OpenCloudOS-Kernel/include/net/bluetooth/hci_core.h

1042 lines
27 KiB
C
Raw Normal View History

/*
BlueZ - Bluetooth protocol stack for Linux
Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation;
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
SOFTWARE IS DISCLAIMED.
*/
#ifndef __HCI_CORE_H
#define __HCI_CORE_H
#include <linux/interrupt.h>
#include <net/bluetooth/hci.h>
/* HCI priority */
#define HCI_PRIO_MAX 7
/* HCI Core structures */
struct inquiry_data {
bdaddr_t bdaddr;
__u8 pscan_rep_mode;
__u8 pscan_period_mode;
__u8 pscan_mode;
__u8 dev_class[3];
__le16 clock_offset;
__s8 rssi;
__u8 ssp_mode;
};
struct inquiry_entry {
struct list_head all; /* inq_cache.all */
struct list_head list; /* unknown or resolve */
enum {
NAME_NOT_KNOWN,
NAME_NEEDED,
NAME_PENDING,
NAME_KNOWN,
} name_state;
__u32 timestamp;
struct inquiry_data data;
};
struct discovery_state {
enum {
DISCOVERY_STOPPED,
DISCOVERY_STARTING,
DISCOVERY_INQUIRY,
DISCOVERY_RESOLVING,
DISCOVERY_STOPPING,
} state;
struct list_head all; /* All devices found during inquiry */
struct list_head unknown; /* Name state not known */
struct list_head resolve; /* Name needs to be resolved */
__u32 timestamp;
};
struct hci_conn_hash {
struct list_head list;
unsigned int acl_num;
unsigned int sco_num;
unsigned int le_num;
};
struct bdaddr_list {
struct list_head list;
bdaddr_t bdaddr;
};
struct bt_uuid {
struct list_head list;
u8 uuid[16];
u8 svc_hint;
};
struct smp_ltk {
struct list_head list;
bdaddr_t bdaddr;
u8 bdaddr_type;
u8 authenticated;
u8 type;
u8 enc_size;
__le16 ediv;
u8 rand[8];
u8 val[16];
} __packed;
struct key_master_id {
__le16 ediv;
u8 rand[8];
} __packed;
struct link_key_data {
bdaddr_t bdaddr;
u8 type;
u8 val[16];
u8 pin_len;
u8 dlen;
u8 data[0];
} __packed;
struct link_key {
struct list_head list;
bdaddr_t bdaddr;
u8 type;
u8 val[16];
u8 pin_len;
u8 dlen;
u8 data[0];
};
struct oob_data {
struct list_head list;
bdaddr_t bdaddr;
u8 hash[16];
u8 randomizer[16];
};
struct adv_entry {
struct list_head list;
bdaddr_t bdaddr;
u8 bdaddr_type;
};
#define NUM_REASSEMBLY 4
struct hci_dev {
struct list_head list;
struct mutex lock;
char name[8];
unsigned long flags;
__u16 id;
__u8 bus;
__u8 dev_type;
bdaddr_t bdaddr;
__u8 dev_name[HCI_MAX_NAME_LENGTH];
__u8 eir[HCI_MAX_EIR_LENGTH];
__u8 dev_class[3];
__u8 major_class;
__u8 minor_class;
__u8 features[8];
__u8 host_features[8];
__u8 commands[64];
__u8 hci_ver;
__u16 hci_rev;
__u8 lmp_ver;
__u16 manufacturer;
__le16 lmp_subver;
__u16 voice_setting;
__u8 io_capability;
__u16 pkt_type;
__u16 esco_type;
__u16 link_policy;
__u16 link_mode;
__u32 idle_timeout;
__u16 sniff_min_interval;
__u16 sniff_max_interval;
__u8 amp_status;
__u32 amp_total_bw;
__u32 amp_max_bw;
__u32 amp_min_latency;
__u32 amp_max_pdu;
__u8 amp_type;
__u16 amp_pal_cap;
__u16 amp_assoc_size;
__u32 amp_max_flush_to;
__u32 amp_be_flush_to;
__u8 flow_ctl_mode;
unsigned int auto_accept_delay;
unsigned long quirks;
atomic_t cmd_cnt;
unsigned int acl_cnt;
unsigned int sco_cnt;
unsigned int le_cnt;
unsigned int acl_mtu;
unsigned int sco_mtu;
unsigned int le_mtu;
unsigned int acl_pkts;
unsigned int sco_pkts;
unsigned int le_pkts;
__u16 block_len;
__u16 block_mtu;
__u16 num_blocks;
__u16 block_cnt;
unsigned long acl_last_tx;
unsigned long sco_last_tx;
unsigned long le_last_tx;
struct workqueue_struct *workqueue;
struct work_struct power_on;
struct delayed_work power_off;
__u16 discov_timeout;
struct delayed_work discov_off;
struct delayed_work service_cache;
struct timer_list cmd_timer;
struct work_struct rx_work;
struct work_struct cmd_work;
struct work_struct tx_work;
struct sk_buff_head rx_q;
struct sk_buff_head raw_q;
struct sk_buff_head cmd_q;
struct sk_buff *sent_cmd;
struct sk_buff *reassembly[NUM_REASSEMBLY];
struct mutex req_lock;
wait_queue_head_t req_wait_q;
__u32 req_status;
__u32 req_result;
__u16 init_last_cmd;
struct list_head mgmt_pending;
struct discovery_state discovery;
struct hci_conn_hash conn_hash;
struct list_head blacklist;
struct list_head uuids;
struct list_head link_keys;
struct list_head long_term_keys;
struct list_head remote_oob_data;
struct list_head adv_entries;
struct delayed_work adv_work;
struct hci_dev_stats stat;
struct sk_buff_head driver_init;
void *driver_data;
void *core_data;
atomic_t promisc;
struct dentry *debugfs;
struct device *parent;
struct device dev;
struct rfkill *rfkill;
unsigned long dev_flags;
int (*open)(struct hci_dev *hdev);
int (*close)(struct hci_dev *hdev);
int (*flush)(struct hci_dev *hdev);
int (*send)(struct sk_buff *skb);
void (*notify)(struct hci_dev *hdev, unsigned int evt);
int (*ioctl)(struct hci_dev *hdev, unsigned int cmd, unsigned long arg);
};
struct hci_conn {
struct list_head list;
atomic_t refcnt;
bdaddr_t dst;
__u8 dst_type;
__u16 handle;
__u16 state;
__u8 mode;
__u8 type;
bool out;
__u8 attempt;
__u8 dev_class[3];
__u8 features[8];
__u16 interval;
__u16 pkt_type;
__u16 link_policy;
__u32 link_mode;
__u8 key_type;
__u8 auth_type;
__u8 sec_level;
__u8 pending_sec_level;
__u8 pin_length;
__u8 enc_key_size;
__u8 io_capability;
__u16 disc_timeout;
unsigned long flags;
__u8 remote_cap;
__u8 remote_auth;
unsigned int sent;
struct sk_buff_head data_q;
struct list_head chan_list;
struct delayed_work disc_work;
struct timer_list idle_timer;
struct timer_list auto_accept_timer;
struct device dev;
atomic_t devref;
struct hci_dev *hdev;
void *l2cap_data;
void *sco_data;
void *smp_conn;
struct hci_conn *link;
void (*connect_cfm_cb) (struct hci_conn *conn, u8 status);
void (*security_cfm_cb) (struct hci_conn *conn, u8 status);
void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason);
};
struct hci_chan {
struct list_head list;
struct hci_conn *conn;
struct sk_buff_head data_q;
unsigned int sent;
};
extern struct list_head hci_dev_list;
extern struct list_head hci_cb_list;
extern rwlock_t hci_dev_list_lock;
extern rwlock_t hci_cb_list_lock;
/* ----- HCI interface to upper protocols ----- */
extern int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr);
extern int l2cap_connect_cfm(struct hci_conn *hcon, u8 status);
extern int l2cap_disconn_ind(struct hci_conn *hcon);
extern int l2cap_disconn_cfm(struct hci_conn *hcon, u8 reason);
extern int l2cap_security_cfm(struct hci_conn *hcon, u8 status, u8 encrypt);
extern int l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags);
extern int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr);
extern int sco_connect_cfm(struct hci_conn *hcon, __u8 status);
extern int sco_disconn_cfm(struct hci_conn *hcon, __u8 reason);
extern int sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb);
/* ----- Inquiry cache ----- */
#define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */
#define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */
static inline void discovery_init(struct hci_dev *hdev)
{
hdev->discovery.state = DISCOVERY_STOPPED;
INIT_LIST_HEAD(&hdev->discovery.all);
INIT_LIST_HEAD(&hdev->discovery.unknown);
INIT_LIST_HEAD(&hdev->discovery.resolve);
}
bool hci_discovery_active(struct hci_dev *hdev);
void hci_discovery_set_state(struct hci_dev *hdev, int state);
static inline int inquiry_cache_empty(struct hci_dev *hdev)
{
return list_empty(&hdev->discovery.all);
}
static inline long inquiry_cache_age(struct hci_dev *hdev)
{
struct discovery_state *c = &hdev->discovery;
