OpenCloudOS-Kernel/drivers/gpu/drm/radeon/r600_dpm.c

1372 lines
43 KiB
C
Raw Normal View History

/*
* Copyright 2011 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Alex Deucher
*/
#include <drm/drmP.h>
#include "radeon.h"
#include "radeon_asic.h"
#include "r600d.h"
#include "r600_dpm.h"
#include "atom.h"
const u32 r600_utc[R600_PM_NUMBER_OF_TC] =
{
R600_UTC_DFLT_00,
R600_UTC_DFLT_01,
R600_UTC_DFLT_02,
R600_UTC_DFLT_03,
R600_UTC_DFLT_04,
R600_UTC_DFLT_05,
R600_UTC_DFLT_06,
R600_UTC_DFLT_07,
R600_UTC_DFLT_08,
R600_UTC_DFLT_09,
R600_UTC_DFLT_10,
R600_UTC_DFLT_11,
R600_UTC_DFLT_12,
R600_UTC_DFLT_13,
R600_UTC_DFLT_14,
};
const u32 r600_dtc[R600_PM_NUMBER_OF_TC] =
{
R600_DTC_DFLT_00,
R600_DTC_DFLT_01,
R600_DTC_DFLT_02,
R600_DTC_DFLT_03,
R600_DTC_DFLT_04,
R600_DTC_DFLT_05,
R600_DTC_DFLT_06,
R600_DTC_DFLT_07,
R600_DTC_DFLT_08,
R600_DTC_DFLT_09,
R600_DTC_DFLT_10,
R600_DTC_DFLT_11,
R600_DTC_DFLT_12,
R600_DTC_DFLT_13,
R600_DTC_DFLT_14,
};
void r600_dpm_print_class_info(u32 class, u32 class2)
{
const char *s;
switch (class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) {
case ATOM_PPLIB_CLASSIFICATION_UI_NONE:
default:
s = "none";
break;
case ATOM_PPLIB_CLASSIFICATION_UI_BATTERY:
s = "battery";
break;
case ATOM_PPLIB_CLASSIFICATION_UI_BALANCED:
s = "balanced";
break;
case ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE:
s = "performance";
break;
}
printk("\tui class: %s\n", s);
printk("\tinternal class:");
if (((class & ~ATOM_PPLIB_CLASSIFICATION_UI_MASK) == 0) &&
(class2 == 0))
pr_cont(" none");
else {
if (class & ATOM_PPLIB_CLASSIFICATION_BOOT)
pr_cont(" boot");
if (class & ATOM_PPLIB_CLASSIFICATION_THERMAL)
pr_cont(" thermal");
if (class & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE)
pr_cont(" limited_pwr");
if (class & ATOM_PPLIB_CLASSIFICATION_REST)
pr_cont(" rest");
if (class & ATOM_PPLIB_CLASSIFICATION_FORCED)
pr_cont(" forced");
if (class & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE)
pr_cont(" 3d_perf");
if (class & ATOM_PPLIB_CLASSIFICATION_OVERDRIVETEMPLATE)
pr_cont(" ovrdrv");
if (class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
pr_cont(" uvd");
if (class & ATOM_PPLIB_CLASSIFICATION_3DLOW)
pr_cont(" 3d_low");
if (class & ATOM_PPLIB_CLASSIFICATION_ACPI)
pr_cont(" acpi");
if (class & ATOM_PPLIB_CLASSIFICATION_HD2STATE)
pr_cont(" uvd_hd2");
if (class & ATOM_PPLIB_CLASSIFICATION_HDSTATE)
pr_cont(" uvd_hd");
if (class & ATOM_PPLIB_CLASSIFICATION_SDSTATE)
pr_cont(" uvd_sd");
if (class2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2)
pr_cont(" limited_pwr2");
if (class2 & ATOM_PPLIB_CLASSIFICATION2_ULV)
pr_cont(" ulv");
if (class2 & ATOM_PPLIB_CLASSIFICATION2_MVC)
pr_cont(" uvd_mvc");
}
pr_cont("\n");
}
void r600_dpm_print_cap_info(u32 caps)
{
printk("\tcaps:");
if (caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY)
pr_cont(" single_disp");
if (caps & ATOM_PPLIB_SUPPORTS_VIDEO_PLAYBACK)
pr_cont(" video");
if (caps & ATOM_PPLIB_DISALLOW_ON_DC)
pr_cont(" no_dc");
pr_cont("\n");
}
void r600_dpm_print_ps_status(struct radeon_device *rdev,
struct radeon_ps *rps)
{
printk("\tstatus:");
if (rps == rdev->pm.dpm.current_ps)
pr_cont(" c");
if (rps == rdev->pm.dpm.requested_ps)
pr_cont(" r");
if (rps == rdev->pm.dpm.boot_ps)
pr_cont(" b");
pr_cont("\n");
}
u32 r600_dpm_get_vblank_time(struct radeon_device *rdev)
{
struct drm_device *dev = rdev->ddev;
struct drm_crtc *crtc;
struct radeon_crtc *radeon_crtc;
u32 vblank_in_pixels;
u32 vblank_time_us = 0xffffffff; /* if the displays are off, vblank time is max */
if (rdev->num_crtc && rdev->mode_info.mode_config_initialized) {
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
radeon_crtc = to_radeon_crtc(crtc);
if (crtc->enabled && radeon_crtc->enabled && radeon_crtc->hw_mode.clock) {
vblank_in_pixels =
radeon_crtc->hw_mode.crtc_htotal *
(radeon_crtc->hw_mode.crtc_vblank_end -
radeon_crtc->hw_mode.crtc_vdisplay +
(radeon_crtc->v_border * 2));
vblank_time_us = vblank_in_pixels * 1000 / radeon_crtc->hw_mode.clock;
break;
}
}
}
return vblank_time_us;
}
u32 r600_dpm_get_vrefresh(struct radeon_device *rdev)
{
struct drm_device *dev = rdev->ddev;
struct drm_crtc *crtc;
struct radeon_crtc *radeon_crtc;
u32 vrefresh = 0;
if (rdev->num_crtc && rdev->mode_info.mode_config_initialized) {
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
radeon_crtc = to_radeon_crtc(crtc);
if (crtc->enabled && radeon_crtc->enabled && radeon_crtc->hw_mode.clock) {
vrefresh = drm_mode_vrefresh(&radeon_crtc->hw_mode);
break;
}
}
}
return vrefresh;
}
void r600_calculate_u_and_p(u32 i, u32 r_c, u32 p_b,
u32 *p, u32 *u)
{
u32 b_c = 0;
u32 i_c;
u32 tmp;
i_c = (i * r_c) / 100;
tmp = i_c >> p_b;
while (tmp) {
b_c++;
tmp >>= 1;
}
*u = (b_c + 1) / 2;
*p = i_c / (1 << (2 * (*u)));
}
int r600_calculate_at(u32 t, u32 h, u32 fh, u32 fl, u32 *tl, u32 *th)
{
u32 k, a, ah, al;
u32 t1;
if ((fl == 0) || (fh == 0) || (fl > fh))
return -EINVAL;
k = (100 * fh) / fl;
t1 = (t * (k - 100));
