OpenCloudOS-Kernel/drivers/scsi/fnic/fnic_fcs.c

723 lines
19 KiB
C
Raw Normal View History

/*
* Copyright 2008 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/errno.h>
#include <linux/pci.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/workqueue.h>
#include <scsi/fc/fc_fip.h>
#include <scsi/fc/fc_els.h>
#include <scsi/fc/fc_fcoe.h>
#include <scsi/fc_frame.h>
#include <scsi/libfc.h>
#include "fnic_io.h"
#include "fnic.h"
#include "cq_enet_desc.h"
#include "cq_exch_desc.h"
struct workqueue_struct *fnic_event_queue;
static void fnic_set_eth_mode(struct fnic *);
void fnic_handle_link(struct work_struct *work)
{
struct fnic *fnic = container_of(work, struct fnic, link_work);
unsigned long flags;
int old_link_status;
u32 old_link_down_cnt;
spin_lock_irqsave(&fnic->fnic_lock, flags);
if (fnic->stop_rx_link_events) {
spin_unlock_irqrestore(&fnic->fnic_lock, flags);
return;
}
old_link_down_cnt = fnic->link_down_cnt;
old_link_status = fnic->link_status;
fnic->link_status = vnic_dev_link_status(fnic->vdev);
fnic->link_down_cnt = vnic_dev_link_down_cnt(fnic->vdev);
if (old_link_status == fnic->link_status) {
if (!fnic->link_status)
/* DOWN -> DOWN */
spin_unlock_irqrestore(&fnic->fnic_lock, flags);
else {
if (old_link_down_cnt != fnic->link_down_cnt) {
/* UP -> DOWN -> UP */
fnic->lport->host_stats.link_failure_count++;
spin_unlock_irqrestore(&fnic->fnic_lock, flags);
FNIC_FCS_DBG(KERN_DEBUG, fnic->lport->host,
"link down\n");
fcoe_ctlr_link_down(&fnic->ctlr);
FNIC_FCS_DBG(KERN_DEBUG, fnic->lport->host,
"link up\n");
fcoe_ctlr_link_up(&fnic->ctlr);
} else
/* UP -> UP */
spin_unlock_irqrestore(&fnic->fnic_lock, flags);
}
} else if (fnic->link_status) {
/* DOWN -> UP */
spin_unlock_irqrestore(&fnic->fnic_lock, flags);
FNIC_FCS_DBG(KERN_DEBUG, fnic->lport->host, "link up\n");
fcoe_ctlr_link_up(&fnic->ctlr);
} else {
/* UP -> DOWN */
fnic->lport->host_stats.link_failure_count++;
spin_unlock_irqrestore(&fnic->fnic_lock, flags);
FNIC_FCS_DBG(KERN_DEBUG, fnic->lport->host, "link down\n");
fcoe_ctlr_link_down(&fnic->ctlr);
}
}
/*
* This function passes incoming fabric frames to libFC
*/
void fnic_handle_frame(struct work_struct *work)
{
struct fnic *fnic = container_of(work, struct fnic, frame_work);
struct fc_lport *lp = fnic->lport;
unsigned long flags;
struct sk_buff *skb;
struct fc_frame *fp;
while ((skb = skb_dequeue(&fnic->frame_queue))) {
spin_lock_irqsave(&fnic->fnic_lock, flags);
if (fnic->stop_rx_link_events) {
spin_unlock_irqrestore(&fnic->fnic_lock, flags);
dev_kfree_skb(skb);
return;
}
fp = (struct fc_frame *)skb;
/*
* If we're in a transitional state, just re-queue and return.
* The queue will be serviced when we get to a stable state.