return jiffies - c->timestamp;
}
static inline long inquiry_entry_age(struct inquiry_entry *e)
{
return jiffies - e->timestamp;
}
struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
bdaddr_t *bdaddr);
struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
bdaddr_t *bdaddr);
struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
bdaddr_t *bdaddr,
int state);
void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
struct inquiry_entry *ie);
bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
bool name_known);
/* ----- HCI Connections ----- */
enum {
HCI_CONN_AUTH_PEND,
HCI_CONN_REAUTH_PEND,
HCI_CONN_ENCRYPT_PEND,
HCI_CONN_RSWITCH_PEND,
HCI_CONN_MODE_CHANGE_PEND,
HCI_CONN_SCO_SETUP_PEND,
HCI_CONN_LE_SMP_PEND,
HCI_CONN_MGMT_CONNECTED,
HCI_CONN_SSP_ENABLED,
HCI_CONN_POWER_SAVE,
HCI_CONN_REMOTE_OOB,
};
static inline bool hci_conn_ssp_enabled(struct hci_conn *conn)
{
struct hci_dev *hdev = conn->hdev;
return (test_bit(HCI_SSP_ENABLED, &hdev->flags) &&
test_bit(HCI_CONN_SSP_ENABLED, &conn->flags));
}
static inline void hci_conn_hash_init(struct hci_dev *hdev)
{
struct hci_conn_hash *h = &hdev->conn_hash;
INIT_LIST_HEAD(&h->list);
h->acl_num = 0;
h->sco_num = 0;
h->le_num = 0;
}
static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c)
{
struct hci_conn_hash *h = &hdev->conn_hash;
list_add_rcu(&c->list, &h->list);
switch (c->type) {
case ACL_LINK:
h->acl_num++;
break;
case LE_LINK:
h->le_num++;
break;
case SCO_LINK:
case ESCO_LINK:
h->sco_num++;
break;
}
}
static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c)
{
struct hci_conn_hash *h = &hdev->conn_hash;
list_del_rcu(&c->list);
synchronize_rcu();
switch (c->type) {
case ACL_LINK:
h->acl_num--;
break;
case LE_LINK:
h->le_num--;
break;
case SCO_LINK:
case ESCO_LINK:
h->sco_num--;
break;
}
}
static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type)
{
struct hci_conn_hash *h = &hdev->conn_hash;
switch (type) {
case ACL_LINK:
return h->acl_num;
case LE_LINK:
return h->le_num;
case SCO_LINK:
case ESCO_LINK:
return h->sco_num;
default:
return 0;
}
}
static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev,
__u16 handle)
{
struct hci_conn_hash *h = &hdev->conn_hash;
struct hci_conn *c;
rcu_read_lock();
list_for_each_entry_rcu(c, &h->list, list) {
if (c->handle == handle) {
rcu_read_unlock();
return c;
}
}
rcu_read_unlock();
return NULL;
}
static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev,
__u8 type, bdaddr_t *ba)
{
struct hci_conn_hash *h = &hdev->conn_hash;
struct hci_conn *c;
rcu_read_lock();
list_for_each_entry_rcu(c, &h->list, list) {
if (c->type == type && !bacmp(&c->dst, ba)) {
rcu_read_unlock();
return c;
}
}
rcu_read_unlock();
return NULL;
}
static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev,
__u8 type, __u16 state)
{
struct hci_conn_hash *h = &hdev->conn_hash;
struct hci_conn *c;
rcu_read_lock();
list_for_each_entry_rcu(c, &h->list, list) {
if (c->type == type && c->state == state) {
rcu_read_unlock();
return c;
}
}
rcu_read_unlock();
return NULL;
}
void hci_acl_connect(struct hci_conn *conn);
void hci_acl_disconn(struct hci_conn *conn, __u8 reason);
void hci_add_sco(struct hci_conn *conn, __u16 handle);
void hci_setup_sync(struct hci_conn *conn, __u16 handle);
void hci_sco_setup(struct hci_conn *conn, __u8 status);
struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst);
int hci_conn_del(struct hci_conn *conn);
void hci_conn_hash_flush(struct hci_dev *hdev);
void hci_conn_check_pending(struct hci_dev *hdev);
struct hci_chan *hci_chan_create(struct hci_conn *conn);
int hci_chan_del(struct hci_chan *chan);
void hci_chan_list_flush(struct hci_conn *conn);
struct hci_conn *hci_connect(struct hci_dev *hdev, int type, bdaddr_t *dst,
__u8 sec_level, __u8 auth_type);
int hci_conn_check_link_mode(struct hci_conn *conn);
int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level);
int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type);
int hci_conn_change_link_key(struct hci_conn *conn);
Bluetooth: Add enhanced security model for Simple Pairing The current security model is based around the flags AUTH, ENCRYPT and SECURE. Starting with support for the Bluetooth 2.1 specification this is no longer sufficient. The different security levels are now defined as SDP, LOW, MEDIUM and SECURE. Previously it was possible to set each security independently, but this actually doesn't make a lot of sense. For Bluetooth the encryption depends on a previous successful authentication. Also you can only update your existing link key if you successfully created at least one before. And of course the update of link keys without having proper encryption in place is a security issue. The new security levels from the Bluetooth 2.1 specification are now used internally. All old settings are mapped to the new values and this way it ensures that old applications still work. The only limitation is that it is no longer possible to set authentication without also enabling encryption. No application should have done this anyway since this is actually a security issue. Without encryption the integrity of the authentication can't be guaranteed. As default for a new L2CAP or RFCOMM connection, the LOW security level is used. The only exception here are the service discovery sessions on PSM 1 where SDP level is used. To have similar security strength as with a Bluetooth 2.0 and before combination key, the MEDIUM level should be used. This is according to the Bluetooth specification. The MEDIUM level will not require any kind of man-in-the-middle (MITM) protection. Only the HIGH security level will require this. Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-01-16 04:58:04 +08:00
int hci_conn_switch_role(struct hci_conn *conn, __u8 role);
void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active);
void hci_conn_hold_device(struct hci_conn *conn);
void hci_conn_put_device(struct hci_conn *conn);
static inline void hci_conn_hold(struct hci_conn *conn)
{
atomic_inc(&conn->refcnt);
Bluetooth: Fix potential deadlock We don't need to use the _sync variant in hci_conn_hold and hci_conn_put to cancel conn->disc_work delayed work. This way we avoid potential deadlocks like this one reported by lockdep. ====================================================== [ INFO: possible circular locking dependency detected ] 3.2.0+ #1 Not tainted ------------------------------------------------------- kworker/u:1/17 is trying to acquire lock: (&hdev->lock){+.+.+.}, at: [<ffffffffa0041155>] hci_conn_timeout+0x62/0x158 [bluetooth] but task is already holding lock: ((&(&conn->disc_work)->work)){+.+...}, at: [<ffffffff81035751>] process_one_work+0x11a/0x2bf which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 ((&(&conn->disc_work)->work)){+.+...}: [<ffffffff81057444>] lock_acquire+0x8a/0xa7 [<ffffffff81034ed1>] wait_on_work+0x3d/0xaa [<ffffffff81035b54>] __cancel_work_timer+0xac/0xef [<ffffffff81035ba4>] cancel_delayed_work_sync+0xd/0xf [<ffffffffa00554b0>] smp_chan_create+0xde/0xe6 [bluetooth] [<ffffffffa0056160>] smp_conn_security+0xa3/0x12d [bluetooth] [<ffffffffa0053640>] l2cap_connect_cfm+0x237/0x2e8 [bluetooth] [<ffffffffa004239c>] hci_proto_connect_cfm+0x2d/0x6f [bluetooth] [<ffffffffa0046ea5>] hci_event_packet+0x29d1/0x2d60 [bluetooth] [<ffffffffa003dde3>] hci_rx_work+0xd0/0x2e1 [bluetooth] [<ffffffff810357af>] process_one_work+0x178/0x2bf [<ffffffff81036178>] worker_thread+0xce/0x152 [<ffffffff81039a03>] kthread+0x95/0x9d [<ffffffff812e7754>] kernel_thread_helper+0x4/0x10 -> #1 (slock-AF_BLUETOOTH-BTPROTO_L2CAP){+.