a = (1000 * (100 * h + t1)) / (10000 + (t1 / 100));
a = (a + 5) / 10;
ah = ((a * t) + 5000) / 10000;
al = a - ah;
*th = t - ah;
*tl = t + al;
return 0;
}
void r600_gfx_clockgating_enable(struct radeon_device *rdev, bool enable)
{
int i;
if (enable) {
WREG32_P(SCLK_PWRMGT_CNTL, DYN_GFX_CLK_OFF_EN, ~DYN_GFX_CLK_OFF_EN);
} else {
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~DYN_GFX_CLK_OFF_EN);
WREG32(CG_RLC_REQ_AND_RSP, 0x2);
for (i = 0; i < rdev->usec_timeout; i++) {
if (((RREG32(CG_RLC_REQ_AND_RSP) & CG_RLC_RSP_TYPE_MASK) >> CG_RLC_RSP_TYPE_SHIFT) == 1)
break;
udelay(1);
}
WREG32(CG_RLC_REQ_AND_RSP, 0x0);
WREG32(GRBM_PWR_CNTL, 0x1);
RREG32(GRBM_PWR_CNTL);
}
}
void r600_dynamicpm_enable(struct radeon_device *rdev, bool enable)
{
if (enable)
WREG32_P(GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, ~GLOBAL_PWRMGT_EN);
else
WREG32_P(GENERAL_PWRMGT, 0, ~GLOBAL_PWRMGT_EN);
}
void r600_enable_thermal_protection(struct radeon_device *rdev, bool enable)
{
if (enable)
WREG32_P(GENERAL_PWRMGT, 0, ~THERMAL_PROTECTION_DIS);
else
WREG32_P(GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, ~THERMAL_PROTECTION_DIS);
}
void r600_enable_acpi_pm(struct radeon_device *rdev)
{
WREG32_P(GENERAL_PWRMGT, STATIC_PM_EN, ~STATIC_PM_EN);
}
void r600_enable_dynamic_pcie_gen2(struct radeon_device *rdev, bool enable)
{
if (enable)
WREG32_P(GENERAL_PWRMGT, ENABLE_GEN2PCIE, ~ENABLE_GEN2PCIE);
else
WREG32_P(GENERAL_PWRMGT, 0, ~ENABLE_GEN2PCIE);
}
bool r600_dynamicpm_enabled(struct radeon_device *rdev)
{
if (RREG32(GENERAL_PWRMGT) & GLOBAL_PWRMGT_EN)
return true;
else
return false;
}
void r600_enable_sclk_control(struct radeon_device *rdev, bool enable)
{
if (enable)
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~SCLK_PWRMGT_OFF);
else
WREG32_P(SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, ~SCLK_PWRMGT_OFF);
}
void r600_enable_mclk_control(struct radeon_device *rdev, bool enable)
{
if (enable)
WREG32_P(MCLK_PWRMGT_CNTL, 0, ~MPLL_PWRMGT_OFF);
else
WREG32_P(MCLK_PWRMGT_CNTL, MPLL_PWRMGT_OFF, ~MPLL_PWRMGT_OFF);
}
void r600_enable_spll_bypass(struct radeon_device *rdev, bool enable)
{
if (enable)
WREG32_P(CG_SPLL_FUNC_CNTL, SPLL_BYPASS_EN, ~SPLL_BYPASS_EN);
else
WREG32_P(CG_SPLL_FUNC_CNTL, 0, ~SPLL_BYPASS_EN);
}
void r600_wait_for_spll_change(struct radeon_device *rdev)
{
int i;
for (i = 0; i < rdev->usec_timeout; i++) {
if (RREG32(CG_SPLL_FUNC_CNTL) & SPLL_CHG_STATUS)
break;
udelay(1);
}
}
void r600_set_bsp(struct radeon_device *rdev, u32 u, u32 p)
{
WREG32(CG_BSP, BSP(p) | BSU(u));
}
void r600_set_at(struct radeon_device *rdev,
u32 l_to_m, u32 m_to_h,
u32 h_to_m, u32 m_to_l)
{
WREG32(CG_RT, FLS(l_to_m) | FMS(m_to_h));
WREG32(CG_LT, FHS(h_to_m) | FMS(m_to_l));
}
void r600_set_tc(struct radeon_device *rdev,
u32 index, u32 u_t, u32 d_t)
{
WREG32(CG_FFCT_0 + (index * 4), UTC_0(u_t) | DTC_0(d_t));
}
void r600_select_td(struct radeon_device *rdev,
enum r600_td td)
{
if (td == R600_TD_AUTO)
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_FORCE_TREND_SEL);
else
WREG32_P(SCLK_PWRMGT_CNTL, FIR_FORCE_TREND_SEL, ~FIR_FORCE_TREND_SEL);
if (td == R600_TD_UP)
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_TREND_MODE);
if (td == R600_TD_DOWN)
WREG32_P(SCLK_PWRMGT_CNTL, FIR_TREND_MODE, ~FIR_TREND_MODE);
}
void r600_set_vrc(struct radeon_device *rdev, u32 vrv)
{
WREG32(CG_FTV, vrv);
}
void r600_set_tpu(struct radeon_device *rdev, u32 u)
{
WREG32_P(CG_TPC, TPU(u), ~TPU_MASK);
}
void r600_set_tpc(struct radeon_device *rdev, u32 c)
{
WREG32_P(CG_TPC, TPCC(c), ~TPCC_MASK);
}
void r600_set_sstu(struct radeon_device *rdev, u32 u)
{
WREG32_P(CG_SSP, CG_SSTU(u), ~CG_SSTU_MASK);
}
void r600_set_sst(struct radeon_device *rdev, u32 t)
{
WREG32_P(CG_SSP, CG_SST(t), ~CG_SST_MASK);
}
void r600_set_git(struct radeon_device *rdev, u32 t)
{
WREG32_P(CG_GIT, CG_GICST(t), ~CG_GICST_MASK);
}
void r600_set_fctu(struct radeon_device *rdev, u32 u)
{
WREG32_P(CG_FC_T, FC_TU(u), ~FC_TU_MASK);
}
void r600_set_fct(struct radeon_device *rdev, u32 t)
{
WREG32_P(CG_FC_T, FC_T(t), ~FC_T_MASK);
}
void r600_set_ctxcgtt3d_rphc(struct radeon_device *rdev, u32 p)
{
WREG32_P(CG_CTX_CGTT3D_R, PHC(p), ~PHC_MASK);
}
void r600_set_ctxcgtt3d_rsdc(struct radeon_device *rdev, u32 s)
{
WREG32_P(CG_CTX_CGTT3D_R, SDC(s), ~SDC_MASK);
}
void r600_set_vddc3d_oorsu(struct radeon_device *rdev, u32 u)
{
WREG32_P(CG_VDDC3D_OOR, SU(u), ~SU_MASK);
}
void r600_set_vddc3d_oorphc(struct radeon_device *rdev, u32 p)
{
WREG32_P(CG_VDDC3D_OOR, PHC(p), ~PHC_MASK);
}
void r600_set_vddc3d_oorsdc(struct radeon_device *rdev, u32 s)
{
WREG32_P(CG_VDDC3D_OOR, SDC(s), ~SDC_MASK);
}
void r600_set_mpll_lock_time(struct radeon_device *rdev, u32 lock_time)
{
WREG32_P(MPLL_TIME, MPLL_LOCK_TIME(lock_time), ~MPLL_LOCK_TIME_MASK);
}
void r600_set_mpll_reset_time(struct radeon_device *rdev, u32 reset_time)
{
WREG32_P(MPLL_TIME, MPLL_RESET_TIME(reset_time), ~MPLL_RESET_TIME_MASK);
}
void r600_engine_clock_entry_enable(struct radeon_device *rdev,
u32 index, bool enable)