*/
if (fnic->state != FNIC_IN_FC_MODE &&
fnic->state != FNIC_IN_ETH_MODE) {
skb_queue_head(&fnic->frame_queue, skb);
spin_unlock_irqrestore(&fnic->fnic_lock, flags);
return;
}
spin_unlock_irqrestore(&fnic->fnic_lock, flags);
[SCSI] fcoe, fnic, libfc: modifies current code paths to use EM anchor list Modifies current code to use EM anchor list in EM allocation, EM free, EM reset, exch allocation and exch lookup code paths. 1. Modifies fc_exch_mgr_alloc to accept EM match function and then have allocated EM added to the lport using fc_exch_mgr_add API while also updating EM kref for newly added EM. 2. Updates fc_exch_mgr_free API to accept only lport pointer instead EM and then have this API free all EMs of the lport from EM anchor list. 3. Removes single lport pointer link from the EM, which was used in associating lport pointer in newly allocated exchange. Instead have lport pointer passed along new exchange allocation call path and then store passed lport pointer in newly allocated exchange, this will allow a single EM instance to be used across more than one lport and used in EM reset to reset only lport specific exchanges. 4. Modifies fc_exch_mgr_reset to reset all EMs from the EM anchor list of the lport, adds additional exch lport pointer (ep->lp) check for shared EM case to reset exchange specific to a lport requested reset. 5. Updates exch allocation API fc_exch_alloc to use EM anchor list and its anchor match func pointer. The fc_exch_alloc will walk the list of EMs until it finds a match, a match will be either null match func pointer or call to match function returning true value. 6. Updates fc_exch_recv to accept incoming frame on local port using only lport pointer and frame pointer without specifying EM instance of incoming frame. Instead modified fc_exch_recv to locate EM for the incoming frame by matching xid of incoming frame against a EM xid range. This change was required to use EM list in libfc Rx path and after this change the lport fc_exch_mgr pointer emp is not needed anymore, so removed emp pointer. 7. Updates fnic for removed lport emp pointer and above modified libfc APIs fc_exch_recv, fc_exch_mgr_alloc and fc_exch_mgr_free. 8. Removes exch_get and exch_put from libfc_function_template as these are no longer needed with EM anchor list and its match function use. Also removes its default function fc_exch_get. A defect this patch introduced regarding the libfc initialization order in the fnic driver was fixed by Joe Eykholt <jeykholt@cisco.com>. Signed-off-by: Vasu Dev <vasu.dev@intel.com> Signed-off-by: Robert Love <robert.w.love@intel.com> Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com> Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2009-07-30 08:05:10 +08:00
fc_exch_recv(lp, fp);
}
}
/**
* fnic_import_rq_eth_pkt() - handle received FCoE or FIP frame.
* @fnic: fnic instance.
* @skb: Ethernet Frame.
*/
static inline int fnic_import_rq_eth_pkt(struct fnic *fnic, struct sk_buff *skb)
{
struct fc_frame *fp;
struct ethhdr *eh;
struct fcoe_hdr *fcoe_hdr;
struct fcoe_crc_eof *ft;
/*
* Undo VLAN encapsulation if present.
*/
eh = (struct ethhdr *)skb->data;
if (eh->h_proto == htons(ETH_P_8021Q)) {
memmove((u8 *)eh + VLAN_HLEN, eh, ETH_ALEN * 2);
eh = (struct ethhdr *)skb_pull(skb, VLAN_HLEN);
skb_reset_mac_header(skb);
}
if (eh->h_proto == htons(ETH_P_FIP)) {
skb_pull(skb, sizeof(*eh));
fcoe_ctlr_recv(&fnic->ctlr, skb);
return 1; /* let caller know packet was used */
}
if (eh->h_proto != htons(ETH_P_FCOE))
goto drop;
skb_set_network_header(skb, sizeof(*eh));
skb_pull(skb, sizeof(*eh));
fcoe_hdr = (struct fcoe_hdr *)skb->data;
if (FC_FCOE_DECAPS_VER(fcoe_hdr) != FC_FCOE_VER)
goto drop;
fp = (struct fc_frame *)skb;
fc_frame_init(fp);
fr_sof(fp) = fcoe_hdr->fcoe_sof;
skb_pull(skb, sizeof(struct fcoe_hdr));
skb_reset_transport_header(skb);
ft = (struct fcoe_crc_eof *)(skb->data + skb->len - sizeof(*ft));
fr_eof(fp) = ft->fcoe_eof;
skb_trim(skb, skb->len - sizeof(*ft));
return 0;
drop:
dev_kfree_skb_irq(skb);
return -1;
}
/**
* fnic_update_mac_locked() - set data MAC address and filters.