+...}: [<ffffffff81057444>] lock_acquire+0x8a/0xa7 [<ffffffff812e553a>] _raw_spin_lock_bh+0x36/0x6a [<ffffffff81244d56>] lock_sock_nested+0x24/0x7f [<ffffffffa004d96f>] lock_sock+0xb/0xd [bluetooth] [<ffffffffa0052906>] l2cap_chan_connect+0xa9/0x26f [bluetooth] [<ffffffffa00545f8>] l2cap_sock_connect+0xb3/0xff [bluetooth] [<ffffffff81243b48>] sys_connect+0x69/0x8a [<ffffffff812e6579>] system_call_fastpath+0x16/0x1b -> #0 (&hdev->lock){+.+.+.}: [<ffffffff81056d06>] __lock_acquire+0xa80/0xd74 [<ffffffff81057444>] lock_acquire+0x8a/0xa7 [<ffffffff812e3870>] __mutex_lock_common+0x48/0x38e [<ffffffff812e3c75>] mutex_lock_nested+0x2a/0x31 [<ffffffffa0041155>] hci_conn_timeout+0x62/0x158 [bluetooth] [<ffffffff810357af>] process_one_work+0x178/0x2bf [<ffffffff81036178>] worker_thread+0xce/0x152 [<ffffffff81039a03>] kthread+0x95/0x9d [<ffffffff812e7754>] kernel_thread_helper+0x4/0x10 other info that might help us debug this: Chain exists of: &hdev->lock --> slock-AF_BLUETOOTH-BTPROTO_L2CAP --> (&(&conn->disc_work)->work) Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock((&(&conn->disc_work)->work)); lock(slock-AF_BLUETOOTH-BTPROTO_L2CAP); lock((&(&conn->disc_work)->work)); lock(&hdev->lock); *** DEADLOCK *** 2 locks held by kworker/u:1/17: #0: (hdev->name){.+.+.+}, at: [<ffffffff81035751>] process_one_work+0x11a/0x2bf #1: ((&(&conn->disc_work)->work)){+.+...}, at: [<ffffffff81035751>] process_one_work+0x11a/0x2bf stack backtrace: Pid: 17, comm: kworker/u:1 Not tainted 3.2.0+ #1 Call Trace: [<ffffffff812e06c6>] print_circular_bug+0x1f8/0x209 [<ffffffff81056d06>] __lock_acquire+0xa80/0xd74 [<ffffffff81021ef2>] ? arch_local_irq_restore+0x6/0xd [<ffffffff81022bc7>] ? vprintk+0x3f9/0x41e [<ffffffff81057444>] lock_acquire+0x8a/0xa7 [<ffffffffa0041155>] ? hci_conn_timeout+0x62/0x158 [bluetooth] [<ffffffff812e3870>] __mutex_lock_common+0x48/0x38e [<ffffffffa0041155>] ? hci_conn_timeout+0x62/0x158 [bluetooth] [<ffffffff81190fd6>] ? __dynamic_pr_debug+0x6d/0x6f [<ffffffffa0041155>] ? hci_conn_timeout+0x62/0x158 [bluetooth] [<ffffffff8105320f>] ? trace_hardirqs_off+0xd/0xf [<ffffffff812e3c75>] mutex_lock_nested+0x2a/0x31 [<ffffffffa0041155>] hci_conn_timeout+0x62/0x158 [bluetooth] [<ffffffff810357af>] process_one_work+0x178/0x2bf [<ffffffff81035751>] ? process_one_work+0x11a/0x2bf [<ffffffff81055af3>] ? lock_acquired+0x1d0/0x1df [<ffffffffa00410f3>] ? hci_acl_disconn+0x65/0x65 [bluetooth] [<ffffffff81036178>] worker_thread+0xce/0x152 [<ffffffff810407ed>] ? finish_task_switch+0x45/0xc5 [<ffffffff810360aa>] ? manage_workers.isra.25+0x16a/0x16a [<ffffffff81039a03>] kthread+0x95/0x9d [<ffffffff812e7754>] kernel_thread_helper+0x4/0x10 [<ffffffff812e5db4>] ? retint_restore_args+0x13/0x13 [<ffffffff8103996e>] ? __init_kthread_worker+0x55/0x55 [<ffffffff812e7750>] ? gs_change+0x13/0x13 Signed-off-by: Andre Guedes <andre.guedes@openbossa.org> Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@openbossa.org> Reviewed-by: Ulisses Furquim <ulisses@profusion.mobi> Acked-by: Marcel Holtmann <marcel@holtmann.org> Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2012-01-28 06:42:02 +08:00
cancel_delayed_work(&conn->disc_work);
}
static inline void hci_conn_put(struct hci_conn *conn)
{
if (atomic_dec_and_test(&conn->refcnt)) {
unsigned long timeo;
if (conn->type == ACL_LINK || conn->type == LE_LINK) {
del_timer(&conn->idle_timer);
if (conn->state == BT_CONNECTED) {
Bluetooth: Add different pairing timeout for Legacy Pairing The Bluetooth stack uses a reference counting for all established ACL links and if no user (L2CAP connection) is present, the link will be terminated to save power. The problem part is the dedicated pairing when using Legacy Pairing (Bluetooth 2.0 and before). At that point no user is present and pairing attempts will be disconnected within 10 seconds or less. In previous kernel version this was not a problem since the disconnect timeout wasn't triggered on incoming connections for the first time. However this caused issues with broken host stacks that kept the connections around after dedicated pairing. When the support for Simple Pairing got added, the link establishment procedure needed to be changed and now causes issues when using Legacy Pairing When using Simple Pairing it is possible to do a proper reference counting of ACL link users. With Legacy Pairing this is not possible since the specification is unclear in some areas and too many broken Bluetooth devices have already been deployed. So instead of trying to deal with all the broken devices, a special pairing timeout will be introduced that increases the timeout to 60 seconds when pairing is triggered. If a broken devices now puts the stack into an unforeseen state, the worst that happens is the disconnect timeout triggers after 120 seconds instead of 4 seconds. This allows successful pairings with legacy and broken devices now. Based on a report by Johan Hedberg <johan.hedberg@nokia.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-04-27 02:01:22 +08:00
timeo = msecs_to_jiffies(conn->disc_timeout);
if (!conn->out)
Bluetooth: Add different pairing timeout for Legacy Pairing The Bluetooth stack uses a reference counting for all established ACL links and if no user (L2CAP connection) is present, the link will be terminated to save power. The problem part is the dedicated pairing when using Legacy Pairing (Bluetooth 2.0 and before). At that point no user is present and pairing attempts will be disconnected within 10 seconds or less. In previous kernel version this was not a problem since the disconnect timeout wasn't triggered on incoming connections for the first time. However this caused issues with broken host stacks that kept the connections around after dedicated pairing. When the support for Simple Pairing got added, the link establishment procedure needed to be changed and now causes issues when using Legacy Pairing When using Simple Pairing it is possible to do a proper reference counting of ACL link users. With Legacy Pairing this is not possible since the specification is unclear in some areas and too many broken Bluetooth devices have already been deployed. So instead of trying to deal with all the broken devices, a special pairing timeout will be introduced that increases the timeout to 60 seconds when pairing is triggered. If a broken devices now puts the stack into an unforeseen state, the worst that happens is the disconnect timeout triggers after 120 seconds instead of 4 seconds. This allows successful pairings with legacy and broken devices now. Based on a report by Johan Hedberg <johan.hedberg@nokia.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-04-27 02:01:22 +08:00
timeo *= 2;
} else {
timeo = msecs_to_jiffies(10);
}
} else {
timeo = msecs_to_jiffies(10);
}