{
if (enable)
WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2),
STEP_0_SPLL_ENTRY_VALID, ~STEP_0_SPLL_ENTRY_VALID);
else
WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2),
0, ~STEP_0_SPLL_ENTRY_VALID);
}
void r600_engine_clock_entry_enable_pulse_skipping(struct radeon_device *rdev,
u32 index, bool enable)
{
if (enable)
WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2),
STEP_0_SPLL_STEP_ENABLE, ~STEP_0_SPLL_STEP_ENABLE);
else
WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2),
0, ~STEP_0_SPLL_STEP_ENABLE);
}
void r600_engine_clock_entry_enable_post_divider(struct radeon_device *rdev,
u32 index, bool enable)
{
if (enable)
WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2),
STEP_0_POST_DIV_EN, ~STEP_0_POST_DIV_EN);
else
WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2),
0, ~STEP_0_POST_DIV_EN);
}
void r600_engine_clock_entry_set_post_divider(struct radeon_device *rdev,
u32 index, u32 divider)
{
WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART1 + (index * 4 * 2),
STEP_0_SPLL_POST_DIV(divider), ~STEP_0_SPLL_POST_DIV_MASK);
}
void r600_engine_clock_entry_set_reference_divider(struct radeon_device *rdev,
u32 index, u32 divider)
{
WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART1 + (index * 4 * 2),
STEP_0_SPLL_REF_DIV(divider), ~STEP_0_SPLL_REF_DIV_MASK);
}
void r600_engine_clock_entry_set_feedback_divider(struct radeon_device *rdev,
u32 index, u32 divider)
{
WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART1 + (index * 4 * 2),
STEP_0_SPLL_FB_DIV(divider), ~STEP_0_SPLL_FB_DIV_MASK);
}
void r600_engine_clock_entry_set_step_time(struct radeon_device *rdev,
u32 index, u32 step_time)
{
WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART1 + (index * 4 * 2),
STEP_0_SPLL_STEP_TIME(step_time), ~STEP_0_SPLL_STEP_TIME_MASK);
}
void r600_vid_rt_set_ssu(struct radeon_device *rdev, u32 u)
{
WREG32_P(VID_RT, SSTU(u), ~SSTU_MASK);
}
void r600_vid_rt_set_vru(struct radeon_device *rdev, u32 u)
{
WREG32_P(VID_RT, VID_CRTU(u), ~VID_CRTU_MASK);
}
void r600_vid_rt_set_vrt(struct radeon_device *rdev, u32 rt)
{
WREG32_P(VID_RT, VID_CRT(rt), ~VID_CRT_MASK);
}
void r600_voltage_control_enable_pins(struct radeon_device *rdev,
u64 mask)
{
WREG32(LOWER_GPIO_ENABLE, mask & 0xffffffff);
WREG32(UPPER_GPIO_ENABLE, upper_32_bits(mask));
}
void r600_voltage_control_program_voltages(struct radeon_device *rdev,
enum r600_power_level index, u64 pins)
{
u32 tmp, mask;
u32 ix = 3 - (3 & index);
WREG32(CTXSW_VID_LOWER_GPIO_CNTL + (ix * 4), pins & 0xffffffff);
mask = 7 << (3 * ix);
tmp = RREG32(VID_UPPER_GPIO_CNTL);
tmp = (tmp & ~mask) | ((pins >> (32 - (3 * ix))) & mask);
WREG32(VID_UPPER_GPIO_CNTL, tmp);
}
void r600_voltage_control_deactivate_static_control(struct radeon_device *rdev,
u64 mask)
{
u32 gpio;
gpio = RREG32(GPIOPAD_MASK);
gpio &= ~mask;
WREG32(GPIOPAD_MASK, gpio);
gpio = RREG32(GPIOPAD_EN);
gpio &= ~mask;
WREG32(GPIOPAD_EN, gpio);
gpio = RREG32(GPIOPAD_A);
gpio &= ~mask;
WREG32(GPIOPAD_A, gpio);
}
void r600_power_level_enable(struct radeon_device *rdev,
enum r600_power_level index, bool enable)
{
u32 ix = 3 - (3 & index);
if (enable)
WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), CTXSW_FREQ_STATE_ENABLE,
~CTXSW_FREQ_STATE_ENABLE);
else
WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), 0,
~CTXSW_FREQ_STATE_ENABLE);
}
void r600_power_level_set_voltage_index(struct radeon_device *rdev,
enum r600_power_level index, u32 voltage_index)
{
u32 ix = 3 - (3 & index);
WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4),
CTXSW_FREQ_VIDS_CFG_INDEX(voltage_index), ~CTXSW_FREQ_VIDS_CFG_INDEX_MASK);
}
void r600_power_level_set_mem_clock_index(struct radeon_device *rdev,
enum r600_power_level index, u32 mem_clock_index)
{
u32 ix = 3 - (3 & index);
WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4),
CTXSW_FREQ_MCLK_CFG_INDEX(mem_clock_index), ~CTXSW_FREQ_MCLK_CFG_INDEX_MASK);
}
void r600_power_level_set_eng_clock_index(struct radeon_device *rdev,
enum r600_power_level index, u32 eng_clock_index)
{
u32 ix = 3 - (3 & index);
WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4),
CTXSW_FREQ_SCLK_CFG_INDEX(eng_clock_index), ~CTXSW_FREQ_SCLK_CFG_INDEX_MASK);
}
void r600_power_level_set_watermark_id(struct radeon_device *rdev,
enum r600_power_level index,
enum r600_display_watermark watermark_id)
{
u32 ix = 3 - (3 & index);
u32 tmp = 0;
if (watermark_id == R600_DISPLAY_WATERMARK_HIGH)
tmp = CTXSW_FREQ_DISPLAY_WATERMARK;
WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), tmp, ~CTXSW_FREQ_DISPLAY_WATERMARK);
}
void r600_power_level_set_pcie_gen2(struct radeon_device *rdev,
enum r600_power_level index, bool compatible)
{
u32 ix = 3 - (3 & index);
u32 tmp = 0;
if (compatible)
tmp = CTXSW_FREQ_GEN2PCIE_VOLT;
WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), tmp, ~CTXSW_FREQ_GEN2PCIE_VOLT);
}
enum r600_power_level r600_power_level_get_current_index(struct radeon_device *rdev)
{
u32 tmp;
