OpenCloudOS-Kernel/arch/powerpc/platforms/powermac/time.c

329 lines
8.0 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* Support for periodic interrupts (100 per second) and for getting
* the current time from the RTC on Power Macintoshes.
*
* We use the decrementer register for our periodic interrupts.
*
* Paul Mackerras August 1996.
* Copyright (C) 1996 Paul Mackerras.
* Copyright (C) 2003-2005 Benjamin Herrenschmidt.
*
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/time.h>
#include <linux/adb.h>
#include <linux/cuda.h>
#include <linux/pmu.h>
#include <linux/interrupt.h>
#include <linux/hardirq.h>
#include <linux/rtc.h>
#include <asm/sections.h>
#include <asm/prom.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/machdep.h>
#include <asm/time.h>
#include <asm/nvram.h>
#include <asm/smu.h>
#undef DEBUG
#ifdef DEBUG
#define DBG(x...) printk(x)
#else
#define DBG(x...)
#endif
powerpc/powermac: Fix rtc read/write functions As Mathieu pointed out, my conversion to time64_t was incorrect and resulted in negative times to be read from the RTC. The problem is that during the conversion from a byte array to a time64_t, the 'unsigned char' variable holding the top byte gets turned into a negative signed 32-bit integer before being assigned to the 64-bit variable for any times after 1972. This changes the logic to cast to an unsigned 32-bit number first for the Macintosh time and then convert that to the Unix time, which then gives us a time in the documented 1904..2040 year range. I decided not to use the longer 1970..2106 range that other drivers use, for consistency with the literal interpretation of the register, but that could be easily changed if we decide we want to support any Mac after 2040. Just to be on the safe side, I'm also adding a WARN_ON that will trigger if either the year 2040 has come and is observed by this driver, or we run into an RTC that got set back to a pre-1970 date for some reason (the two are indistinguishable). For the RTC write functions, Andreas found another problem: both pmu_request() and cuda_request() are varargs functions, so changing the type of the arguments passed into them from 32 bit to 64 bit breaks the API for the set_rtc_time functions. This changes it back to 32 bits. The same code exists in arch/m68k/ and is patched in an identical way now in a separate patch. Fixes: 5bfd643583b2 ("powerpc: use time64_t in read_persistent_clock") Reported-by: Mathieu Malaterre <malat@debian.org> Reported-by: Andreas Schwab <schwab@linux-m68k.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Tested-by: Mathieu Malaterre <malat@debian.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-06-19 22:02:27 +08:00
/*
* Offset between Unix time (1970-based) and Mac time (1904-based). Cuda and PMU
* times wrap in 2040. If we need to handle later times, the read_time functions
* need to be changed to interpret wrapped times as post-2040.
*/
#define RTC_OFFSET 2082844800
/*
* Calibrate the decrementer frequency with the VIA timer 1.
*/
#define VIA_TIMER_FREQ_6 4700000 /* time 1 frequency * 6 */
/* VIA registers */
#define RS 0x200 /* skip between registers */
#define T1CL (4*RS) /* Timer 1 ctr/latch (low 8 bits) */
#define T1CH (5*RS) /* Timer 1 counter (high 8 bits) */
#define T1LL (6*RS) /* Timer 1 latch (low 8 bits) */
#define T1LH (7*RS) /* Timer 1 latch (high 8 bits) */
#define ACR (11*RS) /* Auxiliary control register */
#define IFR (13*RS) /* Interrupt flag register */
/* Bits in ACR */
#define T1MODE 0xc0 /* Timer 1 mode */
#define T1MODE_CONT 0x40 /* continuous interrupts */
/* Bits in IFR and IER */
#define T1_INT 0x40 /* Timer 1 interrupt */
long __init pmac_time_init(void)
{
s32 delta = 0;
#ifdef CONFIG_NVRAM
int dst;
delta = ((s32)pmac_xpram_read(PMAC_XPRAM_MACHINE_LOC + 0x9)) << 16;
delta |= ((s32)pmac_xpram_read(PMAC_XPRAM_MACHINE_LOC + 0xa)) << 8;
delta |= pmac_xpram_read(PMAC_XPRAM_MACHINE_LOC + 0xb);
if (delta & 0x00800000UL)
delta |= 0xFF000000UL;
dst = ((pmac_xpram_read(PMAC_XPRAM_MACHINE_LOC + 0x8) & 0x80) != 0);