Bluetooth: Fix potential deadlock We don't need to use the _sync variant in hci_conn_hold and hci_conn_put to cancel conn->disc_work delayed work. This way we avoid potential deadlocks like this one reported by lockdep. ====================================================== [ INFO: possible circular locking dependency detected ] 3.2.0+ #1 Not tainted ------------------------------------------------------- kworker/u:1/17 is trying to acquire lock: (&hdev->lock){+.+.+.}, at: [<ffffffffa0041155>] hci_conn_timeout+0x62/0x158 [bluetooth] but task is already holding lock: ((&(&conn->disc_work)->work)){+.+...}, at: [<ffffffff81035751>] process_one_work+0x11a/0x2bf which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 ((&(&conn->disc_work)->work)){+.+...}: [<ffffffff81057444>] lock_acquire+0x8a/0xa7 [<ffffffff81034ed1>] wait_on_work+0x3d/0xaa [<ffffffff81035b54>] __cancel_work_timer+0xac/0xef [<ffffffff81035ba4>] cancel_delayed_work_sync+0xd/0xf [<ffffffffa00554b0>] smp_chan_create+0xde/0xe6 [bluetooth] [<ffffffffa0056160>] smp_conn_security+0xa3/0x12d [bluetooth] [<ffffffffa0053640>] l2cap_connect_cfm+0x237/0x2e8 [bluetooth] [<ffffffffa004239c>] hci_proto_connect_cfm+0x2d/0x6f [bluetooth] [<ffffffffa0046ea5>] hci_event_packet+0x29d1/0x2d60 [bluetooth] [<ffffffffa003dde3>] hci_rx_work+0xd0/0x2e1 [bluetooth] [<ffffffff810357af>] process_one_work+0x178/0x2bf [<ffffffff81036178>] worker_thread+0xce/0x152 [<ffffffff81039a03>] kthread+0x95/0x9d [<ffffffff812e7754>] kernel_thread_helper+0x4/0x10 -> #1 (slock-AF_BLUETOOTH-BTPROTO_L2CAP){+.+...}: [<ffffffff81057444>] lock_acquire+0x8a/0xa7 [<ffffffff812e553a>] _raw_spin_lock_bh+0x36/0x6a [<ffffffff81244d56>] lock_sock_nested+0x24/0x7f [<ffffffffa004d96f>] lock_sock+0xb/0xd [bluetooth] [<ffffffffa0052906>] l2cap_chan_connect+0xa9/0x26f [bluetooth] [<ffffffffa00545f8>] l2cap_sock_connect+0xb3/0xff [bluetooth] [<ffffffff81243b48>] sys_connect+0x69/0x8a [<ffffffff812e6579>] system_call_fastpath+0x16/0x1b -> #0 (&hdev->lock){+.+.+.}: [<ffffffff81056d06>] __lock_acquire+0xa80/0xd74 [<ffffffff81057444>] lock_acquire+0x8a/0xa7 [<ffffffff812e3870>] __mutex_lock_common+0x48/0x38e [<ffffffff812e3c75>] mutex_lock_nested+0x2a/0x31 [<ffffffffa0041155>] hci_conn_timeout+0x62/0x158 [bluetooth] [<ffffffff810357af>] process_one_work+0x178/0x2bf [<ffffffff81036178>] worker_thread+0xce/0x152 [<ffffffff81039a03>] kthread+0x95/0x9d [<ffffffff812e7754>] kernel_thread_helper+0x4/0x10 other info that might help us debug this: Chain exists of: &hdev->lock --> slock-AF_BLUETOOTH-BTPROTO_L2CAP --> (&(&conn->disc_work)->work) Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock((&(&conn->disc_work)->work)); lock(slock-AF_BLUETOOTH-BTPROTO_L2CAP); lock((&(&conn->disc_work)->work)); lock(&hdev->lock); *** DEADLOCK *** 2 locks held by kworker/u:1/17: #0: (hdev->name){.+.+.+}, at: [<ffffffff81035751>] process_one_work+0x11a/0x2bf #1: ((&(&conn->disc_work)->work)){+.+...}, at: [<ffffffff81035751>] process_one_work+0x11a/0x2bf stack backtrace: Pid: 17, comm: kworker/u:1 Not tainted 3.2.0+ #1 Call Trace: [<ffffffff812e06c6>] print_circular_bug+0x1f8/0x209 [<ffffffff81056d06>] __lock_acquire+0xa80/0xd74 [<ffffffff81021ef2>] ? arch_local_irq_restore+0x6/0xd [<ffffffff81022bc7>] ? vprintk+0x3f9/0x41e [<ffffffff81057444>] lock_acquire+0x8a/0xa7 [<ffffffffa0041155>] ? hci_conn_timeout+0x62/0x158 [bluetooth] [<ffffffff812e3870>] __mutex_lock_common+0x48/0x38e [<ffffffffa0041155>] ? hci_conn_timeout+0x62/0x158 [bluetooth] [<ffffffff81190fd6>] ? __dynamic_pr_debug+0x6d/0x6f [<ffffffffa0041155>] ? hci_conn_timeout+0x62/0x158 [bluetooth] [<ffffffff8105320f>] ? trace_hardirqs_off+0xd/0xf [<ffffffff812e3c75>] mutex_lock_nested+0x2a/0x31 [<ffffffffa0041155>] hci_conn_timeout+0x62/0x158 [bluetooth] [<ffffffff810357af>] process_one_work+0x178/0x2bf [<ffffffff81035751>] ? process_one_work+0x11a/0x2bf [<ffffffff81055af3>] ? lock_acquired+0x1d0/0x1df [<ffffffffa00410f3>] ? hci_acl_disconn+0x65/0x65 [bluetooth] [<ffffffff81036178>] worker_thread+0xce/0x152 [<ffffffff810407ed>] ? finish_task_switch+0x45/0xc5 [<ffffffff810360aa>] ? manage_workers.isra.25+0x16a/0x16a [<ffffffff81039a03>] kthread+0x95/0x9d [<ffffffff812e7754>] kernel_thread_helper+0x4/0x10 [<ffffffff812e5db4>] ? retint_restore_args+0x13/0x13 [<ffffffff8103996e>] ? __init_kthread_worker+0x55/0x55 [<ffffffff812e7750>] ? gs_change+0x13/0x13 Signed-off-by: Andre Guedes <andre.guedes@openbossa.org> Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@openbossa.org> Reviewed-by: Ulisses Furquim <ulisses@profusion.mobi> Acked-by: Marcel Holtmann <marcel@holtmann.org> Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2012-01-28 06:42:02 +08:00
cancel_delayed_work(&conn->disc_work);
queue_delayed_work(conn->hdev->workqueue,
&conn->disc_work, timeo);
}
}
/* ----- HCI Devices ----- */
static inline void hci_dev_put(struct hci_dev *d)
{
put_device(&d->dev);
}
static inline struct hci_dev *hci_dev_hold(struct hci_dev *d)
{
get_device(&d->dev);
return d;
}
#define hci_dev_lock(d) mutex_lock(&d->lock)
#define hci_dev_unlock(d) mutex_unlock(&d->lock)
struct hci_dev *hci_dev_get(int index);
struct hci_dev *hci_get_route(bdaddr_t *src, bdaddr_t *dst);
struct hci_dev *hci_alloc_dev(void);
void hci_free_dev(struct hci_dev *hdev);
int hci_register_dev(struct hci_dev *hdev);
void hci_unregister_dev(struct hci_dev *hdev);
int hci_suspend_dev(struct hci_dev *hdev);
int hci_resume_dev(struct hci_dev *hdev);
int hci_dev_open(__u16 dev);
int hci_dev_close(__u16 dev);
int hci_dev_reset(__u16 dev);
int hci_dev_reset_stat(__u16 dev);
int hci_dev_cmd(unsigned int cmd, void __user *arg);
int hci_get_dev_list(void __user *arg);
int hci_get_dev_info(void __user *arg);
int hci_get_conn_list(void __user *arg);
int hci_get_conn_info(struct hci_dev *hdev, void __user *arg);
int hci_get_auth_info(struct hci_dev *hdev, void __user *arg);
int hci_inquiry(void __user *arg);
struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr);
int hci_blacklist_clear(struct hci_dev *hdev);
int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr);
int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr);
int hci_uuids_clear(struct hci_dev *hdev);
int hci_link_keys_clear(struct hci_dev *hdev);
struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len);
struct link_key *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8]);
struct link_key *hci_find_link_key_type(struct hci_dev *hdev,
bdaddr_t *bdaddr, u8 type);
int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr);
int hci_add_ltk(struct hci_dev *hdev, int new_key, bdaddr_t *bdaddr,
u8 key_size, __le16 ediv, u8 rand[8], u8 ltk[16]);
int hci_smp_ltks_clear(struct hci_dev *hdev);
int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
int hci_remote_oob_data_clear(struct hci_dev *hdev);
struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
bdaddr_t *bdaddr);
int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
u8 *randomizer);
int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr);
#define ADV_CLEAR_TIMEOUT (3*60*HZ) /* Three minutes */
int hci_adv_entries_clear(struct hci_dev *hdev);
struct adv_entry *hci_find_adv_entry(struct hci_dev *hdev, bdaddr_t *bdaddr);
int hci_add_adv_entry(struct hci_dev *hdev,
struct hci_ev_le_advertising_info *ev);
void hci_del_off_timer(struct hci_dev *hdev);
void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb);
int hci_recv_frame(struct sk_buff *skb);
int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count);
int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count);
void hci_init_sysfs(struct hci_dev *hdev);
int hci_add_sysfs(struct hci_dev *hdev);
void hci_del_sysfs(struct hci_dev *hdev);