tmp = RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_PROFILE_INDEX_MASK;
tmp >>= CURRENT_PROFILE_INDEX_SHIFT;
return tmp;
}
enum r600_power_level r600_power_level_get_target_index(struct radeon_device *rdev)
{
u32 tmp;
tmp = RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & TARGET_PROFILE_INDEX_MASK;
tmp >>= TARGET_PROFILE_INDEX_SHIFT;
return tmp;
}
void r600_power_level_set_enter_index(struct radeon_device *rdev,
enum r600_power_level index)
{
WREG32_P(TARGET_AND_CURRENT_PROFILE_INDEX, DYN_PWR_ENTER_INDEX(index),
~DYN_PWR_ENTER_INDEX_MASK);
}
void r600_wait_for_power_level_unequal(struct radeon_device *rdev,
enum r600_power_level index)
{
int i;
for (i = 0; i < rdev->usec_timeout; i++) {
if (r600_power_level_get_target_index(rdev) != index)
break;
udelay(1);
}
for (i = 0; i < rdev->usec_timeout; i++) {
if (r600_power_level_get_current_index(rdev) != index)
break;
udelay(1);
}
}
void r600_wait_for_power_level(struct radeon_device *rdev,
enum r600_power_level index)
{
int i;
for (i = 0; i < rdev->usec_timeout; i++) {
if (r600_power_level_get_target_index(rdev) == index)
break;
udelay(1);
}
for (i = 0; i < rdev->usec_timeout; i++) {
if (r600_power_level_get_current_index(rdev) == index)
break;
udelay(1);
}
}
void r600_start_dpm(struct radeon_device *rdev)
{
r600_enable_sclk_control(rdev, false);
r600_enable_mclk_control(rdev, false);
r600_dynamicpm_enable(rdev, true);
radeon_wait_for_vblank(rdev, 0);
radeon_wait_for_vblank(rdev, 1);
r600_enable_spll_bypass(rdev, true);
r600_wait_for_spll_change(rdev);
r600_enable_spll_bypass(rdev, false);
r600_wait_for_spll_change(rdev);
r600_enable_spll_bypass(rdev, true);
r600_wait_for_spll_change(rdev);
r600_enable_spll_bypass(rdev, false);
r600_wait_for_spll_change(rdev);
r600_enable_sclk_control(rdev, true);
r600_enable_mclk_control(rdev, true);
}
void r600_stop_dpm(struct radeon_device *rdev)
{
r600_dynamicpm_enable(rdev, false);
}
int r600_dpm_pre_set_power_state(struct radeon_device *rdev)
{
return 0;
}
void r600_dpm_post_set_power_state(struct radeon_device *rdev)
{
}
bool r600_is_uvd_state(u32 class, u32 class2)
{
if (class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
return true;
if (class & ATOM_PPLIB_CLASSIFICATION_HD2STATE)
return true;
if (class & ATOM_PPLIB_CLASSIFICATION_HDSTATE)
return true;
if (class & ATOM_PPLIB_CLASSIFICATION_SDSTATE)
return true;
if (class2 & ATOM_PPLIB_CLASSIFICATION2_MVC)
return true;
return false;
}
static int r600_set_thermal_temperature_range(struct radeon_device *rdev,
int min_temp, int max_temp)
{
int low_temp = 0 * 1000;
int high_temp = 255 * 1000;
if (low_temp < min_temp)
low_temp = min_temp;
if (high_temp > max_temp)
high_temp = max_temp;
if (high_temp < low_temp) {
DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
return -EINVAL;
}
WREG32_P(CG_THERMAL_INT, DIG_THERM_INTH(high_temp / 1000), ~DIG_THERM_INTH_MASK);
WREG32_P(CG_THERMAL_INT, DIG_THERM_INTL(low_temp / 1000), ~DIG_THERM_INTL_MASK);
WREG32_P(CG_THERMAL_CTRL, DIG_THERM_DPM(high_temp / 1000), ~DIG_THERM_DPM_MASK);
rdev->pm.dpm.thermal.min_temp = low_temp;
rdev->pm.dpm.thermal.max_temp = high_temp;
return 0;
}
bool r600_is_internal_thermal_sensor(enum radeon_int_thermal_type sensor)
{
switch (sensor) {
case THERMAL_TYPE_RV6XX:
case THERMAL_TYPE_RV770:
case THERMAL_TYPE_EVERGREEN:
case THERMAL_TYPE_SUMO:
case THERMAL_TYPE_NI:
case THERMAL_TYPE_SI:
case THERMAL_TYPE_CI:
case THERMAL_TYPE_KV:
return true;
case THERMAL_TYPE_ADT7473_WITH_INTERNAL:
case THERMAL_TYPE_EMC2103_WITH_INTERNAL:
return false; /* need special handling */
case THERMAL_TYPE_NONE:
case THERMAL_TYPE_EXTERNAL:
case THERMAL_TYPE_EXTERNAL_GPIO:
default:
return false;
}
}
int r600_dpm_late_enable(struct radeon_device *rdev)
{
int ret;
if (rdev->irq.installed &&
r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
ret = r600_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX);
if (ret)
return ret;
rdev->irq.dpm_thermal = true;
radeon_irq_set(rdev);
}
return 0;
}
union power_info {
struct _ATOM_POWERPLAY_INFO info;
struct _ATOM_POWERPLAY_INFO_V2 info_2;
struct _ATOM_POWERPLAY_INFO_V3 info_3;
struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
struct _ATOM_PPLIB_POWERPLAYTABLE4 pplib4;
struct _ATOM_PPLIB_POWERPLAYTABLE5 pplib5;
};
union fan_info {
struct _ATOM_PPLIB_FANTABLE fan;
struct _ATOM_PPLIB_FANTABLE2 fan2;
struct _ATOM_PPLIB_FANTABLE3 fan3;
};
static int r600_parse_clk_voltage_dep_table(struct radeon_clock_voltage_dependency_table *radeon_table,
ATOM_PPLIB_Clock_Voltage_Dependency_Table *atom_table)
{
u32 size = atom_table->ucNumEntries *
sizeof(struct radeon_clock_voltage_dependency_entry);
int i;
ATOM_PPLIB_Clock_Voltage_Dependency_Record *entry;
radeon_table->entries = kzalloc(size, GFP_KERNEL);
if (!radeon_table->entries)
return -ENOMEM;
entry = &atom_table->entries[0];
for (i = 0; i < atom_table->ucNumEntries; i++) {
radeon_table->entries[i].clk = le16_to_cpu(entry->usClockLow) |
(entry->ucClockHigh << 16);
