OpenCloudOS-Kernel/arch/mips/include/asm/compiler.h

46 lines
1.3 KiB
C
Raw Normal View History

/*
* Copyright (C) 2004, 2007 Maciej W. Rozycki
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#ifndef _ASM_COMPILER_H
#define _ASM_COMPILER_H
#if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
#define GCC_IMM_ASM() "n"
#define GCC_REG_ACCUM "$0"
#else
#define GCC_IMM_ASM() "rn"
#define GCC_REG_ACCUM "accum"
#endif
#ifdef CONFIG_CPU_MIPSR6
/* All MIPS R6 toolchains support the ZC constrain */
#define GCC_OFF_SMALL_ASM() "ZC"
#else
MIPS: Fix microMIPS LL/SC immediate offsets In the microMIPS encoding some memory access instructions have their immediate offset reduced to 12 bits only. That does not match the GCC `R' constraint we use in some places to satisfy the requirement, resulting in build failures like this: {standard input}: Assembler messages: {standard input}:720: Error: macro used $at after ".set noat" {standard input}:720: Warning: macro instruction expanded into multiple instructions Fix the problem by defining a macro, `GCC_OFF12_ASM', that expands to the right constraint depending on whether microMIPS or standard MIPS code is produced. Also apply the fix to where `m' is used as in the worst case this change does nothing, e.g. where the pointer was already in a register such as a function argument and no further offset was requested, and in the best case it avoids an extraneous sequence of up to two instructions to load the high 20 bits of the address in the LL/SC loop. This reduces the risk of lock contention that is the higher the more instructions there are in the critical section between LL and SC. Strictly speaking we could just bulk-replace `R' with `ZC' as the latter constraint adjusts automatically depending on the ISA selected. However it was only introduced with GCC 4.9 and we keep supporing older compilers for the standard MIPS configuration, hence the slightly more complicated approach I chose. The choice of a zero-argument function-like rather than an object-like macro was made so that it does not look like a function call taking the C expression used for the constraint as an argument. This is so as not to confuse the reader or formatting checkers like `checkpatch.pl' and follows previous practice. Signed-off-by: Maciej W. Rozycki <macro@codesourcery.com> Signed-off-by: Steven J. Hill <Steven.Hill@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/8482/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2014-11-16 06:08:48 +08:00
#ifndef CONFIG_CPU_MICROMIPS
#define GCC_OFF_SMALL_ASM() "R"
MIPS: Fix microMIPS LL/SC immediate offsets In the microMIPS encoding some memory access instructions have their immediate offset reduced to 12 bits only. That does not match the GCC `R' constraint we use in some places to satisfy the requirement, resulting in build failures like this: {standard input}: Assembler messages: {standard input}:720: Error: macro used $at after ".set noat" {standard input}:720: Warning: macro instruction expanded into multiple instructions Fix the problem by defining a macro, `GCC_OFF12_ASM', that expands to the right constraint depending on whether microMIPS or standard MIPS code is produced. Also apply the fix to where `m' is used as in the worst case this change does nothing, e.g. where the pointer was already in a register such as a function argument and no further offset was requested, and in the best case it avoids an extraneous sequence of up to two instructions to load the high 20 bits of the address in the LL/SC loop. This reduces the risk of lock contention that is the higher the more instructions there are in the critical section between LL and SC. Strictly speaking we could just bulk-replace `R' with `ZC' as the latter constraint adjusts automatically depending on the ISA selected. However it was only introduced with GCC 4.9 and we keep supporing older compilers for the standard MIPS configuration, hence the slightly more complicated approach I chose. The choice of a zero-argument function-like rather than an object-like macro was made so that it does not look like a function call taking the C expression used for the constraint as an argument. This is so as not to confuse the reader or formatting checkers like `checkpatch.pl' and follows previous practice. Signed-off-by: Maciej W. Rozycki <macro@codesourcery.com> Signed-off-by: Steven J. Hill <Steven.Hill@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/8482/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2014-11-16 06:08:48 +08:00
#elif __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 9)
