OpenCloudOS-Kernel/drivers/gpu/drm/amd/amdgpu/cz_ih.c

453 lines
12 KiB
C
Raw Normal View History

/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "drmP.h"
#include "amdgpu.h"
#include "amdgpu_ih.h"
#include "vid.h"
#include "oss/oss_3_0_1_d.h"
#include "oss/oss_3_0_1_sh_mask.h"
#include "bif/bif_5_1_d.h"
#include "bif/bif_5_1_sh_mask.h"
/*
* Interrupts
* Starting with r6xx, interrupts are handled via a ring buffer.
* Ring buffers are areas of GPU accessible memory that the GPU
* writes interrupt vectors into and the host reads vectors out of.
* There is a rptr (read pointer) that determines where the
* host is currently reading, and a wptr (write pointer)
* which determines where the GPU has written. When the
* pointers are equal, the ring is idle. When the GPU
* writes vectors to the ring buffer, it increments the
* wptr. When there is an interrupt, the host then starts
* fetching commands and processing them until the pointers are
* equal again at which point it updates the rptr.
*/
static void cz_ih_set_interrupt_funcs(struct amdgpu_device *adev);
/**
* cz_ih_enable_interrupts - Enable the interrupt ring buffer
*
* @adev: amdgpu_device pointer
*
* Enable the interrupt ring buffer (VI).
*/
static void cz_ih_enable_interrupts(struct amdgpu_device *adev)
{
u32 ih_cntl = RREG32(mmIH_CNTL);
u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL);
ih_cntl = REG_SET_FIELD(ih_cntl, IH_CNTL, ENABLE_INTR, 1);
ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_ENABLE, 1);
WREG32(mmIH_CNTL, ih_cntl);
WREG32(mmIH_RB_CNTL, ih_rb_cntl);
adev->irq.ih.enabled = true;
}
/**
* cz_ih_disable_interrupts - Disable the interrupt ring buffer
*
* @adev: amdgpu_device pointer
*
* Disable the interrupt ring buffer (VI).
*/
static void cz_ih_disable_interrupts(struct amdgpu_device *adev)
{
u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL);
u32 ih_cntl = RREG32(mmIH_CNTL);
ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_ENABLE, 0);
ih_cntl = REG_SET_FIELD(ih_cntl, IH_CNTL, ENABLE_INTR, 0);
WREG32(mmIH_RB_CNTL, ih_rb_cntl);
WREG32(mmIH_CNTL, ih_cntl);
/* set rptr, wptr to 0 */
WREG32(mmIH_RB_RPTR, 0);
WREG32(mmIH_RB_WPTR, 0);
adev->irq.ih.enabled = false;
adev->irq.ih.rptr = 0;
}
/**
* cz_ih_irq_init - init and enable the interrupt ring
*
* @adev: amdgpu_device pointer
*
* Allocate a ring buffer for the interrupt controller,
* enable the RLC, disable interrupts, enable the IH
* ring buffer and enable it (VI).
* Called at device load and reume.
* Returns 0 for success, errors for failure.
*/
static int cz_ih_irq_init(struct amdgpu_device *adev)
{
int ret = 0;
int rb_bufsz;
u32 interrupt_cntl, ih_cntl, ih_rb_cntl;
u64 wptr_off;
/* disable irqs */
cz_ih_disable_interrupts(adev);
/* setup interrupt control */
WREG32(mmINTERRUPT_CNTL2, adev->dummy_page.addr >> 8);
interrupt_cntl = RREG32(mmINTERRUPT_CNTL);
/* INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=0 - dummy read disabled with msi, enabled without msi
* INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=1 - dummy read controlled by IH_DUMMY_RD_EN
*/
interrupt_cntl = REG_SET_FIELD(interrupt_cntl, INTERRUPT_CNTL, IH_DUMMY_RD_OVERRIDE, 0);
/* INTERRUPT_CNTL__IH_REQ_NONSNOOP_EN_MASK=1 if ring is in non-cacheable memory, e.g., vram */
interrupt_cntl = REG_SET_FIELD(interrupt_cntl, INTERRUPT_CNTL, IH_REQ_NONSNOOP_EN, 0);
WREG32(mmINTERRUPT_CNTL, interrupt_cntl);
/* Ring Buffer base. [39:8] of 40-bit address of the beginning of the ring buffer*/
WREG32(mmIH_RB_BASE, adev->irq.ih.gpu_addr >> 8);
rb_bufsz = order_base_2(adev->irq.ih.ring_size / 4);
ih_rb_cntl = REG_SET_FIELD(0, IH_RB_CNTL, WPTR_OVERFLOW_ENABLE, 1);
ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, WPTR_OVERFLOW_CLEAR, 1);
ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_SIZE, rb_bufsz);
/* Ring Buffer write pointer writeback. If enabled, IH_RB_WPTR register value is written to memory */
ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, WPTR_WRITEBACK_ENABLE, 1);
/* set the writeback address whether it's enabled or not */
wptr_off = adev->wb.gpu_addr + (adev->irq.ih.wptr_offs * 4);
WREG32(mmIH_RB_WPTR_ADDR_LO, lower_32_bits(wptr_off));
WREG32(mmIH_RB_WPTR_ADDR_HI, upper_32_bits(wptr_off) & 0xFF);
WREG32(mmIH_RB_CNTL, ih_rb_cntl);
/* set rptr, wptr to 0 */
WREG32(mmIH_RB_RPTR, 0);
WREG32(mmIH_RB_WPTR, 0);
/* Default settings for IH_CNTL (disabled at first) */
ih_cntl = RREG32(mmIH_CNTL);
ih_cntl = REG_SET_FIELD(ih_cntl, IH_CNTL, MC_VMID, 0);
if (adev->irq.msi_enabled)
ih_cntl = REG_SET_FIELD(ih_cntl, IH_CNTL, RPTR_REARM, 1);
WREG32(mmIH_CNTL, ih_cntl);
pci_set_master(adev->pdev);
/* enable interrupts */
cz_ih_enable_interrupts(adev);
return ret;
}
/**
* cz_ih_irq_disable - disable interrupts
*
* @adev: amdgpu_device pointer
*
* Disable interrupts on the hw (VI).