radeon_table->entries[i].v = le16_to_cpu(entry->usVoltage);
entry = (ATOM_PPLIB_Clock_Voltage_Dependency_Record *)
((u8 *)entry + sizeof(ATOM_PPLIB_Clock_Voltage_Dependency_Record));
}
radeon_table->count = atom_table->ucNumEntries;
return 0;
}
int r600_get_platform_caps(struct radeon_device *rdev)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
union power_info *power_info;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 data_offset;
u8 frev, crev;
if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset))
return -EINVAL;
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
rdev->pm.dpm.platform_caps = le32_to_cpu(power_info->pplib.ulPlatformCaps);
rdev->pm.dpm.backbias_response_time = le16_to_cpu(power_info->pplib.usBackbiasTime);
rdev->pm.dpm.voltage_response_time = le16_to_cpu(power_info->pplib.usVoltageTime);
return 0;
}
/* sizeof(ATOM_PPLIB_EXTENDEDHEADER) */
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2 12
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3 14
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4 16
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5 18
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6 20
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7 22
int r600_parse_extended_power_table(struct radeon_device *rdev)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
union power_info *power_info;
union fan_info *fan_info;
ATOM_PPLIB_Clock_Voltage_Dependency_Table *dep_table;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 data_offset;
u8 frev, crev;
int ret, i;
if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset))
return -EINVAL;
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
/* fan table */
if (le16_to_cpu(power_info->pplib.usTableSize) >=
sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE3)) {
if (power_info->pplib3.usFanTableOffset) {
fan_info = (union fan_info *)(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib3.usFanTableOffset));
rdev->pm.dpm.fan.t_hyst = fan_info->fan.ucTHyst;
rdev->pm.dpm.fan.t_min = le16_to_cpu(fan_info->fan.usTMin);
rdev->pm.dpm.fan.t_med = le16_to_cpu(fan_info->fan.usTMed);
rdev->pm.dpm.fan.t_high = le16_to_cpu(fan_info->fan.usTHigh);
rdev->pm.dpm.fan.pwm_min = le16_to_cpu(fan_info->fan.usPWMMin);
rdev->pm.dpm.fan.pwm_med = le16_to_cpu(fan_info->fan.usPWMMed);
rdev->pm.dpm.fan.pwm_high = le16_to_cpu(fan_info->fan.usPWMHigh);
if (fan_info->fan.ucFanTableFormat >= 2)
rdev->pm.dpm.fan.t_max = le16_to_cpu(fan_info->fan2.usTMax);
else
rdev->pm.dpm.fan.t_max = 10900;
rdev->pm.dpm.fan.cycle_delay = 100000;
if (fan_info->fan.ucFanTableFormat >= 3) {
rdev->pm.dpm.fan.control_mode = fan_info->fan3.ucFanControlMode;
rdev->pm.dpm.fan.default_max_fan_pwm =
le16_to_cpu(fan_info->fan3.usFanPWMMax);
rdev->pm.dpm.fan.default_fan_output_sensitivity = 4836;
rdev->pm.dpm.fan.fan_output_sensitivity =
le16_to_cpu(fan_info->fan3.usFanOutputSensitivity);
}
rdev->pm.dpm.fan.ucode_fan_control = true;
}
}
/* clock dependancy tables, shedding tables */
if (le16_to_cpu(power_info->pplib.usTableSize) >=
sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE4)) {
if (power_info->pplib4.usVddcDependencyOnSCLKOffset) {
dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib4.usVddcDependencyOnSCLKOffset));
ret = r600_parse_clk_voltage_dep_table(&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk,
dep_table);
if (ret)
return ret;
}
if (power_info->pplib4.usVddciDependencyOnMCLKOffset) {
dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib4.usVddciDependencyOnMCLKOffset));
ret = r600_parse_clk_voltage_dep_table(&rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk,
dep_table);
if (ret) {
kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries);
return ret;
}
}
if (power_info->pplib4.usVddcDependencyOnMCLKOffset) {
dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib4.usVddcDependencyOnMCLKOffset));
ret = r600_parse_clk_voltage_dep_table(&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk,
dep_table);
if (ret) {
kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries);
kfree(rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk.entries);
return ret;
}
}
if (power_info->pplib4.usMvddDependencyOnMCLKOffset) {
dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib4.usMvddDependencyOnMCLKOffset));
ret = r600_parse_clk_voltage_dep_table(&rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk,
dep_table);
if (ret) {
kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries);
kfree(rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk.entries);
kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk.entries);
return ret;
}
}
if (power_info->pplib4.usMaxClockVoltageOnDCOffset) {
ATOM_PPLIB_Clock_Voltage_Limit_Table *clk_v =
(ATOM_PPLIB_Clock_Voltage_Limit_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib4.usMaxClockVoltageOnDCOffset));
if (clk_v->ucNumEntries) {
rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.sclk =
le16_to_cpu(clk_v->entries[0].usSclkLow) |