* @fnic: fnic instance.
* @new: newly-assigned FCoE MAC address.
*
* Called with the fnic lock held.
*/
void fnic_update_mac_locked(struct fnic *fnic, u8 *new)
{
u8 *ctl = fnic->ctlr.ctl_src_addr;
u8 *data = fnic->data_src_addr;
if (is_zero_ether_addr(new))
new = ctl;
if (!compare_ether_addr(data, new))
return;
FNIC_FCS_DBG(KERN_DEBUG, fnic->lport->host, "update_mac %pM\n", new);
if (!is_zero_ether_addr(data) && compare_ether_addr(data, ctl))
vnic_dev_del_addr(fnic->vdev, data);
memcpy(data, new, ETH_ALEN);
if (compare_ether_addr(new, ctl))
vnic_dev_add_addr(fnic->vdev, new);
}
/**
* fnic_update_mac() - set data MAC address and filters.
* @lport: local port.
* @new: newly-assigned FCoE MAC address.
*/
void fnic_update_mac(struct fc_lport *lport, u8 *new)
{
struct fnic *fnic = lport_priv(lport);
spin_lock_irq(&fnic->fnic_lock);
fnic_update_mac_locked(fnic, new);
spin_unlock_irq(&fnic->fnic_lock);
}
/**
* fnic_set_port_id() - set the port_ID after successful FLOGI.
* @lport: local port.
* @port_id: assigned FC_ID.
* @fp: received frame containing the FLOGI accept or NULL.
*
* This is called from libfc when a new FC_ID has been assigned.
* This causes us to reset the firmware to FC_MODE and setup the new MAC
* address and FC_ID.
*
* It is also called with FC_ID 0 when we're logged off.
*
* If the FC_ID is due to point-to-point, fp may be NULL.
*/
void fnic_set_port_id(struct fc_lport *lport, u32 port_id, struct fc_frame *fp)
{
struct fnic *fnic = lport_priv(lport);
u8 *mac;
int ret;
FNIC_FCS_DBG(KERN_DEBUG, lport->host, "set port_id %x fp %p\n",
port_id, fp);
/*
* If we're clearing the FC_ID, change to use the ctl_src_addr.
* Set ethernet mode to send FLOGI.
*/
if (!port_id) {
fnic_update_mac(lport, fnic->ctlr.ctl_src_addr);
fnic_set_eth_mode(fnic);
return;
}
if (fp) {
mac = fr_cb(fp)->granted_mac;
if (is_zero_ether_addr(mac)) {
/* non-FIP - FLOGI already accepted - ignore return */
fcoe_ctlr_recv_flogi(&fnic->ctlr, lport, fp);
}
fnic_update_mac(lport, mac);
}
/* Change state to reflect transition to FC mode */
spin_lock_irq(&fnic->fnic_lock);
if (fnic->state == FNIC_IN_ETH_MODE || fnic->state == FNIC_IN_FC_MODE)
fnic->state = FNIC_IN_ETH_TRANS_FC_MODE;
else {
FNIC_FCS_DBG(KERN_DEBUG, fnic->lport->host,
"Unexpected fnic state %s while"
" processing flogi resp\n",
fnic_state_to_str(fnic->state));
spin_unlock_irq(&fnic->fnic_lock);
return;
}
spin_unlock_irq(&fnic->fnic_lock);
/*
* Send FLOGI registration to firmware to set up FC mode.
* The new address will be set up when registration completes.
