2008-10-23 13:26:29 +08:00
|
|
|
#ifndef _ASM_X86_EFI_H
|
|
|
|
#define _ASM_X86_EFI_H
|
2008-01-30 20:31:19 +08:00
|
|
|
|
2013-11-01 00:25:08 +08:00
|
|
|
/*
|
|
|
|
* We map the EFI regions needed for runtime services non-contiguously,
|
|
|
|
* with preserved alignment on virtual addresses starting from -4G down
|
|
|
|
* for a total max space of 64G. This way, we provide for stable runtime
|
|
|
|
* services addresses across kernels so that a kexec'd kernel can still
|
|
|
|
* use them.
|
|
|
|
*
|
|
|
|
* This is the main reason why we're doing stable VA mappings for RT
|
|
|
|
* services.
|
|
|
|
*
|
|
|
|
* This flag is used in conjuction with a chicken bit called
|
|
|
|
* "efi=old_map" which can be used as a fallback to the old runtime
|
|
|
|
* services mapping method in case there's some b0rkage with a
|
|
|
|
* particular EFI implementation (haha, it is hard to hold up the
|
|
|
|
* sarcasm here...).
|
|
|
|
*/
|
|
|
|
#define EFI_OLD_MEMMAP EFI_ARCH_1
|
|
|
|
|
x86/efi: Firmware agnostic handover entry points
The EFI handover code only works if the "bitness" of the firmware and
the kernel match, i.e. 64-bit firmware and 64-bit kernel - it is not
possible to mix the two. This goes against the tradition that a 32-bit
kernel can be loaded on a 64-bit BIOS platform without having to do
anything special in the boot loader. Linux distributions, for one thing,
regularly run only 32-bit kernels on their live media.
Despite having only one 'handover_offset' field in the kernel header,
EFI boot loaders use two separate entry points to enter the kernel based
on the architecture the boot loader was compiled for,
(1) 32-bit loader: handover_offset
(2) 64-bit loader: handover_offset + 512
Since we already have two entry points, we can leverage them to infer
the bitness of the firmware we're running on, without requiring any boot
loader modifications, by making (1) and (2) valid entry points for both
CONFIG_X86_32 and CONFIG_X86_64 kernels.
To be clear, a 32-bit boot loader will always use (1) and a 64-bit boot
loader will always use (2). It's just that, if a single kernel image
supports (1) and (2) that image can be used with both 32-bit and 64-bit
boot loaders, and hence both 32-bit and 64-bit EFI.
(1) and (2) must be 512 bytes apart at all times, but that is already
part of the boot ABI and we could never change that delta without
breaking existing boot loaders anyhow.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-01-10 23:54:31 +08:00
|
|
|
#define EFI32_LOADER_SIGNATURE "EL32"
|
|
|
|
