done by core. o snd_soc_register_dai() folded into snd_soc_register_codec(). CS4270 portions: Acked-by: Timur Tabi <timur@freescale.com> Some TLV320aic23 and Cirrus platform fixes. Signed-off-by: Ryan Mallon <ryan@bluewatersys.com> TI CODEC and OMAP fixes Signed-off-by: Peter Ujfalusi <peter.ujfalusi@nokia.com> Signed-off-by: Janusz Krzysztofik <jkrzyszt@tis.icnet.pl> Signed-off-by: Jarkko Nikula <jhnikula@gmail.com> Samsung platform and misc fixes :- Signed-off-by: Chanwoo Choi <cw00.choi@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Reviewed-by: Jassi Brar <jassi.brar@samsung.com> Signed-off-by: Seungwhan Youn <sw.youn@samsung.com> MPC8610 and PPC fixes. Signed-off-by: Timur Tabi <timur@freescale.com> i.MX fixes and some core fixes. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> J4740 platform fixes:- Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> CC: Tony Lindgren <tony@atomide.com> CC: Nicolas Ferre <nicolas.ferre@atmel.com> CC: Kevin Hilman <khilman@deeprootsystems.com> CC: Sascha Hauer <s.hauer@pengutronix.de> CC: Atsushi Nemoto <anemo@mba.ocn.ne.jp> CC: Kuninori Morimoto <morimoto.kuninori@renesas.com> CC: Daniel Gloeckner <dg@emlix.com> CC: Manuel Lauss <mano@roarinelk.homelinux.net> CC: Mike Frysinger <vapier.adi@gmail.com> CC: Arnaud Patard <apatard@mandriva.com> CC: Wan ZongShun <mcuos.com@gmail.com> Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Signed-off-by: Liam Girdwood <lrg@slimlogic.co.uk>
2010-03-18 04:15:21 +08:00
static struct snd_soc_dai_driver davinci_mcasp_dai[] = {
{
ASoC: multi-component - ASoC Multi-Component Support This patch extends the ASoC API to allow sound cards to have more than one CODEC and more than one platform DMA controller. This is achieved by dividing some current ASoC structures that contain both driver data and device data into structures that only either contain device data or driver data. i.e. struct snd_soc_codec ---> struct snd_soc_codec (device data) +-> struct snd_soc_codec_driver (driver data) struct snd_soc_platform ---> struct snd_soc_platform (device data) +-> struct snd_soc_platform_driver (driver data) struct snd_soc_dai ---> struct snd_soc_dai (device data) +-> struct snd_soc_dai_driver (driver data) struct snd_soc_device ---> deleted This now allows ASoC to be more tightly aligned with the Linux driver model and also means that every ASoC codec, platform and (platform) DAI is a kernel device. ASoC component private data is now stored as device private data. The ASoC sound card struct snd_soc_card has also been updated to store lists of it's components rather than a pointer to a codec and platform. The PCM runtime struct soc_pcm_runtime now has pointers to all its components. This patch adds DAPM support for ASoC multi-component and removes struct snd_soc_socdev from DAPM core. All DAPM calls are now made on a card, codec or runtime PCM level basis rather than using snd_soc_socdev. Other notable multi-component changes:- * Stream operations now de-reference less structures. * close_delayed work() now runs on a DAI basis rather than looping all DAIs in a card. * PM suspend()/resume() operations can now handle N CODECs and Platforms per sound card. * Added soc_bind_dai_link() to bind the component devices to the sound card. * Added soc_dai_link_probe() and soc_dai_link_remove() to probe and remove DAI link components. * sysfs entries can now be registered per component per card. * snd_soc_new_pcms() functionailty rolled into dai_link_probe(). * snd_soc_register_codec() now does all the codec list and mutex