*/
ret = fnic_flogi_reg_handler(fnic, port_id);
if (ret < 0) {
spin_lock_irq(&fnic->fnic_lock);
if (fnic->state == FNIC_IN_ETH_TRANS_FC_MODE)
fnic->state = FNIC_IN_ETH_MODE;
spin_unlock_irq(&fnic->fnic_lock);
}
}
static void fnic_rq_cmpl_frame_recv(struct vnic_rq *rq, struct cq_desc
*cq_desc, struct vnic_rq_buf *buf,
int skipped __attribute__((unused)),
void *opaque)
{
struct fnic *fnic = vnic_dev_priv(rq->vdev);
struct sk_buff *skb;
struct fc_frame *fp;
unsigned int eth_hdrs_stripped;
u8 type, color, eop, sop, ingress_port, vlan_stripped;
u8 fcoe = 0, fcoe_sof, fcoe_eof;
u8 fcoe_fc_crc_ok = 1, fcoe_enc_error = 0;
u8 tcp_udp_csum_ok, udp, tcp, ipv4_csum_ok;
u8 ipv6, ipv4, ipv4_fragment, rss_type, csum_not_calc;
u8 fcs_ok = 1, packet_error = 0;
u16 q_number, completed_index, bytes_written = 0, vlan, checksum;
u32 rss_hash;
u16 exchange_id, tmpl;
u8 sof = 0;
u8 eof = 0;
u32 fcp_bytes_written = 0;
unsigned long flags;
pci_unmap_single(fnic->pdev, buf->dma_addr, buf->len,
PCI_DMA_FROMDEVICE);
skb = buf->os_buf;
fp = (struct fc_frame *)skb;
buf->os_buf = NULL;
cq_desc_dec(cq_desc, &type, &color, &q_number, &completed_index);
if (type == CQ_DESC_TYPE_RQ_FCP) {
cq_fcp_rq_desc_dec((struct cq_fcp_rq_desc *)cq_desc,
&type, &color, &q_number, &completed_index,
&eop, &sop, &fcoe_fc_crc_ok, &exchange_id,
&tmpl, &fcp_bytes_written, &sof, &eof,
&ingress_port, &packet_error,
&fcoe_enc_error, &fcs_ok, &vlan_stripped,
&vlan);
eth_hdrs_stripped = 1;
skb_trim(skb, fcp_bytes_written);
fr_sof(fp) = sof;
fr_eof(fp) = eof;
} else if (type == CQ_DESC_TYPE_RQ_ENET) {
cq_enet_rq_desc_dec((struct cq_enet_rq_desc *)cq_desc,
&type, &color, &q_number, &completed_index,
&ingress_port, &fcoe, &eop, &sop,
&rss_type, &csum_not_calc, &rss_hash,
&bytes_written, &packet_error,
&vlan_stripped, &vlan, &checksum,
&fcoe_sof, &fcoe_fc_crc_ok,
&fcoe_enc_error, &fcoe_eof,
&tcp_udp_csum_ok, &udp, &tcp,
&ipv4_csum_ok, &ipv6, &ipv4,
&ipv4_fragment, &fcs_ok);
eth_hdrs_stripped = 0;
skb_trim(skb, bytes_written);
if (!fcs_ok) {
FNIC_FCS_DBG(KERN_DEBUG, fnic->lport->host,
"fcs error. dropping packet.\n");
goto drop;
}
if (fnic_import_rq_eth_pkt(fnic, skb))
return;
} else {
/* wrong CQ type*/
shost_printk(KERN_ERR, fnic->lport->host,
"fnic rq_cmpl wrong cq type x%x\n", type);
goto drop;
}
if (!fcs_ok || packet_error || !fcoe_fc_crc_ok || fcoe_enc_error) {
FNIC_FCS_DBG(KERN_DEBUG, fnic->lport->host,
"fnic rq_cmpl fcoe x%x fcsok x%x"
" pkterr x%x fcoe_fc_crc_ok x%x, fcoe_enc_err"
" x%x\n",
fcoe, fcs_ok, packet_error,
fcoe_fc_crc_ok, fcoe_enc_error);
goto drop;
}
spin_lock_irqsave(&fnic->fnic_lock, flags);
if (fnic->stop_rx_link_events) {
spin_unlock_irqrestore(&fnic->fnic_lock, flags);
goto drop;
}
fr_dev(fp) = fnic->lport;
spin_unlock_irqrestore(&fnic->fnic_lock, flags);
skb_queue_tail(&fnic->frame_queue, skb);
queue_work(fnic_event_queue, &fnic->frame_work);
return;
drop:
dev_kfree_skb_irq(skb);
}
static int fnic_rq_cmpl_handler_cont(struct vnic_dev *vdev,