Bluetooth: Fix issue with sysfs handling for connections Due to a semantic changes in flush_workqueue() the current approach of synchronizing the sysfs handling for connections doesn't work anymore. The whole approach is actually fully broken and based on assumptions that are no longer valid. With the introduction of Simple Pairing support, the creation of low-level ACL links got changed. This change invalidates the reason why in the past two independent work queues have been used for adding/removing sysfs devices. The adding of the actual sysfs device is now postponed until the host controller successfully assigns an unique handle to that link. So the real synchronization happens inside the controller and not the host. The only left-over problem is that some internals of the sysfs device handling are not initialized ahead of time. This leaves potential access to invalid data and can cause various NULL pointer dereferences. To fix this a new function makes sure that all sysfs details are initialized when an connection attempt is made. The actual sysfs device is only registered when the connection has been successfully established. To avoid a race condition with the registration, the check if a device is registered has been moved into the removal work. As an extra protection two flush_work() calls are left in place to make sure a previous add/del work has been completed first. Based on a report by Marc Pignat <marc.pignat@hevs.ch> Signed-off-by: Marcel Holtmann <marcel@holtmann.org> Tested-by: Justin P. Mattock <justinmattock@gmail.com> Tested-by: Roger Quadros <ext-roger.quadros@nokia.com> Tested-by: Marc Pignat <marc.pignat@hevs.ch>
2009-05-03 09:24:06 +08:00
void hci_conn_init_sysfs(struct hci_conn *conn);
void hci_conn_add_sysfs(struct hci_conn *conn);
void hci_conn_del_sysfs(struct hci_conn *conn);
#define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->parent = (pdev))
/* ----- LMP capabilities ----- */
#define lmp_rswitch_capable(dev) ((dev)->features[0] & LMP_RSWITCH)
#define lmp_encrypt_capable(dev) ((dev)->features[0] & LMP_ENCRYPT)
#define lmp_sniff_capable(dev) ((dev)->features[0] & LMP_SNIFF)
#define lmp_sniffsubr_capable(dev) ((dev)->features[5] & LMP_SNIFF_SUBR)
#define lmp_esco_capable(dev) ((dev)->features[3] & LMP_ESCO)
#define lmp_ssp_capable(dev) ((dev)->features[6] & LMP_SIMPLE_PAIR)
Bluetooth: Use non-flushable by default L2CAP data packets Modification of Nick Pelly <npelly@google.com> patch. With Bluetooth 2.1 ACL packets can be flushable or non-flushable. This commit makes ACL data packets non-flushable by default on compatible chipsets, and adds the BT_FLUSHABLE socket option to explicitly request flushable ACL data packets for a given L2CAP socket. This is useful for A2DP data which can be safely discarded if it can not be delivered within a short time (while other ACL data should not be discarded). Note that making ACL data flushable has no effect unless the automatic flush timeout for that ACL link is changed from its default of 0 (infinite). Default packet types (for compatible chipsets): Frame 34: 13 bytes on wire (104 bits), 13 bytes captured (104 bits) Bluetooth HCI H4 Bluetooth HCI ACL Packet .... 0000 0000 0010 = Connection Handle: 0x0002 ..00 .... .... .... = PB Flag: First Non-automatically Flushable Packet (0) 00.. .... .... .... = BC Flag: Point-To-Point (0) Data Total Length: 8 Bluetooth L2CAP Packet After setting BT_FLUSHABLE (sock.setsockopt(274 /*SOL_BLUETOOTH*/, 8 /* BT_FLUSHABLE */, 1 /* flush */)) Frame 34: 13 bytes on wire (104 bits), 13 bytes captured (104 bits) Bluetooth HCI H4 Bluetooth HCI ACL Packet .... 0000 0000 0010 = Connection Handle: 0x0002 ..10 .... .... .... = PB Flag: First Automatically Flushable Packet (2) 00.. .... .... .... = BC Flag: Point-To-Point (0) Data Total Length: 8 Bluetooth L2CAP Packet Signed-off-by: Andrei Emeltchenko <andrei.emeltchenko@nokia.com> Signed-off-by: Gustavo F. Padovan <padovan@profusion.mobi>
2011-01-03 17:14:36 +08:00
#define lmp_no_flush_capable(dev) ((dev)->features[6] & LMP_NO_FLUSH)
#define lmp_le_capable(dev) ((dev)->features[4] & LMP_LE)
/* ----- Extended LMP capabilities ----- */
#define lmp_host_le_capable(dev) ((dev)->host_features[0] & LMP_HOST_LE)
/* ----- HCI protocols ----- */
static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
__u8 type)
{
switch (type) {
case ACL_LINK:
return l2cap_connect_ind(hdev, bdaddr);
case SCO_LINK:
case ESCO_LINK:
return sco_connect_ind(hdev, bdaddr);
default:
BT_ERR("unknown link type %d", type);
return -EINVAL;
}
}
static inline void hci_proto_connect_cfm(struct hci_conn *conn, __u8 status)
{
switch (conn->type) {
case ACL_LINK:
case LE_LINK:
l2cap_connect_cfm(conn, status);
break;
case SCO_LINK:
case ESCO_LINK:
sco_connect_cfm(conn, status);
break;
default:
BT_ERR("unknown link type %d", conn->type);
break;
}
if (conn->connect_cfm_cb)
conn->connect_cfm_cb(conn, status);
}
Bluetooth: Ask upper layers for HCI disconnect reason Some of the qualification tests demand that in case of failures in L2CAP the HCI disconnect should indicate a reason why L2CAP fails. This is a bluntly layer violation since multiple L2CAP connections could be using the same ACL and thus forcing a disconnect reason is not a good idea. To comply with the Bluetooth test specification, the disconnect reason is now stored in the L2CAP connection structure and every time a new L2CAP channel is added it will set back to its default. So only in the case where the L2CAP channel with the disconnect reason is really the last one, it will propagated to the HCI layer. The HCI layer has been extended with a disconnect indication that allows it to ask upper layers for a disconnect reason. The upper layer must not support this callback and in that case it will nicely default to the existing behavior. If an upper layer like L2CAP can provide a disconnect reason that one will be used to disconnect the ACL or SCO link. No modification to the ACL disconnect timeout have been made. So in case of Linux to Linux connection the initiator will disconnect the ACL link before the acceptor side can signal the specific disconnect reason. That is perfectly fine since Linux doesn't make use of this value anyway. The L2CAP layer has a perfect valid error code for rejecting connection due to a security violation. It is unclear why the Bluetooth specification insists on having specific HCI disconnect reason. Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-02-12 21:02:50 +08:00
static inline int hci_proto_disconn_ind(struct hci_conn *conn)
{
if (conn->type != ACL_LINK && conn->type != LE_LINK)
return HCI_ERROR_REMOTE_USER_TERM;
return l2cap_disconn_ind(conn);