(clk_v->entries[0].ucSclkHigh << 16);
rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.mclk =
le16_to_cpu(clk_v->entries[0].usMclkLow) |
(clk_v->entries[0].ucMclkHigh << 16);
rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddc =
le16_to_cpu(clk_v->entries[0].usVddc);
rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddci =
le16_to_cpu(clk_v->entries[0].usVddci);
}
}
if (power_info->pplib4.usVddcPhaseShedLimitsTableOffset) {
ATOM_PPLIB_PhaseSheddingLimits_Table *psl =
(ATOM_PPLIB_PhaseSheddingLimits_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib4.usVddcPhaseShedLimitsTableOffset));
ATOM_PPLIB_PhaseSheddingLimits_Record *entry;
rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries =
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:03:40 +08:00
kcalloc(psl->ucNumEntries,
sizeof(struct radeon_phase_shedding_limits_entry),
GFP_KERNEL);
if (!rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries) {
r600_free_extended_power_table(rdev);
return -ENOMEM;
}
entry = &psl->entries[0];
for (i = 0; i < psl->ucNumEntries; i++) {
rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].sclk =
le16_to_cpu(entry->usSclkLow) | (entry->ucSclkHigh << 16);
rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].mclk =
le16_to_cpu(entry->usMclkLow) | (entry->ucMclkHigh << 16);
rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].voltage =
le16_to_cpu(entry->usVoltage);
entry = (ATOM_PPLIB_PhaseSheddingLimits_Record *)
((u8 *)entry + sizeof(ATOM_PPLIB_PhaseSheddingLimits_Record));
}
rdev->pm.dpm.dyn_state.phase_shedding_limits_table.count =
psl->ucNumEntries;
}
}
/* cac data */
if (le16_to_cpu(power_info->pplib.usTableSize) >=
sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE5)) {
rdev->pm.dpm.tdp_limit = le32_to_cpu(power_info->pplib5.ulTDPLimit);
rdev->pm.dpm.near_tdp_limit = le32_to_cpu(power_info->pplib5.ulNearTDPLimit);
rdev->pm.dpm.near_tdp_limit_adjusted = rdev->pm.dpm.near_tdp_limit;
rdev->pm.dpm.tdp_od_limit = le16_to_cpu(power_info->pplib5.usTDPODLimit);
if (rdev->pm.dpm.tdp_od_limit)
rdev->pm.dpm.power_control = true;
else
rdev->pm.dpm.power_control = false;
rdev->pm.dpm.tdp_adjustment = 0;
rdev->pm.dpm.sq_ramping_threshold = le32_to_cpu(power_info->pplib5.ulSQRampingThreshold);
rdev->pm.dpm.cac_leakage = le32_to_cpu(power_info->pplib5.ulCACLeakage);
rdev->pm.dpm.load_line_slope = le16_to_cpu(power_info->pplib5.usLoadLineSlope);
if (power_info->pplib5.usCACLeakageTableOffset) {
ATOM_PPLIB_CAC_Leakage_Table *cac_table =
(ATOM_PPLIB_CAC_Leakage_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib5.usCACLeakageTableOffset));
ATOM_PPLIB_CAC_Leakage_Record *entry;
u32 size = cac_table->ucNumEntries * sizeof(struct radeon_cac_leakage_table);
rdev->pm.dpm.dyn_state.cac_leakage_table.entries = kzalloc(size, GFP_KERNEL);
if (!rdev->pm.dpm.dyn_state.cac_leakage_table.entries) {
r600_free_extended_power_table(rdev);
return -ENOMEM;
}
entry = &cac_table->entries[0];
for (i = 0; i < cac_table->ucNumEntries; i++) {
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_EVV) {
rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc1 =
le16_to_cpu(entry->usVddc1);
rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc2 =
le16_to_cpu(entry->usVddc2);
rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc3 =
le16_to_cpu(entry->usVddc3);
} else {
rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc =
le16_to_cpu(entry->usVddc);
rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].leakage =
le32_to_cpu(entry->ulLeakageValue);
}
entry = (ATOM_PPLIB_CAC_Leakage_Record *)
((u8 *)entry + sizeof(ATOM_PPLIB_CAC_Leakage_Record));
}
rdev->pm.dpm.dyn_state.cac_leakage_table.count = cac_table->ucNumEntries;
}
}
/* ext tables */
if (le16_to_cpu(power_info->pplib.usTableSize) >=
sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE3)) {
ATOM_PPLIB_EXTENDEDHEADER *ext_hdr = (ATOM_PPLIB_EXTENDEDHEADER *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib3.usExtendendedHeaderOffset));
if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2) &&
ext_hdr->usVCETableOffset) {
VCEClockInfoArray *array = (VCEClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usVCETableOffset) + 1);
ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *limits =
(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usVCETableOffset) + 1 +
1 + array->ucNumEntries * sizeof(VCEClockInfo));
ATOM_PPLIB_VCE_State_Table *states =
(ATOM_PPLIB_VCE_State_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usVCETableOffset) + 1 +
1 + (array->ucNumEntries * sizeof (VCEClockInfo)) +
1 + (limits->numEntries * sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record)));
ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record *entry;
ATOM_PPLIB_VCE_State_Record *state_entry;
VCEClockInfo *vce_clk;
u32 size = limits->numEntries *
sizeof(struct radeon_vce_clock_voltage_dependency_entry);
rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries =
kzalloc(size, GFP_KERNEL);