printk("GMT Delta read from XPRAM: %d minutes, DST: %s\n", delta/60,
dst ? "on" : "off");
#endif
return delta;
}
#ifdef CONFIG_ADB_CUDA
static time64_t cuda_get_time(void)
{
struct adb_request req;
time64_t now;
if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_GET_TIME) < 0)
return 0;
while (!req.complete)
cuda_poll();
if (req.reply_len != 7)
printk(KERN_ERR "cuda_get_time: got %d byte reply\n",
req.reply_len);
powerpc/powermac: Fix rtc read/write functions As Mathieu pointed out, my conversion to time64_t was incorrect and resulted in negative times to be read from the RTC. The problem is that during the conversion from a byte array to a time64_t, the 'unsigned char' variable holding the top byte gets turned into a negative signed 32-bit integer before being assigned to the 64-bit variable for any times after 1972. This changes the logic to cast to an unsigned 32-bit number first for the Macintosh time and then convert that to the Unix time, which then gives us a time in the documented 1904..2040 year range. I decided not to use the longer 1970..2106 range that other drivers use, for consistency with the literal interpretation of the register, but that could be easily changed if we decide we want to support any Mac after 2040. Just to be on the safe side, I'm also adding a WARN_ON that will trigger if either the year 2040 has come and is observed by this driver, or we run into an RTC that got set back to a pre-1970 date for some reason (the two are indistinguishable). For the RTC write functions, Andreas found another problem: both pmu_request() and cuda_request() are varargs functions, so changing the type of the arguments passed into them from 32 bit to 64 bit breaks the API for the set_rtc_time functions. This changes it back to 32 bits. The same code exists in arch/m68k/ and is patched in an identical way now in a separate patch. Fixes: 5bfd643583b2 ("powerpc: use time64_t in read_persistent_clock") Reported-by: Mathieu Malaterre <malat@debian.org> Reported-by: Andreas Schwab <schwab@linux-m68k.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Tested-by: Mathieu Malaterre <malat@debian.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-06-19 22:02:27 +08:00
now = (u32)((req.reply[3] << 24) + (req.reply[4] << 16) +
(req.reply[5] << 8) + req.reply[6]);
/* it's either after year 2040, or the RTC has gone backwards */
WARN_ON(now < RTC_OFFSET);
return now - RTC_OFFSET;
}
#define cuda_get_rtc_time(tm) rtc_time64_to_tm(cuda_get_time(), (tm))
static int cuda_set_rtc_time(struct rtc_time *tm)
{
powerpc/powermac: Fix rtc read/write functions As Mathieu pointed out, my conversion to time64_t was incorrect and resulted in negative times to be read from the RTC. The problem is that during the conversion from a byte array to a time64_t, the 'unsigned char' variable holding the top byte gets turned into a negative signed 32-bit integer before being assigned to the 64-bit variable for any times after 1972. This changes the logic to cast to an unsigned 32-bit number first for the Macintosh time and then convert that to the Unix time, which then gives us a time in the documented 1904..2040 year range. I decided not to use the longer 1970..2106 range that other drivers use, for consistency with the literal interpretation of the register, but that could be easily changed if we decide we want to support any Mac after 2040. Just to be on the safe side, I'm also adding a WARN_ON that will trigger if either the year 2040 has come and is observed by this driver, or we run into an RTC that got set back to a pre-1970 date for some reason (the two are indistinguishable). For the RTC write functions, Andreas found another problem: both pmu_request() and cuda_request() are varargs functions, so changing the type of the arguments passed into them from 32 bit to 64 bit breaks the API for the set_rtc_time functions. This changes it back to 32 bits. The same code exists in arch/m68k/ and is patched in an identical way now in a separate patch. Fixes: 5bfd643583b2 ("powerpc: use time64_t in read_persistent_clock") Reported-by: Mathieu Malaterre <malat@debian.org> Reported-by: Andreas Schwab <schwab@linux-m68k.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Tested-by: Mathieu Malaterre <malat@debian.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-06-19 22:02:27 +08:00