struct cq_desc *cq_desc, u8 type,
u16 q_number, u16 completed_index,
void *opaque)
{
struct fnic *fnic = vnic_dev_priv(vdev);
vnic_rq_service(&fnic->rq[q_number], cq_desc, completed_index,
VNIC_RQ_RETURN_DESC, fnic_rq_cmpl_frame_recv,
NULL);
return 0;
}
int fnic_rq_cmpl_handler(struct fnic *fnic, int rq_work_to_do)
{
unsigned int tot_rq_work_done = 0, cur_work_done;
unsigned int i;
int err;
for (i = 0; i < fnic->rq_count; i++) {
cur_work_done = vnic_cq_service(&fnic->cq[i], rq_work_to_do,
fnic_rq_cmpl_handler_cont,
NULL);
if (cur_work_done) {
err = vnic_rq_fill(&fnic->rq[i], fnic_alloc_rq_frame);
if (err)
shost_printk(KERN_ERR, fnic->lport->host,
"fnic_alloc_rq_frame can't alloc"
" frame\n");
}
tot_rq_work_done += cur_work_done;
}
return tot_rq_work_done;
}
/*
* This function is called once at init time to allocate and fill RQ
* buffers. Subsequently, it is called in the interrupt context after RQ
* buffer processing to replenish the buffers in the RQ
*/
int fnic_alloc_rq_frame(struct vnic_rq *rq)
{
struct fnic *fnic = vnic_dev_priv(rq->vdev);
struct sk_buff *skb;
u16 len;
dma_addr_t pa;
len = FC_FRAME_HEADROOM + FC_MAX_FRAME + FC_FRAME_TAILROOM;
skb = dev_alloc_skb(len);
if (!skb) {
FNIC_FCS_DBG(KERN_DEBUG, fnic->lport->host,
"Unable to allocate RQ sk_buff\n");
return -ENOMEM;
}
skb_reset_mac_header(skb);
skb_reset_transport_header(skb);
skb_reset_network_header(skb);
skb_put(skb, len);
pa = pci_map_single(fnic->pdev, skb->data, len, PCI_DMA_FROMDEVICE);
fnic_queue_rq_desc(rq, skb, pa, len);
return 0;
}
void fnic_free_rq_buf(struct vnic_rq *rq, struct vnic_rq_buf *buf)
{
struct fc_frame *fp = buf->os_buf;
struct fnic *fnic = vnic_dev_priv(rq->vdev);
pci_unmap_single(fnic->pdev, buf->dma_addr, buf->len,
PCI_DMA_FROMDEVICE);
dev_kfree_skb(fp_skb(fp));
buf->os_buf = NULL;
}
/**
* fnic_eth_send() - Send Ethernet frame.
* @fip: fcoe_ctlr instance.
* @skb: Ethernet Frame, FIP, without VLAN encapsulation.
*/
void fnic_eth_send(struct fcoe_ctlr *fip, struct sk_buff *skb)
{
struct fnic *fnic = fnic_from_ctlr(fip);
struct vnic_wq *wq = &fnic->wq[0];
dma_addr_t pa;
struct ethhdr *eth_hdr;
struct vlan_ethhdr *vlan_hdr;
unsigned long flags;
if (!fnic->vlan_hw_insert) {
eth_hdr = (struct ethhdr *)skb_mac_header(skb);
vlan_hdr = (struct vlan_ethhdr *)skb_push(skb,
sizeof(*vlan_hdr) - sizeof(*eth_hdr));
memcpy(vlan_hdr, eth_hdr, 2 * ETH_ALEN);
vlan_hdr->h_vlan_proto = htons(ETH_P_8021Q);
vlan_hdr->h_vlan_encapsulated_proto = eth_hdr->h_proto;
vlan_hdr->h_vlan_TCI = htons(fnic->vlan_id);
}
pa = pci_map_single(fnic->pdev, skb->data, skb->len, PCI_DMA_TODEVICE);
spin_lock_irqsave(&fnic->wq_lock[0], flags);
if (!vnic_wq_desc_avail(wq)) {
pci_unmap_single(fnic->pdev, pa, skb->len, PCI_DMA_TODEVICE);
spin_unlock_irqrestore(&fnic->wq_lock[0], flags);
kfree_skb(skb);
return;
}
fnic_queue_wq_eth_desc(wq, skb, pa, skb->len,
0 /* hw inserts cos value */,
fnic->vlan_id, 1);
spin_unlock_irqrestore(&fnic->wq_lock[0], flags);
}
/*
* Send FC frame.