init. This patch changes the probe() and remove() of the CODEC drivers as follows:- o Make CODEC driver a platform driver o Moved all struct snd_soc_codec list, mutex, etc initialiasation to core. o Removed all static codec pointers (drivers now support > 1 codec dev) o snd_soc_register_pcms() now done by core. o snd_soc_register_dai() folded into snd_soc_register_codec(). CS4270 portions: Acked-by: Timur Tabi <timur@freescale.com> Some TLV320aic23 and Cirrus platform fixes. Signed-off-by: Ryan Mallon <ryan@bluewatersys.com> TI CODEC and OMAP fixes Signed-off-by: Peter Ujfalusi <peter.ujfalusi@nokia.com> Signed-off-by: Janusz Krzysztofik <jkrzyszt@tis.icnet.pl> Signed-off-by: Jarkko Nikula <jhnikula@gmail.com> Samsung platform and misc fixes :- Signed-off-by: Chanwoo Choi <cw00.choi@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Reviewed-by: Jassi Brar <jassi.brar@samsung.com> Signed-off-by: Seungwhan Youn <sw.youn@samsung.com> MPC8610 and PPC fixes. Signed-off-by: Timur Tabi <timur@freescale.com> i.MX fixes and some core fixes. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> J4740 platform fixes:- Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> CC: Tony Lindgren <tony@atomide.com> CC: Nicolas Ferre <nicolas.ferre@atmel.com> CC: Kevin Hilman <khilman@deeprootsystems.com> CC: Sascha Hauer <s.hauer@pengutronix.de> CC: Atsushi Nemoto <anemo@mba.ocn.ne.jp> CC: Kuninori Morimoto <morimoto.kuninori@renesas.com> CC: Daniel Gloeckner <dg@emlix.com> CC: Manuel Lauss <mano@roarinelk.homelinux.net> CC: Mike Frysinger <vapier.adi@gmail.com> CC: Arnaud Patard <apatard@mandriva.com> CC: Wan ZongShun <mcuos.com@gmail.com> Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Signed-off-by: Liam Girdwood <lrg@slimlogic.co.uk>
2010-03-18 04:15:21 +08:00
.name = "davinci-mcasp.0",
.probe = davinci_mcasp_dai_probe,
.suspend = davinci_mcasp_suspend,
.resume = davinci_mcasp_resume,
.playback = {
.channels_min = 2,
.channels_max = 32 * 16,
.rates = DAVINCI_MCASP_RATES,
.formats = DAVINCI_MCASP_PCM_FMTS,
},
.capture = {
.channels_min = 2,
.channels_max = 32 * 16,
.rates = DAVINCI_MCASP_RATES,
.formats = DAVINCI_MCASP_PCM_FMTS,
},
.ops = &davinci_mcasp_dai_ops,
.symmetric_samplebits = 1,
.symmetric_rates = 1,
},
{
.name = "davinci-mcasp.1",
.probe = davinci_mcasp_dai_probe,
.playback = {
.channels_min = 1,
.channels_max = 384,
.rates = DAVINCI_MCASP_RATES,
.formats = DAVINCI_MCASP_PCM_FMTS,
},
.ops = &davinci_mcasp_dai_ops,
},
};
static const struct snd_soc_component_driver davinci_mcasp_component = {
.name = "davinci-mcasp",
};
/* Some HW specific values and defaults. The rest is filled in from DT. */
static struct davinci_mcasp_pdata dm646x_mcasp_pdata = {
.tx_dma_offset = 0x400,
.rx_dma_offset = 0x400,
.version = MCASP_VERSION_1,
};
static struct davinci_mcasp_pdata da830_mcasp_pdata = {
.tx_dma_offset = 0x2000,
.rx_dma_offset = 0x2000,
.version = MCASP_VERSION_2,
};
static struct davinci_mcasp_pdata am33xx_mcasp_pdata = {
.tx_dma_offset = 0,
.rx_dma_offset = 0,
.version = MCASP_VERSION_3,
};
static struct davinci_mcasp_pdata dra7_mcasp_pdata = {
.tx_dma_offset = 0x200,
.rx_dma_offset = 0x284,
.version = MCASP_VERSION_4,
};
static const struct of_device_id mcasp_dt_ids[] = {
{
.compatible = "ti,dm646x-mcasp-audio",
.data = &dm646x_mcasp_pdata,
},
{
.compatible = "ti,da830-mcasp-audio",
.data = &da830_mcasp_pdata,
},
{
.compatible = "ti,am33xx-mcasp-audio",
.data = &am33xx_mcasp_pdata,
},
{
.compatible = "ti,dra7-mcasp-audio",
.data = &dra7_mcasp_pdata,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mcasp_dt_ids);