u32 nowtime;
struct adb_request req;
powerpc/powermac: Fix rtc read/write functions As Mathieu pointed out, my conversion to time64_t was incorrect and resulted in negative times to be read from the RTC. The problem is that during the conversion from a byte array to a time64_t, the 'unsigned char' variable holding the top byte gets turned into a negative signed 32-bit integer before being assigned to the 64-bit variable for any times after 1972. This changes the logic to cast to an unsigned 32-bit number first for the Macintosh time and then convert that to the Unix time, which then gives us a time in the documented 1904..2040 year range. I decided not to use the longer 1970..2106 range that other drivers use, for consistency with the literal interpretation of the register, but that could be easily changed if we decide we want to support any Mac after 2040. Just to be on the safe side, I'm also adding a WARN_ON that will trigger if either the year 2040 has come and is observed by this driver, or we run into an RTC that got set back to a pre-1970 date for some reason (the two are indistinguishable). For the RTC write functions, Andreas found another problem: both pmu_request() and cuda_request() are varargs functions, so changing the type of the arguments passed into them from 32 bit to 64 bit breaks the API for the set_rtc_time functions. This changes it back to 32 bits. The same code exists in arch/m68k/ and is patched in an identical way now in a separate patch. Fixes: 5bfd643583b2 ("powerpc: use time64_t in read_persistent_clock") Reported-by: Mathieu Malaterre <malat@debian.org> Reported-by: Andreas Schwab <schwab@linux-m68k.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Tested-by: Mathieu Malaterre <malat@debian.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-06-19 22:02:27 +08:00
nowtime = lower_32_bits(rtc_tm_to_time64(tm) + RTC_OFFSET);
if (cuda_request(&req, NULL, 6, CUDA_PACKET, CUDA_SET_TIME,
nowtime >> 24, nowtime >> 16, nowtime >> 8,
nowtime) < 0)
return -ENXIO;
while (!req.complete)
cuda_poll();
if ((req.reply_len != 3) && (req.reply_len != 7))
printk(KERN_ERR "cuda_set_rtc_time: got %d byte reply\n",
req.reply_len);
return 0;
}
#else
#define cuda_get_time() 0
#define cuda_get_rtc_time(tm)
#define cuda_set_rtc_time(tm) 0
#endif
#ifdef CONFIG_ADB_PMU
static time64_t pmu_get_time(void)
{
struct adb_request req;
time64_t now;
if (pmu_request(&req, NULL, 1, PMU_READ_RTC) < 0)
return 0;
pmu_wait_complete(&req);
if (req.reply_len != 4)
printk(KERN_ERR "pmu_get_time: got %d byte reply from PMU\n",
req.reply_len);
powerpc/powermac: Fix rtc read/write functions As Mathieu pointed out, my conversion to time64_t was incorrect and resulted in negative times to be read from the RTC. The problem is that during the conversion from a byte array to a time64_t, the 'unsigned char' variable holding the top byte gets turned into a negative signed 32-bit integer before being assigned to the 64-bit variable for any times after 1972. This changes the logic to cast to an unsigned 32-bit number first for the Macintosh time and then convert that to the Unix time, which then gives us a time in the documented 1904..2040 year range. I decided not to use the longer 1970..2106 range that other drivers use, for consistency with the literal interpretation of the register, but that could be easily changed if we decide we want to support any Mac after 2040. Just to be on the safe side, I'm also adding a WARN_ON that will trigger if either the year 2040 has come and is observed by this driver, or we run into an RTC that got set back to a pre-1970 date for some reason (the two are indistinguishable). For the RTC write functions, Andreas found another problem: both pmu_request() and cuda_request() are varargs functions, so changing the type of the arguments passed into them from 32 bit to 64 bit breaks the API for the set_rtc_time functions. This changes it back to 32 bits. The same code exists in arch/m68k/ and is patched in an identical way now in a separate patch. Fixes: 5bfd643583b2 ("powerpc: use time64_t in read_persistent_clock") Reported-by: Mathieu Malaterre <malat@debian.org> Reported-by: Andreas Schwab <schwab@linux-m68k.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Tested-by: Mathieu Malaterre <malat@debian.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-06-19 22:02:27 +08:00