*/
static int fnic_send_frame(struct fnic *fnic, struct fc_frame *fp)
{
struct vnic_wq *wq = &fnic->wq[0];
struct sk_buff *skb;
dma_addr_t pa;
struct ethhdr *eth_hdr;
struct vlan_ethhdr *vlan_hdr;
struct fcoe_hdr *fcoe_hdr;
struct fc_frame_header *fh;
u32 tot_len, eth_hdr_len;
int ret = 0;
unsigned long flags;
fh = fc_frame_header_get(fp);
skb = fp_skb(fp);
if (unlikely(fh->fh_r_ctl == FC_RCTL_ELS_REQ) &&
fcoe_ctlr_els_send(&fnic->ctlr, fnic->lport, skb))
return 0;
if (!fnic->vlan_hw_insert) {
eth_hdr_len = sizeof(*vlan_hdr) + sizeof(*fcoe_hdr);
vlan_hdr = (struct vlan_ethhdr *)skb_push(skb, eth_hdr_len);
eth_hdr = (struct ethhdr *)vlan_hdr;
vlan_hdr->h_vlan_proto = htons(ETH_P_8021Q);
vlan_hdr->h_vlan_encapsulated_proto = htons(ETH_P_FCOE);
vlan_hdr->h_vlan_TCI = htons(fnic->vlan_id);
fcoe_hdr = (struct fcoe_hdr *)(vlan_hdr + 1);
} else {
eth_hdr_len = sizeof(*eth_hdr) + sizeof(*fcoe_hdr);
eth_hdr = (struct ethhdr *)skb_push(skb, eth_hdr_len);
eth_hdr->h_proto = htons(ETH_P_FCOE);
fcoe_hdr = (struct fcoe_hdr *)(eth_hdr + 1);
}
if (fnic->ctlr.map_dest)
fc_fcoe_set_mac(eth_hdr->h_dest, fh->fh_d_id);
else
memcpy(eth_hdr->h_dest, fnic->ctlr.dest_addr, ETH_ALEN);
memcpy(eth_hdr->h_source, fnic->data_src_addr, ETH_ALEN);
tot_len = skb->len;
BUG_ON(tot_len % 4);
memset(fcoe_hdr, 0, sizeof(*fcoe_hdr));
fcoe_hdr->fcoe_sof = fr_sof(fp);
if (FC_FCOE_VER)
FC_FCOE_ENCAPS_VER(fcoe_hdr, FC_FCOE_VER);
pa = pci_map_single(fnic->pdev, eth_hdr, tot_len, PCI_DMA_TODEVICE);
spin_lock_irqsave(&fnic->wq_lock[0], flags);
if (!vnic_wq_desc_avail(wq)) {
pci_unmap_single(fnic->pdev, pa,
tot_len, PCI_DMA_TODEVICE);
ret = -1;
goto fnic_send_frame_end;
}
fnic_queue_wq_desc(wq, skb, pa, tot_len, fr_eof(fp),
0 /* hw inserts cos value */,
fnic->vlan_id, 1, 1, 1);
fnic_send_frame_end:
spin_unlock_irqrestore(&fnic->wq_lock[0], flags);
if (ret)
dev_kfree_skb_any(fp_skb(fp));
return ret;
}
/*
* fnic_send
* Routine to send a raw frame
*/
int fnic_send(struct fc_lport *lp, struct fc_frame *fp)
{
struct fnic *fnic = lport_priv(lp);
unsigned long flags;
if (fnic->in_remove) {
dev_kfree_skb(fp_skb(fp));
return -1;
}
/*
* Queue frame if in a transitional state.
* This occurs while registering the Port_ID / MAC address after FLOGI.