Bluetooth: Ask upper layers for HCI disconnect reason Some of the qualification tests demand that in case of failures in L2CAP the HCI disconnect should indicate a reason why L2CAP fails. This is a bluntly layer violation since multiple L2CAP connections could be using the same ACL and thus forcing a disconnect reason is not a good idea. To comply with the Bluetooth test specification, the disconnect reason is now stored in the L2CAP connection structure and every time a new L2CAP channel is added it will set back to its default. So only in the case where the L2CAP channel with the disconnect reason is really the last one, it will propagated to the HCI layer. The HCI layer has been extended with a disconnect indication that allows it to ask upper layers for a disconnect reason. The upper layer must not support this callback and in that case it will nicely default to the existing behavior. If an upper layer like L2CAP can provide a disconnect reason that one will be used to disconnect the ACL or SCO link. No modification to the ACL disconnect timeout have been made. So in case of Linux to Linux connection the initiator will disconnect the ACL link before the acceptor side can signal the specific disconnect reason. That is perfectly fine since Linux doesn't make use of this value anyway. The L2CAP layer has a perfect valid error code for rejecting connection due to a security violation. It is unclear why the Bluetooth specification insists on having specific HCI disconnect reason. Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-02-12 21:02:50 +08:00
}
static inline void hci_proto_disconn_cfm(struct hci_conn *conn, __u8 reason)
{
switch (conn->type) {
case ACL_LINK:
case LE_LINK:
l2cap_disconn_cfm(conn, reason);
break;
Bluetooth: Ask upper layers for HCI disconnect reason Some of the qualification tests demand that in case of failures in L2CAP the HCI disconnect should indicate a reason why L2CAP fails. This is a bluntly layer violation since multiple L2CAP connections could be using the same ACL and thus forcing a disconnect reason is not a good idea. To comply with the Bluetooth test specification, the disconnect reason is now stored in the L2CAP connection structure and every time a new L2CAP channel is added it will set back to its default. So only in the case where the L2CAP channel with the disconnect reason is really the last one, it will propagated to the HCI layer. The HCI layer has been extended with a disconnect indication that allows it to ask upper layers for a disconnect reason. The upper layer must not support this callback and in that case it will nicely default to the existing behavior. If an upper layer like L2CAP can provide a disconnect reason that one will be used to disconnect the ACL or SCO link. No modification to the ACL disconnect timeout have been made. So in case of Linux to Linux connection the initiator will disconnect the ACL link before the acceptor side can signal the specific disconnect reason. That is perfectly fine since Linux doesn't make use of this value anyway. The L2CAP layer has a perfect valid error code for rejecting connection due to a security violation. It is unclear why the Bluetooth specification insists on having specific HCI disconnect reason. Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-02-12 21:02:50 +08:00
case SCO_LINK:
case ESCO_LINK:
sco_disconn_cfm(conn, reason);
break;
Bluetooth: Ask upper layers for HCI disconnect reason Some of the qualification tests demand that in case of failures in L2CAP the HCI disconnect should indicate a reason why L2CAP fails. This is a bluntly layer violation since multiple L2CAP connections could be using the same ACL and thus forcing a disconnect reason is not a good idea. To comply with the Bluetooth test specification, the disconnect reason is now stored in the L2CAP connection structure and every time a new L2CAP channel is added it will set back to its default. So only in the case where the L2CAP channel with the disconnect reason is really the last one, it will propagated to the HCI layer. The HCI layer has been extended with a disconnect indication that allows it to ask upper layers for a disconnect reason. The upper layer must not support this callback and in that case it will nicely default to the existing behavior. If an upper layer like L2CAP can provide a disconnect reason that one will be used to disconnect the ACL or SCO link. No modification to the ACL disconnect timeout have been made. So in case of Linux to Linux connection the initiator will disconnect the ACL link before the acceptor side can signal the specific disconnect reason. That is perfectly fine since Linux doesn't make use of this value anyway. The L2CAP layer has a perfect valid error code for rejecting connection due to a security violation. It is unclear why the Bluetooth specification insists on having specific HCI disconnect reason. Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-02-12 21:02:50 +08:00
default:
BT_ERR("unknown link type %d", conn->type);
break;
}
if (conn->disconn_cfm_cb)
conn->disconn_cfm_cb(conn, reason);
}
static inline void hci_proto_auth_cfm(struct hci_conn *conn, __u8 status)
{
Bluetooth: Add enhanced security model for Simple Pairing The current security model is based around the flags AUTH, ENCRYPT and SECURE. Starting with support for the Bluetooth 2.1 specification this is no longer sufficient. The different security levels are now defined as SDP, LOW, MEDIUM and SECURE. Previously it was possible to set each security independently, but this actually doesn't make a lot of sense. For Bluetooth the encryption depends on a previous successful authentication. Also you can only update your existing link key if you successfully created at least one before. And of course the update of link keys without having proper encryption in place is a security issue. The new security levels from the Bluetooth 2.1 specification are now used internally. All old settings are mapped to the new values and this way it ensures that old applications still work. The only limitation is that it is no longer possible to set authentication without also enabling encryption. No application should have done this anyway since this is actually a security issue. Without encryption the integrity of the authentication can't be guaranteed. As default for a new L2CAP or RFCOMM connection, the LOW security level is used. The only exception here are the service discovery sessions on PSM 1 where SDP level is used. To have similar security strength as with a Bluetooth 2.0 and before combination key, the MEDIUM level should be used. This is according to the Bluetooth specification. The MEDIUM level will not require any kind of man-in-the-middle (MITM) protection. Only the HIGH security level will require this. Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-01-16 04:58:04 +08:00
__u8 encrypt;
if (conn->type != ACL_LINK && conn->type != LE_LINK)
return;
if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
Bluetooth: Add enhanced security model for Simple Pairing The current security model is based around the flags AUTH, ENCRYPT and SECURE. Starting with support for the Bluetooth 2.1 specification this is no longer sufficient. The different security levels are now defined as SDP, LOW, MEDIUM and SECURE. Previously it was possible to set each security independently, but this actually doesn't make a lot of sense. For Bluetooth the encryption depends on a previous successful authentication. Also you can only update your existing link key if you successfully created at least one before. And of course the update of link keys without having proper encryption in place is a security issue. The new security levels from the Bluetooth 2.1 specification are now used internally. All old settings are mapped to the new values and this way it ensures that old applications still work. The only limitation is that it is no longer possible to set authentication without also enabling encryption. No application should have done this anyway since this is actually a security issue. Without encryption the integrity of the authentication can't be guaranteed. As default for a new L2CAP or RFCOMM connection, the LOW security level is used. The only exception here are the service discovery sessions on PSM 1 where SDP level is used. To have similar security strength as with a Bluetooth 2.0 and before combination key, the MEDIUM level should be used. This is according to the Bluetooth specification. The MEDIUM level will not require any kind of man-in-the-middle (MITM) protection. Only the HIGH security level will require this. Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-01-16 04:58:04 +08:00