now = (u32)((req.reply[0] << 24) + (req.reply[1] << 16) +
(req.reply[2] << 8) + req.reply[3]);
/* it's either after year 2040, or the RTC has gone backwards */
WARN_ON(now < RTC_OFFSET);
return now - RTC_OFFSET;
}
#define pmu_get_rtc_time(tm) rtc_time64_to_tm(pmu_get_time(), (tm))
static int pmu_set_rtc_time(struct rtc_time *tm)
{
powerpc/powermac: Fix rtc read/write functions As Mathieu pointed out, my conversion to time64_t was incorrect and resulted in negative times to be read from the RTC. The problem is that during the conversion from a byte array to a time64_t, the 'unsigned char' variable holding the top byte gets turned into a negative signed 32-bit integer before being assigned to the 64-bit variable for any times after 1972. This changes the logic to cast to an unsigned 32-bit number first for the Macintosh time and then convert that to the Unix time, which then gives us a time in the documented 1904..2040 year range. I decided not to use the longer 1970..2106 range that other drivers use, for consistency with the literal interpretation of the register, but that could be easily changed if we decide we want to support any Mac after 2040. Just to be on the safe side, I'm also adding a WARN_ON that will trigger if either the year 2040 has come and is observed by this driver, or we run into an RTC that got set back to a pre-1970 date for some reason (the two are indistinguishable). For the RTC write functions, Andreas found another problem: both pmu_request() and cuda_request() are varargs functions, so changing the type of the arguments passed into them from 32 bit to 64 bit breaks the API for the set_rtc_time functions. This changes it back to 32 bits. The same code exists in arch/m68k/ and is patched in an identical way now in a separate patch. Fixes: 5bfd643583b2 ("powerpc: use time64_t in read_persistent_clock") Reported-by: Mathieu Malaterre <malat@debian.org> Reported-by: Andreas Schwab <schwab@linux-m68k.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Tested-by: Mathieu Malaterre <malat@debian.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-06-19 22:02:27 +08:00
u32 nowtime;
struct adb_request req;
powerpc/powermac: Fix rtc read/write functions As Mathieu pointed out, my conversion to time64_t was incorrect and resulted in negative times to be read from the RTC. The problem is that during the conversion from a byte array to a time64_t, the 'unsigned char' variable holding the top byte gets turned into a negative signed 32-bit integer before being assigned to the 64-bit variable for any times after 1972. This changes the logic to cast to an unsigned 32-bit number first for the Macintosh time and then convert that to the Unix time, which then gives us a time in the documented 1904..2040 year range. I decided not to use the longer 1970..2106 range that other drivers use, for consistency with the literal interpretation of the register, but that could be easily changed if we decide we want to support any Mac after 2040. Just to be on the safe side, I'm also adding a WARN_ON that will trigger if either the year 2040 has come and is observed by this driver, or we run into an RTC that got set back to a pre-1970 date for some reason (the two are indistinguishable). For the RTC write functions, Andreas found another problem: both pmu_request() and cuda_request() are varargs functions, so changing the type of the arguments passed into them from 32 bit to 64 bit breaks the API for the set_rtc_time functions. This changes it back to 32 bits. The same code exists in arch/m68k/ and is patched in an identical way now in a separate patch. Fixes: 5bfd643583b2 ("powerpc: use time64_t in read_persistent_clock") Reported-by: Mathieu Malaterre <malat@debian.org> Reported-by: Andreas Schwab <schwab@linux-m68k.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Tested-by: Mathieu Malaterre <malat@debian.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-06-19 22:02:27 +08:00