#define GCC_OFF_SMALL_ASM() "ZC"
MIPS: Fix microMIPS LL/SC immediate offsets In the microMIPS encoding some memory access instructions have their immediate offset reduced to 12 bits only. That does not match the GCC `R' constraint we use in some places to satisfy the requirement, resulting in build failures like this: {standard input}: Assembler messages: {standard input}:720: Error: macro used $at after ".set noat" {standard input}:720: Warning: macro instruction expanded into multiple instructions Fix the problem by defining a macro, `GCC_OFF12_ASM', that expands to the right constraint depending on whether microMIPS or standard MIPS code is produced. Also apply the fix to where `m' is used as in the worst case this change does nothing, e.g. where the pointer was already in a register such as a function argument and no further offset was requested, and in the best case it avoids an extraneous sequence of up to two instructions to load the high 20 bits of the address in the LL/SC loop. This reduces the risk of lock contention that is the higher the more instructions there are in the critical section between LL and SC. Strictly speaking we could just bulk-replace `R' with `ZC' as the latter constraint adjusts automatically depending on the ISA selected. However it was only introduced with GCC 4.9 and we keep supporing older compilers for the standard MIPS configuration, hence the slightly more complicated approach I chose. The choice of a zero-argument function-like rather than an object-like macro was made so that it does not look like a function call taking the C expression used for the constraint as an argument. This is so as not to confuse the reader or formatting checkers like `checkpatch.pl' and follows previous practice. Signed-off-by: Maciej W. Rozycki <macro@codesourcery.com> Signed-off-by: Steven J. Hill <Steven.Hill@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/8482/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2014-11-16 06:08:48 +08:00
#else
#error "microMIPS compilation unsupported with GCC older than 4.9"
#endif /* CONFIG_CPU_MICROMIPS */
#endif /* CONFIG_CPU_MIPSR6 */
MIPS: Fix microMIPS LL/SC immediate offsets In the microMIPS encoding some memory access instructions have their immediate offset reduced to 12 bits only. That does not match the GCC `R' constraint we use in some places to satisfy the requirement, resulting in build failures like this: {standard input}: Assembler messages: {standard input}:720: Error: macro used $at after ".set noat" {standard input}:720: Warning: macro instruction expanded into multiple instructions Fix the problem by defining a macro, `GCC_OFF12_ASM', that expands to the right constraint depending on whether microMIPS or standard MIPS code is produced. Also apply the fix to where `m' is used as in the worst case this change does nothing, e.g. where the pointer was already in a register such as a function argument and no further offset was requested, and in the best case it avoids an extraneous sequence of up to two instructions to load the high 20 bits of the address in the LL/SC loop. This reduces the risk of lock contention that is the higher the more instructions there are in the critical section between LL and SC. Strictly speaking we could just bulk-replace `R' with `ZC' as the latter constraint adjusts automatically depending on the ISA selected. However it was only introduced with GCC 4.9 and we keep supporing older compilers for the standard MIPS configuration, hence the slightly more complicated approach I chose. The choice of a zero-argument function-like rather than an object-like macro was made so that it does not look like a function call taking the C expression used for the constraint as an argument. This is so as not to confuse the reader or formatting checkers like `checkpatch.pl' and follows previous practice. Signed-off-by: Maciej W. Rozycki <macro@codesourcery.com> Signed-off-by: Steven J. Hill <Steven.Hill@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/8482/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2014-11-16 06:08:48 +08:00
#ifdef CONFIG_CPU_MIPSR6
#define MIPS_ISA_LEVEL "mips64r6"
#define MIPS_ISA_ARCH_LEVEL MIPS_ISA_LEVEL
#define MIPS_ISA_LEVEL_RAW mips64r6
#define MIPS_ISA_ARCH_LEVEL_RAW MIPS_ISA_LEVEL_RAW
#else
/* MIPS64 is a superset of MIPS32 */
#define MIPS_ISA_LEVEL "mips64r2"
#define MIPS_ISA_ARCH_LEVEL "arch=r4000"
#define MIPS_ISA_LEVEL_RAW mips64r2
#define MIPS_ISA_ARCH_LEVEL_RAW MIPS_ISA_LEVEL_RAW
#endif /* CONFIG_CPU_MIPSR6 */
#endif /* _ASM_COMPILER_H */