if (!rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries) {
r600_free_extended_power_table(rdev);
return -ENOMEM;
}
rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.count =
limits->numEntries;
entry = &limits->entries[0];
state_entry = &states->entries[0];
for (i = 0; i < limits->numEntries; i++) {
vce_clk = (VCEClockInfo *)
((u8 *)&array->entries[0] +
(entry->ucVCEClockInfoIndex * sizeof(VCEClockInfo)));
rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].evclk =
le16_to_cpu(vce_clk->usEVClkLow) | (vce_clk->ucEVClkHigh << 16);
rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].ecclk =
le16_to_cpu(vce_clk->usECClkLow) | (vce_clk->ucECClkHigh << 16);
rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].v =
le16_to_cpu(entry->usVoltage);
entry = (ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record *)
((u8 *)entry + sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record));
}
for (i = 0; i < states->numEntries; i++) {
if (i >= RADEON_MAX_VCE_LEVELS)
break;
vce_clk = (VCEClockInfo *)
((u8 *)&array->entries[0] +
(state_entry->ucVCEClockInfoIndex * sizeof(VCEClockInfo)));
rdev->pm.dpm.vce_states[i].evclk =
le16_to_cpu(vce_clk->usEVClkLow) | (vce_clk->ucEVClkHigh << 16);
rdev->pm.dpm.vce_states[i].ecclk =
le16_to_cpu(vce_clk->usECClkLow) | (vce_clk->ucECClkHigh << 16);
rdev->pm.dpm.vce_states[i].clk_idx =
state_entry->ucClockInfoIndex & 0x3f;
rdev->pm.dpm.vce_states[i].pstate =
(state_entry->ucClockInfoIndex & 0xc0) >> 6;
state_entry = (ATOM_PPLIB_VCE_State_Record *)
((u8 *)state_entry + sizeof(ATOM_PPLIB_VCE_State_Record));
}
}
if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3) &&
ext_hdr->usUVDTableOffset) {
UVDClockInfoArray *array = (UVDClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usUVDTableOffset) + 1);
ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *limits =
(ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usUVDTableOffset) + 1 +
1 + (array->ucNumEntries * sizeof (UVDClockInfo)));
ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record *entry;
u32 size = limits->numEntries *
sizeof(struct radeon_uvd_clock_voltage_dependency_entry);
rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries =
kzalloc(size, GFP_KERNEL);
if (!rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries) {
r600_free_extended_power_table(rdev);
return -ENOMEM;
}
rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count =
limits->numEntries;
entry = &limits->entries[0];
for (i = 0; i < limits->numEntries; i++) {
UVDClockInfo *uvd_clk = (UVDClockInfo *)
((u8 *)&array->entries[0] +
(entry->ucUVDClockInfoIndex * sizeof(UVDClockInfo)));
rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].vclk =
le16_to_cpu(uvd_clk->usVClkLow) | (uvd_clk->ucVClkHigh << 16);
rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].dclk =
le16_to_cpu(uvd_clk->usDClkLow) | (uvd_clk->ucDClkHigh << 16);
rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].v =
le16_to_cpu(entry->usVoltage);
entry = (ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record *)
((u8 *)entry + sizeof(ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record));
}
}
if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4) &&
ext_hdr->usSAMUTableOffset) {
ATOM_PPLIB_SAMClk_Voltage_Limit_Table *limits =
(ATOM_PPLIB_SAMClk_Voltage_Limit_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usSAMUTableOffset) + 1);
ATOM_PPLIB_SAMClk_Voltage_Limit_Record *entry;
u32 size = limits->numEntries *
sizeof(struct radeon_clock_voltage_dependency_entry);
rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries =
kzalloc(size, GFP_KERNEL);
if (!rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries) {
r600_free_extended_power_table(rdev);
return -ENOMEM;
}
rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.count =
limits->numEntries;
entry = &limits->entries[0];
for (i = 0; i < limits->numEntries; i++) {
rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].clk =
le16_to_cpu(entry->usSAMClockLow) | (entry->ucSAMClockHigh << 16);
rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].v =
le16_to_cpu(entry->usVoltage);
entry = (ATOM_PPLIB_SAMClk_Voltage_Limit_Record *)
((u8 *)entry + sizeof(ATOM_PPLIB_SAMClk_Voltage_Limit_Record));
}
}
if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5) &&
ext_hdr->usPPMTableOffset) {
ATOM_PPLIB_PPM_Table *ppm = (ATOM_PPLIB_PPM_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usPPMTableOffset));
rdev->pm.dpm.dyn_state.ppm_table =
kzalloc(sizeof(struct radeon_ppm_table), GFP_KERNEL);
if (!rdev->pm.dpm.dyn_state.ppm_table) {
r600_free_extended_power_table(rdev);
return -ENOMEM;
}
rdev->pm.dpm.dyn_state.ppm_table->ppm_design = ppm->ucPpmDesign;
rdev->pm.dpm.dyn_state.ppm_table->cpu_core_number =
le16_to_cpu(ppm->usCpuCoreNumber);
rdev->pm.dpm.dyn_state.ppm_table->platform_tdp =
le32_to_cpu(ppm->ulPlatformTDP);
rdev->pm.dpm.dyn_state.ppm_table->small_ac_platform_tdp =
le32_to_cpu(ppm->ulSmallACPlatformTDP);