*/
static void cz_ih_irq_disable(struct amdgpu_device *adev)
{
cz_ih_disable_interrupts(adev);
/* Wait and acknowledge irq */
mdelay(1);
}
/**
* cz_ih_get_wptr - get the IH ring buffer wptr
*
* @adev: amdgpu_device pointer
*
* Get the IH ring buffer wptr from either the register
* or the writeback memory buffer (VI). Also check for
* ring buffer overflow and deal with it.
* Used by cz_irq_process(VI).
* Returns the value of the wptr.
*/
static u32 cz_ih_get_wptr(struct amdgpu_device *adev)
{
u32 wptr, tmp;
wptr = le32_to_cpu(adev->wb.wb[adev->irq.ih.wptr_offs]);
if (REG_GET_FIELD(wptr, IH_RB_WPTR, RB_OVERFLOW)) {
wptr = REG_SET_FIELD(wptr, IH_RB_WPTR, RB_OVERFLOW, 0);
/* When a ring buffer overflow happen start parsing interrupt
* from the last not overwritten vector (wptr + 16). Hopefully
* this should allow us to catchup.
*/
dev_warn(adev->dev, "IH ring buffer overflow (0x%08X, 0x%08X, 0x%08X)\n",
wptr, adev->irq.ih.rptr, (wptr + 16) & adev->irq.ih.ptr_mask);
adev->irq.ih.rptr = (wptr + 16) & adev->irq.ih.ptr_mask;
tmp = RREG32(mmIH_RB_CNTL);
tmp = REG_SET_FIELD(tmp, IH_RB_CNTL, WPTR_OVERFLOW_CLEAR, 1);
WREG32(mmIH_RB_CNTL, tmp);
}
return (wptr & adev->irq.ih.ptr_mask);
}
/**
* cz_ih_decode_iv - decode an interrupt vector
*
* @adev: amdgpu_device pointer
*
* Decodes the interrupt vector at the current rptr
* position and also advance the position.
*/
static void cz_ih_decode_iv(struct amdgpu_device *adev,
struct amdgpu_iv_entry *entry)
{
/* wptr/rptr are in bytes! */
u32 ring_index = adev->irq.ih.rptr >> 2;
uint32_t dw[4];
dw[0] = le32_to_cpu(adev->irq.ih.ring[ring_index + 0]);
dw[1] = le32_to_cpu(adev->irq.ih.ring[ring_index + 1]);
dw[2] = le32_to_cpu(adev->irq.ih.ring[ring_index + 2]);
dw[3] = le32_to_cpu(adev->irq.ih.ring[ring_index + 3]);
entry->src_id = dw[0] & 0xff;
entry->src_data = dw[1] & 0xfffffff;
entry->ring_id = dw[2] & 0xff;
entry->vm_id = (dw[2] >> 8) & 0xff;
entry->pas_id = (dw[2] >> 16) & 0xffff;
/* wptr/rptr are in bytes! */
adev->irq.ih.rptr += 16;
}
/**
* cz_ih_set_rptr - set the IH ring buffer rptr
*
* @adev: amdgpu_device pointer
*
* Set the IH ring buffer rptr.