nowtime = lower_32_bits(rtc_tm_to_time64(tm) + RTC_OFFSET);
if (pmu_request(&req, NULL, 5, PMU_SET_RTC, nowtime >> 24,
nowtime >> 16, nowtime >> 8, nowtime) < 0)
return -ENXIO;
pmu_wait_complete(&req);
if (req.reply_len != 0)
printk(KERN_ERR "pmu_set_rtc_time: %d byte reply from PMU\n",
req.reply_len);
return 0;
}
#else
#define pmu_get_time() 0
#define pmu_get_rtc_time(tm)
#define pmu_set_rtc_time(tm) 0
#endif
#ifdef CONFIG_PMAC_SMU
static time64_t smu_get_time(void)
{
struct rtc_time tm;
if (smu_get_rtc_time(&tm, 1))
return 0;
return rtc_tm_to_time64(&tm);
}
#else
#define smu_get_time() 0
#define smu_get_rtc_time(tm, spin)
#define smu_set_rtc_time(tm, spin) 0
#endif
/* Can't be __init, it's called when suspending and resuming */
time64_t pmac_get_boot_time(void)
{
/* Get the time from the RTC, used only at boot time */
switch (sys_ctrler) {
case SYS_CTRLER_CUDA:
return cuda_get_time();
case SYS_CTRLER_PMU:
return pmu_get_time();
case SYS_CTRLER_SMU:
return smu_get_time();
default:
return 0;
}
}
void pmac_get_rtc_time(struct rtc_time *tm)
{
/* Get the time from the RTC, used only at boot time */
switch (sys_ctrler) {
case SYS_CTRLER_CUDA:
cuda_get_rtc_time(tm);
break;
case SYS_CTRLER_PMU:
pmu_get_rtc_time(tm);
break;
case SYS_CTRLER_SMU:
smu_get_rtc_time(tm, 1);
break;
default:
;
}
}
int pmac_set_rtc_time(struct rtc_time *tm)
{
switch (sys_ctrler) {
case SYS_CTRLER_CUDA:
return cuda_set_rtc_time(tm);
case SYS_CTRLER_PMU:
return pmu_set_rtc_time(tm);
case SYS_CTRLER_SMU:
return smu_set_rtc_time(tm, 1);
default:
return -ENODEV;
}
}
#ifdef CONFIG_PPC32
/*
* Calibrate the decrementer register using VIA timer 1.
* This is used both on powermacs and CHRP machines.
*/
int __init via_calibrate_decr(void)
{
struct device_node *vias;
volatile unsigned char __iomem *via;
int count = VIA_TIMER_FREQ_6 / 100;
unsigned int dstart, dend;
struct resource rsrc;
vias = of_find_node_by_name(NULL, "via-cuda");
if (vias == NULL)
vias = of_find_node_by_name(NULL, "via-pmu");
if (vias == NULL)
vias = of_find_node_by_name(NULL, "via");
if (vias == NULL || of_address_to_resource(vias, 0, &rsrc)) {
of_node_put(vias);
return 0;
}
of_node_put(vias);
via = ioremap(rsrc.start, resource_size(&rsrc));
if (via == NULL) {
printk(KERN_ERR "Failed to map VIA for timer calibration !\n");
return 0;
}
/* set timer 1 for continuous interrupts */
out_8(&via[ACR], (via[ACR] & ~T1MODE) | T1MODE_CONT);
/* set the counter to a small value */
out_8(&via[T1CH], 2);
/* set the latch to `count' */
out_8(&via[T1LL], count);
out_8(&via[T1LH], count >> 8);
/* wait until it hits 0 */
while ((in_8(&via[IFR]) & T1_INT) == 0)
;
dstart = get_dec();
/* clear the interrupt & wait until it hits 0 again */
in_8(&via[T1CL]);
while ((in_8(&via[IFR]) & T1_INT) == 0)
;
dend = get_dec();
ppc_tb_freq = (dstart - dend) * 100 / 6;
iounmap(via);
return 1;
}
#endif
/*
* Query the OF and get the decr frequency.
*/
void __init pmac_calibrate_decr(void)
{
generic_calibrate_decr();
#ifdef CONFIG_PPC32
/* We assume MacRISC2 machines have correct device-tree
* calibration. That's better since the VIA itself seems
* to be slightly off. --BenH
*/
if (!of_machine_is_compatible("MacRISC2") &&
!of_machine_is_compatible("MacRISC3") &&
!of_machine_is_compatible("MacRISC4"))
if (via_calibrate_decr())
return;
/* Special case: QuickSilver G4s seem to have a badly calibrated
* timebase-frequency in OF, VIA is much better on these. We should
* probably implement calibration based on the KL timer on these
* machines anyway... -BenH
*/
if (of_machine_is_compatible("PowerMac3,5"))
if (via_calibrate_decr())
return;
#endif
}