OpenCloudOS-Kernel/arch/powerpc/include/asm/asm-compat.h

87 lines
2.5 KiB
C
Raw Normal View History

#ifndef _ASM_POWERPC_ASM_COMPAT_H
#define _ASM_POWERPC_ASM_COMPAT_H
#include <asm/types.h>
#include <asm/ppc-opcode.h>
#ifdef __ASSEMBLY__
# define stringify_in_c(...) __VA_ARGS__
# define ASM_CONST(x) x
#else
/* This version of stringify will deal with commas... */
# define __stringify_in_c(...) #__VA_ARGS__
# define stringify_in_c(...) __stringify_in_c(__VA_ARGS__) " "
# define __ASM_CONST(x) x##UL
# define ASM_CONST(x) __ASM_CONST(x)
#endif
[POWERPC] Support feature fixups in vdso's This patch reworks the feature fixup mecanism so vdso's can be fixed up. The main issue was that the construct: .long label (or .llong on 64 bits) will not work in the case of a shared library like the vdso. It will generate an empty placeholder in the fixup table along with a reloc, which is not something we can deal with in the vdso. The idea here (thanks Alan Modra !) is to instead use something like: 1: .long label - 1b That is, the feature fixup tables no longer contain addresses of bits of code to patch, but offsets of such code from the fixup table entry itself. That is properly resolved by ld when building the .so's. I've modified the fixup mecanism generically to use that method for the rest of the kernel as well. Another trick is that the 32 bits vDSO included in the 64 bits kernel need to have a table in the 64 bits format. However, gas does not support 32 bits code with a statement of the form: .llong label - 1b (Or even just .llong label) That is, it cannot emit the right fixup/relocation for the linker to use to assign a 32 bits address to an .llong field. Thus, in the specific case of the 32 bits vdso built as part of the 64 bits kernel, we are using a modified macro that generates: .long 0xffffffff .llong label - 1b Note that is assumes that the value is negative which is enforced by the .lds (those offsets are always negative as the .text is always before the fixup table and gas doesn't support emiting the reloc the other way around). Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-10-20 09:47:18 +08:00
#ifdef __powerpc64__
/* operations for longs and pointers */
#define PPC_LL stringify_in_c(ld)
#define PPC_STL stringify_in_c(std)
#define PPC_STLU stringify_in_c(stdu)
#define PPC_LCMPI stringify_in_c(cmpdi)
#define PPC_LCMPLI stringify_in_c(cmpldi)
#define PPC_LCMP stringify_in_c(cmpd)
#define PPC_LONG stringify_in_c(.8byte)
#define PPC_LONG_ALIGN stringify_in_c(.balign 8)
#define PPC_TLNEI stringify_in_c(tdnei)
#define PPC_LLARX(t, a, b, eh) PPC_LDARX(t, a, b, eh)
#define PPC_STLCX stringify_in_c(stdcx.)
#define PPC_CNTLZL stringify_in_c(cntlzd)
#define PPC_MTOCRF(FXM, RS) MTOCRF((FXM), RS)
#define PPC_LR_STKOFF 16
powerpc: Emulate most Book I instructions in emulate_step() This extends the emulate_step() function to handle a large proportion of the Book I instructions implemented on current 64-bit server processors. The aim is to handle all the load and store instructions used in the kernel, plus all of the instructions that appear between l[wd]arx and st[wd]cx., so this handles the Altivec/VMX lvx and stvx and the VSX lxv2dx and stxv2dx instructions (implemented in POWER7). The new code can emulate user mode instructions, and checks the effective address for a load or store if the saved state is for user mode. It doesn't handle little-endian mode at present. For floating-point, Altivec/VMX and VSX instructions, it checks that the saved MSR has the enable bit for the relevant facility set, and if so, assumes that the FP/VMX/VSX registers contain valid state, and does loads or stores directly to/from the FP/VMX/VSX registers, using assembly helpers in ldstfp.S. Instructions supported now include: * Loads and stores, including some but not all VMX and VSX instructions, and lmw/stmw * Atomic loads and stores (l[dw]arx, st[dw]cx.) * Arithmetic instructions (add, subtract, multiply, divide, etc.) * Compare instructions * Rotate and mask instructions * Shift instructions * Logical instructions (and, or, xor, etc.) * Condition register logical instructions * mtcrf, cntlz[wd], exts[bhw] * isync, sync, lwsync, ptesync, eieio * Cache operations (dcbf, dcbst, dcbt, dcbtst) The overflow-checking arithmetic instructions are not included, but they appear not to be ever used in C code. This uses decimal values for the minor opcodes in the switch statements because that is what appears in the Power ISA specification, thus it is easier to check that they are correct if they are in decimal. If this is used to single-step an instruction where a data breakpoint interrupt occurred, then there is the possibility that the instruction is a lwarx or ldarx. In that case we have to be careful not to lose the reservation until we get to the matching st[wd]cx., or we'll never make forward progress. One alternative is to try to arrange that we can return from interrupts and handle data breakpoint interrupts without losing the reservation, which means not using any spinlocks, mutexes, or atomic ops (including bitops). That seems rather fragile. The other alternative is to emulate the larx/stcx and all the instructions in between. This is why this commit adds support for a wide range of integer instructions. Signed-off-by: Paul Mackerras <paulus@samba.org>