static int mcasp_reparent_fck(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct clk *gfclk, *parent_clk;
const char *parent_name;
int ret;
if (!node)
return 0;
parent_name = of_get_property(node, "fck_parent", NULL);
if (!parent_name)
return 0;
gfclk = clk_get(&pdev->dev, "fck");
if (IS_ERR(gfclk)) {
dev_err(&pdev->dev, "failed to get fck\n");
return PTR_ERR(gfclk);
}
parent_clk = clk_get(NULL, parent_name);
if (IS_ERR(parent_clk)) {
dev_err(&pdev->dev, "failed to get parent clock\n");
ret = PTR_ERR(parent_clk);
goto err1;
}
ret = clk_set_parent(gfclk, parent_clk);
if (ret) {
dev_err(&pdev->dev, "failed to reparent fck\n");
goto err2;
}
err2:
clk_put(parent_clk);
err1:
clk_put(gfclk);
return ret;
}
static struct davinci_mcasp_pdata *davinci_mcasp_set_pdata_from_of(
struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct davinci_mcasp_pdata *pdata = NULL;
const struct of_device_id *match =
of_match_device(mcasp_dt_ids, &pdev->dev);
struct of_phandle_args dma_spec;
const u32 *of_serial_dir32;
u32 val;
int i, ret = 0;
if (pdev->dev.platform_data) {
pdata = pdev->dev.platform_data;
return pdata;
} else if (match) {
pdata = (struct davinci_mcasp_pdata*) match->data;
} else {
/* control shouldn't reach here. something is wrong */
ret = -EINVAL;
goto nodata;
}
ret = of_property_read_u32(np, "op-mode", &val);
if (ret >= 0)
pdata->op_mode = val;
ret = of_property_read_u32(np, "tdm-slots", &val);
if (ret >= 0) {
if (val < 2 || val > 32) {
dev_err(&pdev->dev,
"tdm-slots must be in rage [2-32]\n");
ret = -EINVAL;
goto nodata;
}
pdata->tdm_slots = val;
}
of_serial_dir32 = of_get_property(np, "serial-dir", &val);
val /= sizeof(u32);
if (of_serial_dir32) {
u8 *of_serial_dir = devm_kzalloc(&pdev->dev,
(sizeof(*of_serial_dir) * val),
GFP_KERNEL);
if (!of_serial_dir) {
ret = -ENOMEM;
goto nodata;
}
for (i = 0; i < val; i++)
of_serial_dir[i] = be32_to_cpup(&of_serial_dir32[i]);
pdata->num_serializer = val;
pdata->serial_dir = of_serial_dir;
}
ret = of_property_match_string(np, "dma-names", "tx");
if (ret < 0)
goto nodata;
ret = of_parse_phandle_with_args(np, "dmas", "#dma-cells", ret,
&dma_spec);
if (ret < 0)
goto nodata;
pdata->tx_dma_channel = dma_spec.args[0];
/* RX is not valid in DIT mode */
if (pdata->op_mode != DAVINCI_MCASP_DIT_MODE) {
ret = of_property_match_string(np, "dma-names", "rx");
if (ret < 0)
goto nodata;
ret = of_parse_phandle_with_args(np, "dmas", "#dma-cells", ret,
&dma_spec);
if (ret < 0)
goto nodata;
pdata->rx_dma_channel = dma_spec.args[0];
}
ret = of_property_read_u32(np, "tx-num-evt", &val);
if (ret >= 0)
pdata->txnumevt = val;
ret = of_property_read_u32(np, "rx-num-evt", &val);
if (ret >= 0)
pdata->rxnumevt = val;
ret = of_property_read_u32(np, "sram-size-playback", &val);
if (ret >= 0)
pdata->sram_size_playback = val;
ret = of_property_read_u32(np, "sram-size-capture", &val);
if (ret >= 0)
pdata->sram_size_capture = val;
return pdata;
nodata:
if (ret < 0) {
dev_err(&pdev->dev, "Error populating platform data, err %d\n",
ret);
pdata = NULL;
}
return pdata;
}
enum {
PCM_EDMA,
PCM_SDMA,
};
static const char *sdma_prefix = "ti,omap";
static int davinci_mcasp_get_dma_type(struct davinci_mcasp *mcasp)
{
struct dma_chan *chan;
const char *tmp;
int ret = PCM_EDMA;
if (!mcasp->dev->of_node)
return PCM_EDMA;
tmp = mcasp->dma_data[SNDRV_PCM_STREAM_PLAYBACK].filter_data;
chan = dma_request_slave_channel_reason(mcasp->dev, tmp);
if (IS_ERR(chan)) {
if (PTR_ERR(chan) != -EPROBE_DEFER)
dev_err(mcasp->dev,
"Can't verify DMA configuration (%ld)\n",