rdev->pm.dpm.dyn_state.ppm_table->platform_tdc =
le32_to_cpu(ppm->ulPlatformTDC);
rdev->pm.dpm.dyn_state.ppm_table->small_ac_platform_tdc =
le32_to_cpu(ppm->ulSmallACPlatformTDC);
rdev->pm.dpm.dyn_state.ppm_table->apu_tdp =
le32_to_cpu(ppm->ulApuTDP);
rdev->pm.dpm.dyn_state.ppm_table->dgpu_tdp =
le32_to_cpu(ppm->ulDGpuTDP);
rdev->pm.dpm.dyn_state.ppm_table->dgpu_ulv_power =
le32_to_cpu(ppm->ulDGpuUlvPower);
rdev->pm.dpm.dyn_state.ppm_table->tj_max =
le32_to_cpu(ppm->ulTjmax);
}
if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6) &&
ext_hdr->usACPTableOffset) {
ATOM_PPLIB_ACPClk_Voltage_Limit_Table *limits =
(ATOM_PPLIB_ACPClk_Voltage_Limit_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usACPTableOffset) + 1);
ATOM_PPLIB_ACPClk_Voltage_Limit_Record *entry;
u32 size = limits->numEntries *
sizeof(struct radeon_clock_voltage_dependency_entry);
rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries =
kzalloc(size, GFP_KERNEL);
if (!rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries) {
r600_free_extended_power_table(rdev);
return -ENOMEM;
}
rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.count =
limits->numEntries;
entry = &limits->entries[0];
for (i = 0; i < limits->numEntries; i++) {
rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].clk =
le16_to_cpu(entry->usACPClockLow) | (entry->ucACPClockHigh << 16);
rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].v =
le16_to_cpu(entry->usVoltage);
entry = (ATOM_PPLIB_ACPClk_Voltage_Limit_Record *)
((u8 *)entry + sizeof(ATOM_PPLIB_ACPClk_Voltage_Limit_Record));
}
}
if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7) &&
ext_hdr->usPowerTuneTableOffset) {
u8 rev = *(u8 *)(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usPowerTuneTableOffset));
ATOM_PowerTune_Table *pt;
rdev->pm.dpm.dyn_state.cac_tdp_table =
kzalloc(sizeof(struct radeon_cac_tdp_table), GFP_KERNEL);
if (!rdev->pm.dpm.dyn_state.cac_tdp_table) {
r600_free_extended_power_table(rdev);
return -ENOMEM;
}
if (rev > 0) {
ATOM_PPLIB_POWERTUNE_Table_V1 *ppt = (ATOM_PPLIB_POWERTUNE_Table_V1 *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usPowerTuneTableOffset));
rdev->pm.dpm.dyn_state.cac_tdp_table->maximum_power_delivery_limit =
le16_to_cpu(ppt->usMaximumPowerDeliveryLimit);
pt = &ppt->power_tune_table;
} else {
ATOM_PPLIB_POWERTUNE_Table *ppt = (ATOM_PPLIB_POWERTUNE_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usPowerTuneTableOffset));
rdev->pm.dpm.dyn_state.cac_tdp_table->maximum_power_delivery_limit = 255;
pt = &ppt->power_tune_table;
}
rdev->pm.dpm.dyn_state.cac_tdp_table->tdp = le16_to_cpu(pt->usTDP);
rdev->pm.dpm.dyn_state.cac_tdp_table->configurable_tdp =
le16_to_cpu(pt->usConfigurableTDP);
rdev->pm.dpm.dyn_state.cac_tdp_table->tdc = le16_to_cpu(pt->usTDC);
rdev->pm.dpm.dyn_state.cac_tdp_table->battery_power_limit =
le16_to_cpu(pt->usBatteryPowerLimit);
rdev->pm.dpm.dyn_state.cac_tdp_table->small_power_limit =
le16_to_cpu(pt->usSmallPowerLimit);
rdev->pm.dpm.dyn_state.cac_tdp_table->low_cac_leakage =
le16_to_cpu(pt->usLowCACLeakage);
rdev->pm.dpm.dyn_state.cac_tdp_table->high_cac_leakage =
le16_to_cpu(pt->usHighCACLeakage);
}
}
return 0;
}
void r600_free_extended_power_table(struct radeon_device *rdev)
{
struct radeon_dpm_dynamic_state *dyn_state = &rdev->pm.dpm.dyn_state;
kfree(dyn_state->vddc_dependency_on_sclk.entries);
kfree(dyn_state->vddci_dependency_on_mclk.entries);
kfree(dyn_state->vddc_dependency_on_mclk.entries);
kfree(dyn_state->mvdd_dependency_on_mclk.entries);
kfree(dyn_state->cac_leakage_table.entries);
kfree(dyn_state->phase_shedding_limits_table.entries);
kfree(dyn_state->ppm_table);
kfree(dyn_state->cac_tdp_table);
kfree(dyn_state->vce_clock_voltage_dependency_table.entries);
kfree(dyn_state->uvd_clock_voltage_dependency_table.entries);
kfree(dyn_state->samu_clock_voltage_dependency_table.entries);
kfree(dyn_state->acp_clock_voltage_dependency_table.entries);
}
enum radeon_pcie_gen r600_get_pcie_gen_support(struct radeon_device *rdev,
u32 sys_mask,
enum radeon_pcie_gen asic_gen,
enum radeon_pcie_gen default_gen)
{
switch (asic_gen) {
case RADEON_PCIE_GEN1:
return RADEON_PCIE_GEN1;
case RADEON_PCIE_GEN2:
return RADEON_PCIE_GEN2;
case RADEON_PCIE_GEN3:
return RADEON_PCIE_GEN3;
default:
if ((sys_mask & RADEON_PCIE_SPEED_80) && (default_gen == RADEON_PCIE_GEN3))
return RADEON_PCIE_GEN3;
else if ((sys_mask & RADEON_PCIE_SPEED_50) && (default_gen == RADEON_PCIE_GEN2))
return RADEON_PCIE_GEN2;
else
return RADEON_PCIE_GEN1;
}
return RADEON_PCIE_GEN1;
}
u16 r600_get_pcie_lane_support(struct radeon_device *rdev,
u16 asic_lanes,
u16 default_lanes)
{
switch (asic_lanes) {
case 0:
default:
return default_lanes;
case 1:
return 1;
case 2:
return 2;
case 4:
return 4;
case 8:
return 8;
case 12:
return 12;
case 16:
return 16;
}
}
u8 r600_encode_pci_lane_width(u32 lanes)
{
u8 encoded_lanes[] = { 0, 1, 2, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6 };
if (lanes > 16)
return 0;
return encoded_lanes[lanes];
}