*/
spin_lock_irqsave(&fnic->fnic_lock, flags);
if (fnic->state != FNIC_IN_FC_MODE && fnic->state != FNIC_IN_ETH_MODE) {
skb_queue_tail(&fnic->tx_queue, fp_skb(fp));
spin_unlock_irqrestore(&fnic->fnic_lock, flags);
return 0;
}
spin_unlock_irqrestore(&fnic->fnic_lock, flags);
return fnic_send_frame(fnic, fp);
}
/**
* fnic_flush_tx() - send queued frames.
* @fnic: fnic device
*
* Send frames that were waiting to go out in FC or Ethernet mode.
* Whenever changing modes we purge queued frames, so these frames should
* be queued for the stable mode that we're in, either FC or Ethernet.
*
* Called without fnic_lock held.
*/
void fnic_flush_tx(struct fnic *fnic)
{
struct sk_buff *skb;
struct fc_frame *fp;
while ((skb = skb_dequeue(&fnic->tx_queue))) {
fp = (struct fc_frame *)skb;
fnic_send_frame(fnic, fp);
}
}
/**
* fnic_set_eth_mode() - put fnic into ethernet mode.
* @fnic: fnic device
*
* Called without fnic lock held.
*/
static void fnic_set_eth_mode(struct fnic *fnic)
{
unsigned long flags;
enum fnic_state old_state;
int ret;
spin_lock_irqsave(&fnic->fnic_lock, flags);
again:
old_state = fnic->state;
switch (old_state) {
case FNIC_IN_FC_MODE:
case FNIC_IN_ETH_TRANS_FC_MODE:
default:
fnic->state = FNIC_IN_FC_TRANS_ETH_MODE;
spin_unlock_irqrestore(&fnic->fnic_lock, flags);
ret = fnic_fw_reset_handler(fnic);
spin_lock_irqsave(&fnic->fnic_lock, flags);
if (fnic->state != FNIC_IN_FC_TRANS_ETH_MODE)
goto again;
if (ret)
fnic->state = old_state;
break;
case FNIC_IN_FC_TRANS_ETH_MODE:
case FNIC_IN_ETH_MODE:
break;
}
spin_unlock_irqrestore(&fnic->fnic_lock, flags);
}
static void fnic_wq_complete_frame_send(struct vnic_wq *wq,
struct cq_desc *cq_desc,
struct vnic_wq_buf *buf, void *opaque)
{
struct sk_buff *skb = buf->os_buf;
struct fc_frame *fp = (struct fc_frame *)skb;
struct fnic *fnic = vnic_dev_priv(wq->vdev);
pci_unmap_single(fnic->pdev, buf->dma_addr,
buf->len, PCI_DMA_TODEVICE);
dev_kfree_skb_irq(fp_skb(fp));
buf->os_buf = NULL;
}
static int fnic_wq_cmpl_handler_cont(struct vnic_dev *vdev,
struct cq_desc *cq_desc, u8 type,
u16 q_number, u16 completed_index,
void *opaque)
{
struct fnic *fnic = vnic_dev_priv(vdev);
unsigned long flags;
spin_lock_irqsave(&fnic->wq_lock[q_number], flags);
vnic_wq_service(&fnic->wq[q_number], cq_desc, completed_index,
fnic_wq_complete_frame_send, NULL);
spin_unlock_irqrestore(&fnic->wq_lock[q_number], flags);
return 0;
}
int fnic_wq_cmpl_handler(struct fnic *fnic, int work_to_do)
{
unsigned int wq_work_done = 0;
unsigned int i;
for (i = 0; i < fnic->raw_wq_count; i++) {
wq_work_done += vnic_cq_service(&fnic->cq[fnic->rq_count+i],
work_to_do,
fnic_wq_cmpl_handler_cont,
NULL);
}
return wq_work_done;
}
void fnic_free_wq_buf(struct vnic_wq *wq, struct vnic_wq_buf *buf)
{
struct fc_frame *fp = buf->os_buf;
struct fnic *fnic = vnic_dev_priv(wq->vdev);
pci_unmap_single(fnic->pdev, buf->dma_addr,
buf->len, PCI_DMA_TODEVICE);
dev_kfree_skb(fp_skb(fp));
buf->os_buf = NULL;
}