2010-06-15 12:48:58 +08:00
#define PPC_MIN_STKFRM 112
#ifdef __BIG_ENDIAN__
#define LHZX_BE stringify_in_c(lhzx)
#define LWZX_BE stringify_in_c(lwzx)
#define LDX_BE stringify_in_c(ldx)
#define STWX_BE stringify_in_c(stwx)
#define STDX_BE stringify_in_c(stdx)
#else
#define LHZX_BE stringify_in_c(lhbrx)
#define LWZX_BE stringify_in_c(lwbrx)
#define LDX_BE stringify_in_c(ldbrx)
#define STWX_BE stringify_in_c(stwbrx)
#define STDX_BE stringify_in_c(stdbrx)
#endif
#else /* 32-bit */
/* operations for longs and pointers */
#define PPC_LL stringify_in_c(lwz)
#define PPC_STL stringify_in_c(stw)
#define PPC_STLU stringify_in_c(stwu)
#define PPC_LCMPI stringify_in_c(cmpwi)
#define PPC_LCMPLI stringify_in_c(cmplwi)
#define PPC_LCMP stringify_in_c(cmpw)
#define PPC_LONG stringify_in_c(.long)
#define PPC_LONG_ALIGN stringify_in_c(.balign 4)
#define PPC_TLNEI stringify_in_c(twnei)
#define PPC_LLARX(t, a, b, eh) PPC_LWARX(t, a, b, eh)
#define PPC_STLCX stringify_in_c(stwcx.)
#define PPC_CNTLZL stringify_in_c(cntlzw)
#define PPC_MTOCRF stringify_in_c(mtcrf)
#define PPC_LR_STKOFF 4
powerpc: Emulate most Book I instructions in emulate_step() This extends the emulate_step() function to handle a large proportion of the Book I instructions implemented on current 64-bit server processors. The aim is to handle all the load and store instructions used in the kernel, plus all of the instructions that appear between l[wd]arx and st[wd]cx., so this handles the Altivec/VMX lvx and stvx and the VSX lxv2dx and stxv2dx instructions (implemented in POWER7). The new code can emulate user mode instructions, and checks the effective address for a load or store if the saved state is for user mode. It doesn't handle little-endian mode at present. For floating-point, Altivec/VMX and VSX instructions, it checks that the saved MSR has the enable bit for the relevant facility set, and if so, assumes that the FP/VMX/VSX registers contain valid state, and does loads or stores directly to/from the FP/VMX/VSX registers, using assembly helpers in ldstfp.S. Instructions supported now include: * Loads and stores, including some but not all VMX and VSX instructions, and lmw/stmw * Atomic loads and stores (l[dw]arx, st[dw]cx.) * Arithmetic instructions (add, subtract, multiply, divide, etc.) * Compare instructions * Rotate and mask instructions * Shift instructions * Logical instructions (and, or, xor, etc.) * Condition register logical instructions * mtcrf, cntlz[wd], exts[bhw] * isync, sync, lwsync, ptesync, eieio * Cache operations (dcbf, dcbst, dcbt, dcbtst) The overflow-checking arithmetic instructions are not included, but they appear not to be ever used in C code. This uses decimal values for the minor opcodes in the switch statements because that is what appears in the Power ISA specification, thus it is easier to check that they are correct if they are in decimal. If this is used to single-step an instruction where a data breakpoint interrupt occurred, then there is the possibility that the instruction is a lwarx or ldarx. In that case we have to be careful not to lose the reservation until we get to the matching st[wd]cx., or we'll never make forward progress. One alternative is to try to arrange that we can return from interrupts and handle data breakpoint interrupts without losing the reservation, which means not using any spinlocks, mutexes, or atomic ops (including bitops). That seems rather fragile. The other alternative is to emulate the larx/stcx and all the instructions in between. This is why this commit adds support for a wide range of integer instructions. Signed-off-by: Paul Mackerras <paulus@samba.org>
2010-06-15 12:48:58 +08:00
#define PPC_MIN_STKFRM 16
#endif
#ifdef __KERNEL__
#ifdef CONFIG_IBM405_ERR77
/* Erratum #77 on the 405 means we need a sync or dcbt before every
* stwcx. The old ATOMIC_SYNC_FIX covered some but not all of this.
*/
#define PPC405_ERR77(ra,rb) stringify_in_c(dcbt ra, rb;)
#define PPC405_ERR77_SYNC stringify_in_c(sync;)
#else
#define PPC405_ERR77(ra,rb)
#define PPC405_ERR77_SYNC
#endif
#endif
#endif /* _ASM_POWERPC_ASM_COMPAT_H */