PTR_ERR(chan));
return PTR_ERR(chan);
}
BUG_ON(!chan->device || !chan->device->dev);
if (chan->device->dev->of_node)
ret = of_property_read_string(chan->device->dev->of_node,
"compatible", &tmp);
else
dev_dbg(mcasp->dev, "DMA controller has no of-node\n");
dma_release_channel(chan);
if (ret)
return ret;
dev_dbg(mcasp->dev, "DMA controller compatible = \"%s\"\n", tmp);
if (!strncmp(tmp, sdma_prefix, strlen(sdma_prefix)))
return PCM_SDMA;
return PCM_EDMA;
}
static int davinci_mcasp_probe(struct platform_device *pdev)
{
struct snd_dmaengine_dai_dma_data *dma_data;
struct resource *mem, *res, *dat;
struct davinci_mcasp_pdata *pdata;
struct davinci_mcasp *mcasp;
char *irq_name;
int *dma;
int irq;
int ret;
if (!pdev->dev.platform_data && !pdev->dev.of_node) {
dev_err(&pdev->dev, "No platform data supplied\n");
return -EINVAL;
}
mcasp = devm_kzalloc(&pdev->dev, sizeof(struct davinci_mcasp),
GFP_KERNEL);
if (!mcasp)
return -ENOMEM;
pdata = davinci_mcasp_set_pdata_from_of(pdev);
if (!pdata) {
dev_err(&pdev->dev, "no platform data\n");
return -EINVAL;
}
mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
if (!mem) {
dev_warn(mcasp->dev,
"\"mpu\" mem resource not found, using index 0\n");
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!mem) {
dev_err(&pdev->dev, "no mem resource?\n");
return -ENODEV;
}
}
mcasp->base = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(mcasp->base))
return PTR_ERR(mcasp->base);
pm_runtime_enable(&pdev->dev);
mcasp->op_mode = pdata->op_mode;
/* sanity check for tdm slots parameter */
if (mcasp->op_mode == DAVINCI_MCASP_IIS_MODE) {
if (pdata->tdm_slots < 2) {
dev_err(&pdev->dev, "invalid tdm slots: %d\n",
pdata->tdm_slots);
mcasp->tdm_slots = 2;
} else if (pdata->tdm_slots > 32) {
dev_err(&pdev->dev, "invalid tdm slots: %d\n",
pdata->tdm_slots);
mcasp->tdm_slots = 32;
} else {
mcasp->tdm_slots = pdata->tdm_slots;
}
}
mcasp->num_serializer = pdata->num_serializer;
#ifdef CONFIG_PM_SLEEP
mcasp->context.xrsr_regs = devm_kzalloc(&pdev->dev,
sizeof(u32) * mcasp->num_serializer,
GFP_KERNEL);
#endif
mcasp->serial_dir = pdata->serial_dir;
mcasp->version = pdata->version;
mcasp->txnumevt = pdata->txnumevt;
mcasp->rxnumevt = pdata->rxnumevt;
mcasp->dev = &pdev->dev;
irq = platform_get_irq_byname(pdev, "common");
if (irq >= 0) {
irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_common",
dev_name(&pdev->dev));
ret = devm_request_threaded_irq(&pdev->dev, irq, NULL,
davinci_mcasp_common_irq_handler,
IRQF_ONESHOT | IRQF_SHARED,
irq_name, mcasp);
if (ret) {
dev_err(&pdev->dev, "common IRQ request failed\n");
goto err;
}
mcasp->irq_request[SNDRV_PCM_STREAM_PLAYBACK] = XUNDRN;
mcasp->irq_request[SNDRV_PCM_STREAM_CAPTURE] = ROVRN;
}
irq = platform_get_irq_byname(pdev, "rx");
if (irq >= 0) {
irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_rx",
dev_name(&pdev->dev));
ret = devm_request_threaded_irq(&pdev->dev, irq, NULL,
davinci_mcasp_rx_irq_handler,
IRQF_ONESHOT, irq_name, mcasp);
if (ret) {
dev_err(&pdev->dev, "RX IRQ request failed\n");
goto err;
}
mcasp->irq_request[SNDRV_PCM_STREAM_CAPTURE] = ROVRN;
}
irq = platform_get_irq_byname(pdev, "tx");
if (irq >= 0) {
irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_tx",
dev_name(&pdev->dev));
ret = devm_request_threaded_irq(&pdev->dev, irq, NULL,
davinci_mcasp_tx_irq_handler,
IRQF_ONESHOT, irq_name, mcasp);
if (ret) {
dev_err(&pdev->dev, "TX IRQ request failed\n");
goto err;
}
mcasp->irq_request[SNDRV_PCM_STREAM_PLAYBACK] = XUNDRN;
}
dat = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dat");
if (dat)