#define EFI64_LOADER_SIGNATURE "EL64"
|
|
|
|
|
2008-01-30 20:31:19 +08:00
|
|
|
#ifdef CONFIG_X86_32
|
2008-01-30 20:31:19 +08:00
|
|
|
|
2011-11-15 20:56:14 +08:00
|
|
|
|
2008-01-30 20:31:19 +08:00
|
|
|
extern unsigned long asmlinkage efi_call_phys(void *, ...);
|
|
|
|
|
|
|
|
#define efi_call_phys0(f) efi_call_phys(f)
|
|
|
|
#define efi_call_phys1(f, a1) efi_call_phys(f, a1)
|
|
|
|
#define efi_call_phys2(f, a1, a2) efi_call_phys(f, a1, a2)
|
|
|
|
#define efi_call_phys3(f, a1, a2, a3) efi_call_phys(f, a1, a2, a3)
|
|
|
|
#define efi_call_phys4(f, a1, a2, a3, a4) \
|
|
|
|
efi_call_phys(f, a1, a2, a3, a4)
|
|
|
|
#define efi_call_phys5(f, a1, a2, a3, a4, a5) \
|
|
|
|
efi_call_phys(f, a1, a2, a3, a4, a5)
|
|
|
|
#define efi_call_phys6(f, a1, a2, a3, a4, a5, a6) \
|
|
|
|
efi_call_phys(f, a1, a2, a3, a4, a5, a6)
|
|
|
|
/*
|
|
|
|
* Wrap all the virtual calls in a way that forces the parameters on the stack.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define efi_call_virt(f, args...) \
|
2008-03-23 16:02:07 +08:00
|
|
|
((efi_##f##_t __attribute__((regparm(0)))*)efi.systab->runtime->f)(args)
|
2008-01-30 20:31:19 +08:00
|
|
|
|
|
|
|
#define efi_call_virt0(f) efi_call_virt(f)
|
|
|
|
#define efi_call_virt1(f, a1) efi_call_virt(f, a1)
|
|
|
|
#define efi_call_virt2(f, a1, a2) efi_call_virt(f, a1, a2)
|
|
|
|
#define efi_call_virt3(f, a1, a2, a3) efi_call_virt(f, a1, a2, a3)
|
|
|
|
#define efi_call_virt4(f, a1, a2, a3, a4) \
|
|
|
|
efi_call_virt(f, a1, a2, a3, a4)
|
|
|
|
#define efi_call_virt5(f, a1, a2, a3, a4, a5) \
|
|
|
|
efi_call_virt(f, a1, a2, a3, a4, a5)
|
|
|
|
#define efi_call_virt6(f, a1, a2, a3, a4, a5, a6) \
|
|
|
|
efi_call_virt(f, a1, a2, a3, a4, a5, a6)
|
|
|
|
|
2012-10-19 20:25:46 +08:00
|
|
|
#define efi_ioremap(addr, size, type, attr) ioremap_cache(addr, size)
|
2011-12-12 08:12:42 +08:00
|
|
|
|
2008-01-30 20:31:19 +08:00
|
|
|
#else /* !CONFIG_X86_32 */
|
|
|
|
|
|
|
|
extern u64 efi_call0(void *fp);
|
|
|
|
extern u64 efi_call1(void *fp, u64 arg1);
|
|
|
|
extern u64 efi_call2(void *fp, u64 arg1, u64 arg2);
|
|
|
|
extern u64 efi_call3(void *fp, u64 arg1, u64 arg2, u64 arg3);
|
|
|
|
extern u64 efi_call4(void *fp, u64 arg1, u64 arg2, u64 arg3, u64 arg4);
|
|
|
|
extern u64 efi_call5(void *fp, u64 arg1, u64 arg2, u64 arg3,
|
|
|
|
u64 arg4, u64 arg5);
|
|
|
|
extern u64 efi_call6(void *fp, u64 arg1, u64 arg2, u64 arg3,
|
|
|
|
u64 arg4, u64 arg5, u64 arg6);
|
|
|
|
|
|
|
|
#define efi_call_phys0(f) \
|
2013-06-02 20:56:07 +08:00
|
|
|
efi_call0((f))
|
2008-01-30 20:31:19 +08:00
|
|
|