return;
encrypt = (conn->link_mode & HCI_LM_ENCRYPT) ? 0x01 : 0x00;
l2cap_security_cfm(conn, status, encrypt);
if (conn->security_cfm_cb)
conn->security_cfm_cb(conn, status);
}
static inline void hci_proto_encrypt_cfm(struct hci_conn *conn, __u8 status,
__u8 encrypt)
{
if (conn->type != ACL_LINK && conn->type != LE_LINK)
return;
l2cap_security_cfm(conn, status, encrypt);
if (conn->security_cfm_cb)
conn->security_cfm_cb(conn, status);
}
/* ----- HCI callbacks ----- */
struct hci_cb {
struct list_head list;
char *name;
void (*security_cfm) (struct hci_conn *conn, __u8 status,
__u8 encrypt);
void (*key_change_cfm) (struct hci_conn *conn, __u8 status);
void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role);
};
static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status)
{
struct list_head *p;
Bluetooth: Add enhanced security model for Simple Pairing The current security model is based around the flags AUTH, ENCRYPT and SECURE. Starting with support for the Bluetooth 2.1 specification this is no longer sufficient. The different security levels are now defined as SDP, LOW, MEDIUM and SECURE. Previously it was possible to set each security independently, but this actually doesn't make a lot of sense. For Bluetooth the encryption depends on a previous successful authentication. Also you can only update your existing link key if you successfully created at least one before. And of course the update of link keys without having proper encryption in place is a security issue. The new security levels from the Bluetooth 2.1 specification are now used internally. All old settings are mapped to the new values and this way it ensures that old applications still work. The only limitation is that it is no longer possible to set authentication without also enabling encryption. No application should have done this anyway since this is actually a security issue. Without encryption the integrity of the authentication can't be guaranteed. As default for a new L2CAP or RFCOMM connection, the LOW security level is used. The only exception here are the service discovery sessions on PSM 1 where SDP level is used. To have similar security strength as with a Bluetooth 2.0 and before combination key, the MEDIUM level should be used. This is according to the Bluetooth specification. The MEDIUM level will not require any kind of man-in-the-middle (MITM) protection. Only the HIGH security level will require this. Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-01-16 04:58:04 +08:00
__u8 encrypt;
hci_proto_auth_cfm(conn, status);
if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
Bluetooth: Add enhanced security model for Simple Pairing The current security model is based around the flags AUTH, ENCRYPT and SECURE. Starting with support for the Bluetooth 2.1 specification this is no longer sufficient. The different security levels are now defined as SDP, LOW, MEDIUM and SECURE. Previously it was possible to set each security independently, but this actually doesn't make a lot of sense. For Bluetooth the encryption depends on a previous successful authentication. Also you can only update your existing link key if you successfully created at least one before. And of course the update of link keys without having proper encryption in place is a security issue. The new security levels from the Bluetooth 2.1 specification are now used internally. All old settings are mapped to the new values and this way it ensures that old applications still work. The only limitation is that it is no longer possible to set authentication without also enabling encryption. No application should have done this anyway since this is actually a security issue. Without encryption the integrity of the authentication can't be guaranteed. As default for a new L2CAP or RFCOMM connection, the LOW security level is used. The only exception here are the service discovery sessions on PSM 1 where SDP level is used. To have similar security strength as with a Bluetooth 2.0 and before combination key, the MEDIUM level should be used. This is according to the Bluetooth specification. The MEDIUM level will not require any kind of man-in-the-middle (MITM) protection. Only the HIGH security level will require this. Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-01-16 04:58:04 +08:00
return;
encrypt = (conn->link_mode & HCI_LM_ENCRYPT) ? 0x01 : 0x00;
read_lock(&hci_cb_list_lock);
list_for_each(p, &hci_cb_list) {
struct hci_cb *cb = list_entry(p, struct hci_cb, list);
Bluetooth: Add enhanced security model for Simple Pairing The current security model is based around the flags AUTH, ENCRYPT and SECURE. Starting with support for the Bluetooth 2.1 specification this is no longer sufficient. The different security levels are now defined as SDP, LOW, MEDIUM and SECURE. Previously it was possible to set each security independently, but this actually doesn't make a lot of sense. For Bluetooth the encryption depends on a previous successful authentication. Also you can only update your existing link key if you successfully created at least one before. And of course the update of link keys without having proper encryption in place is a security issue. The new security levels from the Bluetooth 2.1 specification are now used internally. All old settings are mapped to the new values and this way it ensures that old applications still work. The only limitation is that it is no longer possible to set authentication without also enabling encryption. No application should have done this anyway since this is actually a security issue. Without encryption the integrity of the authentication can't be guaranteed. As default for a new L2CAP or RFCOMM connection, the LOW security level is used. The only exception here are the service discovery sessions on PSM 1 where SDP level is used. To have similar security strength as with a Bluetooth 2.0 and before combination key, the MEDIUM level should be used. This is according to the Bluetooth specification. The MEDIUM level will not require any kind of man-in-the-middle (MITM) protection. Only the HIGH security level will require this. Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-01-16 04:58:04 +08:00
if (cb->security_cfm)
cb->security_cfm(conn, status, encrypt);
}
read_unlock(&hci_cb_list_lock);
}
static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status,
__u8 encrypt)
{
struct list_head *p;
if (conn->sec_level == BT_SECURITY_SDP)
conn->sec_level = BT_SECURITY_LOW;
if (conn->pending_sec_level > conn->sec_level)
conn->sec_level = conn->pending_sec_level;