*/
static void cz_ih_set_rptr(struct amdgpu_device *adev)
{
WREG32(mmIH_RB_RPTR, adev->irq.ih.rptr);
}
static int cz_ih_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
cz_ih_set_interrupt_funcs(adev);
return 0;
}
static int cz_ih_sw_init(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
r = amdgpu_ih_ring_init(adev, 64 * 1024, false);
if (r)
return r;
r = amdgpu_irq_init(adev);
return r;
}
static int cz_ih_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
amdgpu_irq_fini(adev);
amdgpu_ih_ring_fini(adev);
return 0;
}
static int cz_ih_hw_init(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
r = cz_ih_irq_init(adev);
if (r)
return r;
return 0;
}
static int cz_ih_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
cz_ih_irq_disable(adev);
return 0;
}
static int cz_ih_suspend(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return cz_ih_hw_fini(adev);
}
static int cz_ih_resume(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return cz_ih_hw_init(adev);
}
static bool cz_ih_is_idle(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 tmp = RREG32(mmSRBM_STATUS);
if (REG_GET_FIELD(tmp, SRBM_STATUS, IH_BUSY))
return false;
return true;
}
static int cz_ih_wait_for_idle(void *handle)
{
unsigned i;
u32 tmp;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
for (i = 0; i < adev->usec_timeout; i++) {
/* read MC_STATUS */
tmp = RREG32(mmSRBM_STATUS);
if (!REG_GET_FIELD(tmp, SRBM_STATUS, IH_BUSY))
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static void cz_ih_print_status(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
dev_info(adev->dev, "CZ IH registers\n");
dev_info(adev->dev, " SRBM_STATUS=0x%08X\n",
RREG32(mmSRBM_STATUS));
dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n",
RREG32(mmSRBM_STATUS2));
dev_info(adev->dev, " INTERRUPT_CNTL=0x%08X\n",
RREG32(mmINTERRUPT_CNTL));
dev_info(adev->dev, " INTERRUPT_CNTL2=0x%08X\n",
RREG32(mmINTERRUPT_CNTL2));
dev_info(adev->dev, " IH_CNTL=0x%08X\n",
RREG32(mmIH_CNTL));
dev_info(adev->dev, " IH_RB_CNTL=0x%08X\n",
RREG32(mmIH_RB_CNTL));
dev_info(adev->dev, " IH_RB_BASE=0x%08X\n",
RREG32(mmIH_RB_BASE));
dev_info(adev->dev, " IH_RB_WPTR_ADDR_LO=0x%08X\n",
RREG32(mmIH_RB_WPTR_ADDR_LO));
dev_info(adev->dev, " IH_RB_WPTR_ADDR_HI=0x%08X\n",
RREG32(mmIH_RB_WPTR_ADDR_HI));
dev_info(adev->dev, " IH_RB_RPTR=0x%08X\n",
RREG32(mmIH_RB_RPTR));
dev_info(adev->dev, " IH_RB_WPTR=0x%08X\n",
RREG32(mmIH_RB_WPTR));
}
static int cz_ih_soft_reset(void *handle)
{
u32 srbm_soft_reset = 0;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 tmp = RREG32(mmSRBM_STATUS);
if (tmp & SRBM_STATUS__IH_BUSY_MASK)
srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET,
SOFT_RESET_IH, 1);
if (srbm_soft_reset) {
cz_ih_print_status((void *)adev);
tmp = RREG32(mmSRBM_SOFT_RESET);
tmp |= srbm_soft_reset;
dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
WREG32(mmSRBM_SOFT_RESET, tmp);
tmp = RREG32(mmSRBM_SOFT_RESET);
udelay(50);
tmp &= ~srbm_soft_reset;
WREG32(mmSRBM_SOFT_RESET, tmp);
tmp = RREG32(mmSRBM_SOFT_RESET);
/* Wait a little for things to settle down */
udelay(50);
cz_ih_print_status((void *)adev);
}
return 0;
}
static int cz_ih_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
// TODO
return 0;
}
static int cz_ih_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
// TODO
return 0;
}
const struct amd_ip_funcs cz_ih_ip_funcs = {
.early_init = cz_ih_early_init,
.late_init = NULL,
.sw_init = cz_ih_sw_init,
.sw_fini = cz_ih_sw_fini,
.hw_init = cz_ih_hw_init,
.hw_fini = cz_ih_hw_fini,
.suspend = cz_ih_suspend,
.resume = cz_ih_resume,
.is_idle = cz_ih_is_idle,
.wait_for_idle = cz_ih_wait_for_idle,
.soft_reset = cz_ih_soft_reset,
.print_status = cz_ih_print_status,
.set_clockgating_state = cz_ih_set_clockgating_state,
.set_powergating_state = cz_ih_set_powergating_state,
};
static const struct amdgpu_ih_funcs cz_ih_funcs = {
.get_wptr = cz_ih_get_wptr,
.decode_iv = cz_ih_decode_iv,
.set_rptr = cz_ih_set_rptr
};
static void cz_ih_set_interrupt_funcs(struct amdgpu_device *adev)
{
if (adev->irq.ih_funcs == NULL)
adev->irq.ih_funcs = &cz_ih_funcs;
}