mcasp->dat_port = true;
dma_data = &mcasp->dma_data[SNDRV_PCM_STREAM_PLAYBACK];
if (dat)
dma_data->addr = dat->start;
else
dma_data->addr = mem->start + pdata->tx_dma_offset;
dma = &mcasp->dma_request[SNDRV_PCM_STREAM_PLAYBACK];
res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
if (res)
*dma = res->start;
else
*dma = pdata->tx_dma_channel;
/* dmaengine filter data for DT and non-DT boot */
if (pdev->dev.of_node)
dma_data->filter_data = "tx";
else
dma_data->filter_data = dma;
/* RX is not valid in DIT mode */
if (mcasp->op_mode != DAVINCI_MCASP_DIT_MODE) {
dma_data = &mcasp->dma_data[SNDRV_PCM_STREAM_CAPTURE];
if (dat)
dma_data->addr = dat->start;
else
dma_data->addr = mem->start + pdata->rx_dma_offset;
dma = &mcasp->dma_request[SNDRV_PCM_STREAM_CAPTURE];
res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
if (res)
*dma = res->start;
else
*dma = pdata->rx_dma_channel;
/* dmaengine filter data for DT and non-DT boot */
if (pdev->dev.of_node)
dma_data->filter_data = "rx";
else
dma_data->filter_data = dma;
}
if (mcasp->version < MCASP_VERSION_3) {
mcasp->fifo_base = DAVINCI_MCASP_V2_AFIFO_BASE;
/* dma_params->dma_addr is pointing to the data port address */
mcasp->dat_port = true;
} else {
mcasp->fifo_base = DAVINCI_MCASP_V3_AFIFO_BASE;
}
/* Allocate memory for long enough list for all possible
* scenarios. Maximum number tdm slots is 32 and there cannot
* be more serializers than given in the configuration. The
* serializer directions could be taken into account, but it
* would make code much more complex and save only couple of
* bytes.
*/
mcasp->chconstr[SNDRV_PCM_STREAM_PLAYBACK].list =
devm_kzalloc(mcasp->dev, sizeof(unsigned int) *
(32 + mcasp->num_serializer - 2),
GFP_KERNEL);
mcasp->chconstr[SNDRV_PCM_STREAM_CAPTURE].list =
devm_kzalloc(mcasp->dev, sizeof(unsigned int) *
(32 + mcasp->num_serializer - 2),
GFP_KERNEL);
if (!mcasp->chconstr[SNDRV_PCM_STREAM_PLAYBACK].list ||
!mcasp->chconstr[SNDRV_PCM_STREAM_CAPTURE].list)
return -ENOMEM;
ret = davinci_mcasp_set_ch_constraints(mcasp);
if (ret)
goto err;
dev_set_drvdata(&pdev->dev, mcasp);
mcasp_reparent_fck(pdev);
ret = devm_snd_soc_register_component(&pdev->dev,
&davinci_mcasp_component,
&davinci_mcasp_dai[pdata->op_mode], 1);
if (ret != 0)
goto err;
ret = davinci_mcasp_get_dma_type(mcasp);
switch (ret) {
case PCM_EDMA:
#if IS_BUILTIN(CONFIG_SND_EDMA_SOC) || \
(IS_MODULE(CONFIG_SND_DAVINCI_SOC_MCASP) && \
IS_MODULE(CONFIG_SND_EDMA_SOC))
ret = edma_pcm_platform_register(&pdev->dev);
#else
dev_err(&pdev->dev, "Missing SND_EDMA_SOC\n");
ret = -EINVAL;
goto err;
#endif
break;
case PCM_SDMA:
#if IS_BUILTIN(CONFIG_SND_OMAP_SOC) || \
(IS_MODULE(CONFIG_SND_DAVINCI_SOC_MCASP) && \
IS_MODULE(CONFIG_SND_OMAP_SOC))
ret = omap_pcm_platform_register(&pdev->dev);
#else
dev_err(&pdev->dev, "Missing SND_SDMA_SOC\n");
ret = -EINVAL;
goto err;
#endif
break;
default:
dev_err(&pdev->dev, "No DMA controller found (%d)\n", ret);
case -EPROBE_DEFER:
goto err;
break;
}
if (ret) {
dev_err(&pdev->dev, "register PCM failed: %d\n", ret);
goto err;
}
return 0;
err:
pm_runtime_disable(&pdev->dev);
return ret;
}
static int davinci_mcasp_remove(struct platform_device *pdev)
{
pm_runtime_disable(&pdev->dev);
return 0;
}
static struct platform_driver davinci_mcasp_driver = {
.probe = davinci_mcasp_probe,
.remove = davinci_mcasp_remove,
.driver = {
.name = "davinci-mcasp",
.of_match_table = mcasp_dt_ids,
},
};
module_platform_driver(davinci_mcasp_driver);
MODULE_AUTHOR("Steve Chen");
MODULE_DESCRIPTION("TI DAVINCI McASP SoC Interface");
MODULE_LICENSE("GPL");