#define efi_call_phys1(f, a1) \
|
2013-06-02 20:56:07 +08:00
|
|
|
efi_call1((f), (u64)(a1))
|
2008-01-30 20:31:19 +08:00
|
|
|
#define efi_call_phys2(f, a1, a2) \
|
2013-06-02 20:56:07 +08:00
|
|
|
efi_call2((f), (u64)(a1), (u64)(a2))
|
2008-01-30 20:31:19 +08:00
|
|
|
#define efi_call_phys3(f, a1, a2, a3) \
|
2013-06-02 20:56:07 +08:00
|
|
|
efi_call3((f), (u64)(a1), (u64)(a2), (u64)(a3))
|
2008-01-30 20:31:19 +08:00
|
|
|
#define efi_call_phys4(f, a1, a2, a3, a4) \
|
2013-06-02 20:56:07 +08:00
|
|
|
efi_call4((f), (u64)(a1), (u64)(a2), (u64)(a3), \
|
2008-01-30 20:31:19 +08:00
|
|
|
(u64)(a4))
|
|
|
|
#define efi_call_phys5(f, a1, a2, a3, a4, a5) \
|
2013-06-02 20:56:07 +08:00
|
|
|
efi_call5((f), (u64)(a1), (u64)(a2), (u64)(a3), \
|
2008-01-30 20:31:19 +08:00
|
|
|
(u64)(a4), (u64)(a5))
|
|
|
|
#define efi_call_phys6(f, a1, a2, a3, a4, a5, a6) \
|
2013-06-02 20:56:07 +08:00
|
|
|
efi_call6((f), (u64)(a1), (u64)(a2), (u64)(a3), \
|
2008-01-30 20:31:19 +08:00
|
|
|
(u64)(a4), (u64)(a5), (u64)(a6))
|
|
|
|
|
2013-11-01 00:25:08 +08:00
|
|
|
#define _efi_call_virtX(x, f, ...) \
|
|
|
|
({ \
|
|
|
|
efi_status_t __s; \
|
|
|
|
\
|
|
|
|
efi_sync_low_kernel_mappings(); \
|
|
|
|
preempt_disable(); \
|
|
|
|
__s = efi_call##x((void *)efi.systab->runtime->f, __VA_ARGS__); \
|
|
|
|
preempt_enable(); \
|
|
|
|
__s; \
|
|
|
|
})
|
|
|
|
|
2008-01-30 20:31:19 +08:00
|
|
|
#define efi_call_virt0(f) \
|
2013-11-01 00:25:08 +08:00
|
|
|
_efi_call_virtX(0, f)
|
|
|
|
#define efi_call_virt1(f, a1) \
|
|
|
|
_efi_call_virtX(1, f, (u64)(a1))
|
|
|
|
#define efi_call_virt2(f, a1, a2) \
|
|
|
|
_efi_call_virtX(2, f, (u64)(a1), (u64)(a2))
|
|
|
|
#define efi_call_virt3(f, a1, a2, a3) \
|
|
|
|
_efi_call_virtX(3, f, (u64)(a1), (u64)(a2), (u64)(a3))
|
|
|
|
#define efi_call_virt4(f, a1, a2, a3, a4) \
|
|
|
|
_efi_call_virtX(4, f, (u64)(a1), (u64)(a2), (u64)(a3), (u64)(a4))
|
|
|
|
#define efi_call_virt5(f, a1, a2, a3, a4, a5) \
|
|
|
|
_efi_call_virtX(5, f, (u64)(a1), (u64)(a2), (u64)(a3), (u64)(a4), (u64)(a5))
|
|
|
|
#define efi_call_virt6(f, a1, a2, a3, a4, a5, a6) \
|
|
|
|
_efi_call_virtX(6, f, (u64)(a1), (u64)(a2), (u64)(a3), (u64)(a4), (u64)(a5), (u64)(a6))
|
2008-01-30 20:31:19 +08:00
|
|
|
|
2011-12-12 08:12:42 +08:00
|
|
|
extern void __iomem *efi_ioremap(unsigned long addr, unsigned long size,
|
2012-10-19 20:25:46 +08:00
|
|
|
u32 type, u64 attribute);
|
2011-12-12 08:12:42 +08:00
|
|
|
|
2008-01-30 20:31:19 +08:00
|
|
|
#endif /* CONFIG_X86_32 */
|
|
|
|
|
2008-12-29 23:06:40 +08:00
|
|
|
extern int add_efi_memmap;
|