hci_proto_encrypt_cfm(conn, status, encrypt);
read_lock(&hci_cb_list_lock);
list_for_each(p, &hci_cb_list) {
struct hci_cb *cb = list_entry(p, struct hci_cb, list);
Bluetooth: Add enhanced security model for Simple Pairing The current security model is based around the flags AUTH, ENCRYPT and SECURE. Starting with support for the Bluetooth 2.1 specification this is no longer sufficient. The different security levels are now defined as SDP, LOW, MEDIUM and SECURE. Previously it was possible to set each security independently, but this actually doesn't make a lot of sense. For Bluetooth the encryption depends on a previous successful authentication. Also you can only update your existing link key if you successfully created at least one before. And of course the update of link keys without having proper encryption in place is a security issue. The new security levels from the Bluetooth 2.1 specification are now used internally. All old settings are mapped to the new values and this way it ensures that old applications still work. The only limitation is that it is no longer possible to set authentication without also enabling encryption. No application should have done this anyway since this is actually a security issue. Without encryption the integrity of the authentication can't be guaranteed. As default for a new L2CAP or RFCOMM connection, the LOW security level is used. The only exception here are the service discovery sessions on PSM 1 where SDP level is used. To have similar security strength as with a Bluetooth 2.0 and before combination key, the MEDIUM level should be used. This is according to the Bluetooth specification. The MEDIUM level will not require any kind of man-in-the-middle (MITM) protection. Only the HIGH security level will require this. Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-01-16 04:58:04 +08:00
if (cb->security_cfm)
cb->security_cfm(conn, status, encrypt);
}
read_unlock(&hci_cb_list_lock);
}
static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status)
{
struct list_head *p;
read_lock(&hci_cb_list_lock);
list_for_each(p, &hci_cb_list) {
struct hci_cb *cb = list_entry(p, struct hci_cb, list);
if (cb->key_change_cfm)
cb->key_change_cfm(conn, status);
}
read_unlock(&hci_cb_list_lock);
}
static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status,
__u8 role)
{
struct list_head *p;
read_lock(&hci_cb_list_lock);
list_for_each(p, &hci_cb_list) {
struct hci_cb *cb = list_entry(p, struct hci_cb, list);
if (cb->role_switch_cfm)
cb->role_switch_cfm(conn, status, role);
}
read_unlock(&hci_cb_list_lock);
}
static inline bool eir_has_data_type(u8 *data, size_t data_len, u8 type)
{
u8 field_len;
size_t parsed;
for (parsed = 0; parsed < data_len - 1; parsed += field_len) {
field_len = data[0];
if (field_len == 0)
break;
parsed += field_len + 1;
if (parsed > data_len)
break;
if (data[1] == type)
return true;
data += field_len + 1;
}
return false;
}
static inline u16 eir_append_data(u8 *eir, u16 eir_len, u8 type, u8 *data,
u8 data_len)
{
eir[eir_len++] = sizeof(type) + data_len;
eir[eir_len++] = type;
memcpy(&eir[eir_len], data, data_len);
eir_len += data_len;
return eir_len;
}
int hci_register_cb(struct hci_cb *hcb);
int hci_unregister_cb(struct hci_cb *hcb);
int hci_register_notifier(struct notifier_block *nb);
int hci_unregister_notifier(struct notifier_block *nb);
int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param);
void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags);
void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb);
void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode);
void hci_si_event(struct hci_dev *hdev, int type, int dlen, void *data);
/* ----- HCI Sockets ----- */
void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb,
struct sock *skip_sk);
/* Management interface */
int mgmt_control(struct sock *sk, struct msghdr *msg, size_t len);
int mgmt_index_added(struct hci_dev *hdev);
int mgmt_index_removed(struct hci_dev *hdev);
int mgmt_powered(struct hci_dev *hdev, u8 powered);
int mgmt_discoverable(struct hci_dev *hdev, u8 discoverable);
int mgmt_connectable(struct hci_dev *hdev, u8 connectable);
int mgmt_write_scan_failed(struct hci_dev *hdev, u8 scan, u8 status);
int mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key,
u8 persistent);
int mgmt_device_connected(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
u8 addr_type, u8 *name, u8 name_len,
u8 *dev_class);
int mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr,
u8 link_type, u8 addr_type);
int mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 status);
int mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
u8 addr_type, u8 status);
int mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure);
int mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
u8 status);
int mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
u8 status);
int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
__le32 value, u8 confirm_hint);
int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
u8 status);
int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev,
bdaddr_t *bdaddr, u8 status);
int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr);
int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
u8 status);
int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev,
bdaddr_t *bdaddr, u8 status);
int mgmt_auth_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 status);
int mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status);
int mgmt_read_local_oob_data_reply_complete(struct hci_dev *hdev, u8 *hash,
u8 *randomizer, u8 status);
int mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
u8 addr_type, u8 *dev_class, s8 rssi,
u8 cfm_name, u8 *eir, u16 eir_len);
int mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
u8 addr_type, s8 rssi, u8 *name, u8 name_len);
int mgmt_start_discovery_failed(struct hci_dev *hdev, u8 status);
int mgmt_stop_discovery_failed(struct hci_dev *hdev, u8 status);
int mgmt_discovering(struct hci_dev *hdev, u8 discovering);
int mgmt_device_blocked(struct hci_dev *hdev, bdaddr_t *bdaddr);
int mgmt_device_unblocked(struct hci_dev *hdev, bdaddr_t *bdaddr);
/* HCI info for socket */
#define hci_pi(sk) ((struct hci_pinfo *) sk)
/* HCI socket flags */
#define HCI_PI_MGMT_INIT 0
struct hci_pinfo {
struct bt_sock bt;
struct hci_dev *hdev;
struct hci_filter filter;
__u32 cmsg_mask;
unsigned short channel;
unsigned long flags;
};
/* HCI security filter */
#define HCI_SFLT_MAX_OGF 5
struct hci_sec_filter {
__u32 type_mask;
__u32 event_mask[2];
__u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4];
};
/* ----- HCI requests ----- */
#define HCI_REQ_DONE 0
#define HCI_REQ_PEND 1
#define HCI_REQ_CANCELED 2
#define hci_req_lock(d) mutex_lock(&d->req_lock)
#define hci_req_unlock(d) mutex_unlock(&d->req_lock)
void hci_req_complete(struct hci_dev *hdev, __u16 cmd, int result);
void hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max,
u16 latency, u16 to_multiplier);
void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __u8 rand[8],
__u8 ltk[16]);
void hci_le_ltk_reply(struct hci_conn *conn, u8 ltk[16]);
void hci_le_ltk_neg_reply(struct hci_conn *conn);
int hci_do_inquiry(struct hci_dev *hdev, u8 length);
int hci_cancel_inquiry(struct hci_dev *hdev);
#endif /* __HCI_CORE_H */