2012-11-14 17:42:35 +08:00
|
|
|
extern unsigned long x86_efi_facility;
|
2013-11-01 00:25:08 +08:00
|
|
|
extern struct efi_scratch efi_scratch;
|
2011-05-06 03:19:43 +08:00
|
|
|
extern void efi_set_executable(efi_memory_desc_t *md, bool executable);
|
2012-02-13 05:24:29 +08:00
|
|
|
extern int efi_memblock_x86_reserve_range(void);
|
2008-01-30 20:31:19 +08:00
|
|
|
extern void efi_call_phys_prelog(void);
|
|
|
|
extern void efi_call_phys_epilog(void);
|
2012-10-25 01:00:44 +08:00
|
|
|
extern void efi_unmap_memmap(void);
|
2012-10-19 20:25:46 +08:00
|
|
|
extern void efi_memory_uc(u64 addr, unsigned long size);
|
2013-11-01 00:25:08 +08:00
|
|
|
extern void __init efi_map_region(efi_memory_desc_t *md);
|
2013-12-20 18:02:14 +08:00
|
|
|
extern void __init efi_map_region_fixed(efi_memory_desc_t *md);
|
2013-11-01 00:25:08 +08:00
|
|
|
extern void efi_sync_low_kernel_mappings(void);
|
|
|
|
extern void efi_setup_page_tables(void);
|
|
|
|
extern void __init old_map_region(efi_memory_desc_t *md);
|
2014-02-14 15:24:24 +08:00
|
|
|
extern void __init runtime_code_page_mkexec(void);
|
|
|
|
extern void __init efi_runtime_mkexec(void);
|
2008-01-30 20:31:19 +08:00
|
|
|
|
2013-12-20 18:02:19 +08:00
|
|
|
struct efi_setup_data {
|
|
|
|
u64 fw_vendor;
|
|
|
|
u64 runtime;
|
|
|
|
u64 tables;
|
|
|
|
u64 smbios;
|
|
|
|
u64 reserved[8];
|
|
|
|
};
|
|
|
|
|
|
|
|
extern u64 efi_setup;
|
|
|
|
|
2013-02-14 08:07:35 +08:00
|
|
|
#ifdef CONFIG_EFI
|
|
|
|
|
|
|
|
static inline bool efi_is_native(void)
|
|
|
|
{
|
|
|
|
return IS_ENABLED(CONFIG_X86_64) == efi_enabled(EFI_64BIT);
|
|
|
|
}
|
|
|
|
|
2013-10-04 16:36:56 +08:00
|
|
|
extern struct console early_efi_console;
|
2014-01-03 11:56:49 +08:00
|
|
|
extern void parse_efi_setup(u64 phys_addr, u32 data_len);
|
2013-02-14 08:07:35 +08:00
|
|
|
#else
|
2008-10-04 00:59:15 +08:00
|
|
|
/*
|
|
|
|
* IF EFI is not configured, have the EFI calls return -ENOSYS.
|
|
|
|
*/
|
|
|
|
#define efi_call0(_f) (-ENOSYS)
|
|
|
|
#define efi_call1(_f, _a1) (-ENOSYS)
|
|
|
|
#define efi_call2(_f, _a1, _a2) (-ENOSYS)
|
|
|
|
#define efi_call3(_f, _a1, _a2, _a3) (-ENOSYS)
|
|
|
|
#define efi_call4(_f, _a1, _a2, _a3, _a4) (-ENOSYS)
|
|
|
|
#define efi_call5(_f, _a1, _a2, _a3, _a4, _a5) (-ENOSYS)
|
|
|
|
#define efi_call6(_f, _a1, _a2, _a3, _a4, _a5, _a6) (-ENOSYS)
|
2014-01-03 11:56:49 +08:00
|
|
|
static inline void parse_efi_setup(u64 phys_addr, u32 data_len) {}
|
2008-10-04 00:59:15 +08:00
|
|
|
#endif /* CONFIG_EFI */
|
|
|
|
|
2008-10-23 13:26:29 +08:00
|
|
|
#endif /* _ASM_X86_EFI_H */
|